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Abstract

Background: The post-transcriptional processing of pre-mRNAs by RNA editing contributes significantly to the complexity
of the mammalian transcriptome. RNA editing by site-selective A-to-I modification also regulates protein function through
recoding of genomically specified sequences. The adenosine deaminase ADAR2 is the main enzyme responsible for
recoding editing and loss of ADAR2 function in mice leads to a phenotype of epilepsy and premature death. Although A-to-I
RNA editing is known to be subject to developmental and cell-type specific regulation, there is little knowledge regarding
the mechanisms that regulate RNA editing in vivo. Therefore, the characterization of ADAR expression and identification of
alternative ADAR variants is an important prerequisite for understanding the mechanisms for regulation of RNA editing and
the causes for deregulation in disease.

Methodology/Principal Findings: Here we present evidence for a new ADAR2 splice variant that extends the open reading
frame of ADAR2 by 49 amino acids through the utilization of an exon located 18 kilobases upstream of the previously
annotated first coding exon and driven by a candidate alternative promoter. Interestingly, the 49 amino acid extension
harbors a sequence motif that is closely related to the R-domain of ADAR3 where it has been shown to function as a basic,
single-stranded RNA binding domain. Quantitative expression analysis shows that expression of the novel ADAR2 splice
variant is tissue specific being highest in the cerebellum.

Conclusions/Significance: The strong sequence conservation of the ADAR2 R-domain between human, mouse and rat
ADAR2 genes suggests a conserved function for this isoform of the RNA editing enzyme.
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Introduction

Nuclear pre-mRNA editing has been recognized as an

important mechanism for the generation of protein diversity in

mammals (for review see [1,2]). In A-to-I RNA editing, specific

adenosine bases in pre-mRNAs undergo deamination to inosine,

which is interpreted as guanosine by the translation machinery

and therefore can lead to single amino acid substitutions in protein

products that result from edited mRNAs.

A few dozen genes are known in human that undergo RNA

editing in their pre-mRNA at specific locations resulting in protein

product variants with altered functions (for review see [3]). In the

case of the glutamate receptor subunit GluR-2 the single amino

acid substitution (Q-to-R) induced by editing is critical for normal

brain function [4]. In addition to these so-called ‘recoding’ editing

events, many pre-mRNAs undergo A-to-I modification in

untranslated exonic, and in non-coding intronic sequences. These

include the widespread editing of Alu-type repeat elements in the

human transcriptome [5–7] and the editing of micro RNA

precursors [8–10]. The deficiency or hyperactivity of A-to-I RNA

editing has been linked to human disease phenotypes, such as

epilepsy, malignant brain cancer, amyotrophic lateral sclerosis,

immunological disorders and depression (for review see [11]).

It is not completely understood what determines which

adenosine in a pre-mRNA molecule will be targeted for

deamination in vivo, but essential prerequisites are secondary

structures in the RNA substrate that include double-stranded

components within the vicinity of the editing site on one hand, and

the presence of an adenosine deaminase on the other. In

mammals, two adenosine deaminases that act on RNA (ADARs)

have been characterized, which mediate all of the currently known

A-to-I editing events [1]. The two enzymes harbor double-

stranded RNA binding domains as well as a catalytic deaminase

domain that is evolutionary related to tRNA specific adenosine

deaminases, and more distantly to cytidine deaminases. A third

enzyme, ADAR3 [12], shares high sequence similarity with

ADAR2 and is present in vertebrate species, but to date has not

been demonstrated to possess A-to-I RNA editing activity.

ADAR1 and ADAR2 generally show overlapping activity

profiles on a given RNA substrate with some of the known editing

sites being targeted predominantly by one of the two enzymes [3].

Both ADAR1 and ADAR2 are subject to alternative splicing in

mammals creating protein variants of different lengths, in some

cases with altered activity [13–17]. ADAR1 is further known to be

expressed either by an interferon regulated promoter leading to

the production of ADAR1p150, or by one of two downstream
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promoters that result in the synthesis of ADAR1p110. The two

versions of ADAR1 display distinct intracellular distribution and

probably fulfill distinct cellular functions [18,19].

Mammalian ADAR2 is an essential gene due to the fact that it

alone is responsible for editing of the GluR-2 Q/R editing site and

the loss of that function results in early death due to

hyperexcitability of principal neurons [4]. The regulation of

RNA editing activity in vivo is still largely unknown. Therefore,

the characterization of ADAR2 transcription and alternative

processing is an important prerequisite for understanding the

intracellular regulation of RNA editing.

The ADAR2 gene has been characterized to encompass 14

exons in human [17] and several alternative splicing events have

been identified [13,15,16,20]. For example, one involving

inclusion of alternative exon 5a, which introduces a 120 nucleotide

coding Alu-repeat sequence in frame, and another where self-

editing of the ADAR2 pre-mRNA creates a 39-prime splice site

within intron 1 leading to the inclusion of 47 nt of intronic

sequence [13,15,16,20].

In this study we present evidence for a new ADAR2 variant that

utilizes a previously undescribed exon that is likely expressed from

an alternative promoter. Importantly, the alternative splicing event

extends the open reading frame of ADAR2 and is conserved across

vertebrates. Interestingly, the 49 amino acid extension is closely

related in sequence to the N-terminal region of ADAR3, which

has been shown to possess single-stranded RNA binding activity

[21]. Although A-to-I RNA editing is known to be subject to

developmental and cell-type specific regulation, there is little

knowledge regarding the mechanisms that regulate RNA editing

in vivo. Therefore, the characterization of ADAR expression and

identification of alternative ADAR variants is an important

prerequisite for understanding the mechanisms for regulation of

RNA editing and the causes for deregulation in disease.

Results and Discussion

An alternative ADAR2 spliceform that extends the open
reading frame

While characterizing the murine Adar2 gene [4], we performed

59-RACE experiments and noticed a rare Adar2 cDNA species in

mouse brain that extended the open reading frame of the protein

N-terminally by 49 amino acids (S. Maas, M. Higuchi and P.H.

Seeburg, unpublished observation). We then asked if this sequence

is encoded by a previously unrecognized exon in the Adar2 gene.

Indeed, within the mouse genome sequence, we were able to

locate the corresponding nucleotide sequence on chromosome 10

region qC1, which is followed by a 59-splice consensus sequence

indicating the beginning of the adjacent intron (see Figure 1A).

Using the 49 amino acid mouse sequence we searched the

human genome sequence using the tblastn protocol (NCBI). We

identified a closely related nucleotide sequence within the human

ADAR2 gene on chromosome 21. It is located ca.18 kb 59 of the

sequence designated as exon 1 in the human ADAR2 gene [20]

and is followed by a consensus 59 splice donor sequence. Figure 2B

shows the alignment of the human and mouse exon 0 sequences

and a schematic indicating the relative position of exon 0 within

the human ADAR2 gene. In order to produce the novel ADAR2

protein variant, exon 0 becomes spliced to exon 1, which harbors

the translational start site for the major ADAR2 splice form. In our

59-RACE analysis of the mouse Adar2 gene the different 59-

sequences upstream of exon 1 indicated that exon 0 is probably

expressed from a different promoter than the one used for the

expression of the regular ADAR2 splice variants. There is no

discernable consensus upstream splice site for exon 0, and the only

mouse EST sequence that includes exon 0 as well as the single

cDNA clone we obtained from mouse brain, lack any further

upstream sequences derived from additional untranslated exons.

The fact that the 59-region of exon 0 overlaps with the location of

a CpG-Island (according to UCSC human genome browser),

further supports the notion that a transcriptional start site is close

by. Generally, CpG islands are associated with genes, particularly

housekeeping genes, in vertebrates. CpG islands are particularly

common near transcripton start sites, and are often associated with

promoter regions. In this case, the CpG island is 209 bp long with

a GC content of 63.3%. It spans from chromosome nt 43077313

to 43077521 (see Figure 1B).

Indeed, when we apply the algorithm ProScan (version 1.7) to

2500 nt of sequence upstream of exon 0, a strong putative

promoter region is predicted (see Figure 1B). It includes consensus

binding sites for NF-KB, SP1 and CAC-BP, as well as a TATA

box sequence. According to this prediction the transcriptional start

site is located 469 nt upstream of the translational start codon of

exon 0.

The sequence conservation between mouse and human, its

presence in mouse and human transcribed sequences and the

existence of a separate ADAR2 exon 0 in both the mouse and

human genome with conserved 59-splicing consensus confirms that

this ADAR2 splice variant probably subserves a conserved

function in mammals.

Exon 0 is strongly conserved in vertebrates and encodes
a protein sequence closely related to a functional
domain in ADAR3

Interestingly, the exon 0 encoded protein sequence unique to

the new alternative splice form of ADAR2 harbors a stretch of

positively charged residues that are highly similar in sequence,

length and relative position to the so-called R-domain of ADAR3

[12] (see Figure 2). The R-domain of ADAR3 was recently shown

to have specific binding affinity for single-stranded RNA [21].

The human and mouse ADAR2 cDNA sequences of the exon 0

encoded R-domain differ in only one nucleotide position and they

are 100% identical on the protein level (see Figure 2). The

translational Kozak-sequence CATGG is also conserved between

human/mouse ADAR2 exon 0 and ADAR3. In addition, the

computer program ‘‘exoniphy’’ [23] identifies a highly conserved

exon sequence in the ADAR2 gene that coincides with the coding

region of that R-domain in exon 0 in human, rat, mouse, dog,

orangutan and horse. The exoniphy program identifies evolution-

arily conserved protein-coding exons in a multiple alignment using

a phylogenetic hidden Markov model, a statistical model that

simultaneously describes exon structure and exon evolution.

Through further database analysis, we are also able to locate a

highly similar sequence in the zebrafish genome (Danio rerio;

chromosome 22), which maps within the zebrafish ADAR2 gene

and also encodes an R-domain protein sequence (see Figure 3).

The 59-splice consensus site is also conserved at the same position

as in human, mouse, rat, and other higher vertebrates.

Interestingly, the zebrafish exon 0 sequence displays a 10 bp

deletion just downstream of the ATG that aligns with the

predicted translational start codon in the mammalian sequences.

Further downstream, a second ATG is positioned in frame with

the following R-domain sequence and could represent the

initiation codon. Alternatively, translation could initiate at the

first ATG and lead to premature termination precluding the

translation of the R-domain. Furthermore, we cannot formally

rule out that the 10 bp deletion seen in the available zebrafish

sequence is subject to polymorphisms and another allele that lacks

the deletion exists as well. The different configuration of ADAR2
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exon 0 in zebrafish could be an indication of evolutionary changes

in the regulation of A-to-I RNA editing that took place during the

development of higher vertebrates.

The ADAR3 genome architecture is strongly conserved to the

one of ADAR2 with respect to the splice donor site directly

following the R-domain sequence.

Figure 1. A new translated exon in ADAR2. A) Mouse exon 0 nucleotide, amino acid sequence and details of mAdar2 gene structure. The
sequence of the R-domain is boxed, the translational start codon underlined. B) Human ADAR2 exon 0. The exon 0 sequence on human chromosome
21 is shown including translation and promoter sequences and transcriptional start site (TS) as predicted by ProScan. The CpG island is indicated by
dotted lines above and below the sequence. Putative transcription factor binding sites for NF-kB, CAC-BP, T-AG, SP1 and a predicted TATA box
sequence are marked. Intronic sequences are in small letters.
doi:10.1371/journal.pone.0004225.g001
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We will refer to this ADAR2 isoform as ADAR2R from here on

based on the presence of the highly conserved R-domain.

Another interesting observation is that the sequence of exon 1

that serves as 59-untranslated region (59-UTR) in the major splice

form of ADAR2, is more strongly conserved across species than

other 59-UTR sequences. Indeed, in ADAR2R, this part of exon 1

is translated and therefore contributes to the ADAR2R protein

sequence. This could explain why the sequence is conserved more

strongly and further supports the notion that ADAR2 fulfills a

conserved function in vertebrates.

Differential expression of ADAR2R mRNA in human
tissues

We next addressed the question where and to what extent

ADAR2R is expressed in human tissues. We initially detected the

ADAR2R cDNA in mouse brain. Upon retrieving the orthologous

human sequence from the databases as described above, we could

indeed amplify by RT-PCR the splice-variant specific cDNA from

human brain using human ADAR2 specific primers.

Subsequently we analyzed through quantitative real time PCR

the relative expression of the ADAR2R splice variant compared to

all ADAR2 splice variants lacking exon 0 using several human

tissue total RNAs as starting material. Figure 4A depicts the real-

time PCR strategy where splice-variant specific amplicons are

generated using exon specific primers and are then quantified

using variant-specific TaqMan probes (ABI). Figure 4B shows the

percentage of R-domain encoding mRNAs relative to the total

amount of endogenously expressed ADAR2. In liver and lung no

detectable signal with ADAR2R specific primers is obtained,

whereas the highest levels of the transcript containing exon 0 are

detected in hippocampus [9.661%] and colon [5.060.5%].

These data document that ADAR2R is expressed in various

human tissues and that the relative amounts of the R-domain

encoding ADAR2 mRNAs differ between cell types. This might be

due to the existence of a separate promoter driving the expression

of ADAR2R messages or might reflect a change in alternative

splicing of ADAR2 pre-mRNAs (see Figure 4A).

The ADAR1 gene is also expressed through alternative

promoters of which one is interferon induced. With respect to

ADAR2R expression, the currently available evidence does not

suggest that this protein isoform is stimulated by interferon. Since

the ADAR2R isoform is identical to the ADAR2 major isoform

except for the small N-terminal extension, an increase or decrease

of ADAR2R upon interferon stimulation of cells would generally

result in the up- or downregulation of the overall amount of

ADAR2. However, such an effect was not observed in several

studies analyzing ADAR expression during interferon induction

(see references [18,19,28]). ADAR2 expression remains unaltered

by interferon action, whereas ADAR1 is strongly induced by

interferon.

Due to the small difference in molecular weight between the

ADAR2 major protein isoform, several ADAR2 splice variants,

and the ADAR2R isoform, the unambiguous detection of

endogenously expressed ADAR2R would require an isoform

specific antibody. However, such an antibody is not available. In

fact, due to the sequence nature of the R-domain (highly repetitive

as well as highly conserved between ADAR2R and ADAR3), this

Figure 2. Comparison of ADAR2R with ADAR3 R-domain. A) Comparison of the rat and human ADAR3 protein with the mouse and human
ADAR2R protein variant. Includes sequence alignment of ADAR3 R-domain and the putative R-domain of ADAR2R. Black circles: dsRNA binding
domain, shaded rectangles: catalytic deaminase domain. B) Alignment of the rat ADAR3 N-terminal region and the translated sequence of the mouse
and human ADAR2R N-terminus. The R-domain sequence is boxed and identical amino acids are indicated by a vertical line. Below a schematic
representation of the relative position of exon 0 on human Chromosome 21 at the ADAR2 gene locus. The grey-colored Isoleucine residue (I) in
hADAR2R represents the position of a recoding SNP that leads to a I-to-V change.
doi:10.1371/journal.pone.0004225.g002
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strategy may not be successful. When using an antibody that

recognizes all ADAR2 splice variants however, a signal that likely

represents ADAR2R is detectable above background in brain

tissues that show ADAR2R expression as separate band or

showing a likely double band (such as figure 3 in Feng et al.[29]

and figure 3 in Singh et al. [30]). However, due to the potential

presence of other ADAR2 splice variants with similar molecular

weights, the use of a general ADAR2 antibody cannot formally

prove the presence of ADAR2R. In the future, highly sensitive

proteomics mass-spec technology may resolve this issue.

When recombinantly expressing ADAR2R in HeLa and

HEK293 cells, we did not detect any differences in general

adenosine deaminase activity displayed by ADAR2R compared to

the ADAR2a major splice variant (data not shown). If the R-

domain in ADAR2R conveys a selective binding affinity to a

specific nucleic acid substrate, then a functional difference between

ADAR2R and ADAR2a will likely be limited to the activity on

that specific target.

Recoding SNP within R-domain of human ADAR2R
When comparing the cDNA of the initially cloned mouse

ADAR2R sequence, we noticed an A-to-G discrepancy changing a

genomically encoded Arginine codon (AGG) to a Glycin codon

(GGG). Since in mouse this position has not been mapped as a

genomic single nucleotide polymorphism (SNP) and the sequence

alteration is within the highly conserved R-domain sequence

motif, this base discrepancy may represent a site of RNA editing.

The ADAR2 pre-mRNA is already known to be subject to

selfediting by the ADAR2 protein at another site, where the base

modification creates an alternative splice site in intron 1 that leads

to the expression of a truncated, nonfunctional protein.

We also noted that within the human ADAR2 exon 0 sequence,

there is a recoding SNP annotated that alters an Isoleucin (ATC)

to a Valin (GTC) codon upstream of the R-domain. Since this

SNP is also of the A-to-G type, there could be A-to-I RNA editing

being responsible for some of the observed discrepancies, even

though individuals with both alleles of the gene would be able to

produce both isoforms without the need for editing.

To test if these two nucleotide positions within the ADAR2 exon

0 sequence may be subject to an RNA-based modification, we

performed RT-PCR on human brain total RNA amplifying the

exon 0 sequence encompassing both putative editing sites. In

parallel, the corresponding genomic region was amplified from

genomic DNA prepared from the same specimen that gave rise to

the total RNA. This ensures that any SNP can be distinguished

from post-transcriptional base modifications.

Figure 3. The R-domain and exon 0 are conserved across vertebrates. Vertebrate exon 0 sequence alignment including human, chimp,
mouse, rat, dog, horse, platypus and zebrafish. The consensus track indicates residues conserved among all species with an asterisk (*) and those
conserved in all higher vertebrates with a circumflex accent (‘). The nucleotide sequence of the R-domain including the translation is shaded; the
translational start codon in underlined. The genomic locations of the aligned sequences are: UCSC version hg18, March 2006, chr21:45,396,913–
45,397,066 (Homo sapiens); UCSC version panTro2, March 2006, chr21:44,799,898–44,800,051 (Pan troglodytes); UCSC version mm8, February 2006,
chr10:76,783,722–76,783,879 (Mus musculus); UCSC version rn4, November 2004, chr20:11,691,863–11,692,020 (Rattus norvegicus); UCSC version
canFam2, May 2005, chr31:41,072,028–41,072,166 (Canis familiaris); UCSC version equCab1, February 2007, chr26:1,562,280–1,562,433 (Equus
caballus); UCSC version ornAna1, March 2007, Ultra489:519,316–519,487 (Ornithorhychus anatinus); and NCBI assembly Zv7, July 2008, Chromosome
22, NW_001878325.1 (Danio rerio).
doi:10.1371/journal.pone.0004225.g003
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For both sites, we did not detect any mixed sequence

populations when analyzing the gene-specific amplicons (data

not shown). This means that at least in human total brain, there is

no detectable RNA editing involving these two positions. We

cannot formally rule out that RNA editing may occur at low levels

(below the detection limit of the RT-PCR sequencing analysis) or

selectively within specific cell types, or at specific time points.

Materials and Methods

59 RACE
For confirmation of the mouse Adar2 cDNA sequence at the 59-

end, a rapid amplification of cDNA ends (RACE) experiment was

performed with total RNA isolated from mouse brain using TRIzol-

reagent (Invitrogen) according to the manufacturer’s protocol.

Reverse transcription reactions were performed using Superscript

reverse transcriptase (Invitrogen) and mouse Adar2 specific antisense

primer R2N2U (59-GAGACGGATCCCGTTTGATTTCGTT-

CAGC-39) located within exon 2 at 45uC for 1 h. The resulting

cDNA products were 39 tailed with oligo(dA) using Terminal

Deoxyribonucleotidyltransferase (Boehringer Mannheim). Primers

for the subsequent PCR were PCRdT18 (59-GACACGGTACCA-

CACAACGGT18-39) and R2G12 (59-CGTCTAGAATATCAGT-

GCTGCTGGAAC-39), and 59-specific PCR amplicons were

analyzed for their sequence.

The nucleotide sequences of the human and mouse ADAR2R

partial cDNA sequences containing exon 0 were submitted to

GenBank (Accession numbers: FJ169505 and FJ169506)).

Sequence analysis and alignments
The genomic ADAR2 human and mouse sequences were

analyzed using the UCSC genome browser [22]. Highly conserved

exons were identified within the ADAR2 gene using the exoniphy

track within the genome browser [23], which uses a phylogenetic

hidden Markov Model that statistically analyses exon structure

and exon evolution within multiple alignments [23].

The conservation of exon 0 nucleotide sequences across

vertebrate genomes was analyzed using the conservation track of

the genome browser, which is based on the phastCons program

designed to identify conserved elements in multiply aligned

sequences [24]. The zebrafish (Danio rerio) ADAR2 gene sequence

corresponding to exon 0 was identified using tblastn (NCBI).

Prediction of promoter regions within the human ADAR2

sequence was performed using the algorithm ProScan, which

identifies putative promoters through the localization of transcrip-

tion factor binding sites [25].

Figure 4. Expression of ADAR2R in human tissues. A) Design of real-time PCR assay for ADAR2 alternative splice forms. Locations of primers
and TaqMan probe (TP) are indicated. B) Graphic representation of the ratio of exon 0-encoding mRNA transcripts relative to the total amount of
ADAR2 mRNAs in various human tissues by quantitative real-time PCR. The percent values are derived from triplicate assays for three different cDNA
concentrations from each tissue.
doi:10.1371/journal.pone.0004225.g004
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Quantitative real time PCR
Real-time PCR (TaqMan analysis) was performed on cDNA

from human tissues and human HEK 293 cells according to the

manufacturer’s instructions (Applied Biosystem, USA) and the

reaction conditions involved denaturation for 10 min at 95uC, and

45 cycles of amplification with 15 sec at 95uC and 1 min at 60uC.

Primers and probes for TaqManTM quantitative real-time

polymerase chain reaction (qRT-PCR) assays, specific for each

human ADAR2 splice variant, were designed with Primer Express

v1.2 (Applied Biosystems).

Amplification values were determined in triplicates using an ABI

prism 7000 (Applied Biosystem). Standard curves were run for all

assays to ensure consistent amplification efficacy. The ADAR2R-

specific signals were normalised to the ADAR2a assay using the

comparative CT-method (User Bulletin #2, December 11, 1997

(updated 10/2001); ABI PRISM 7700 Sequence Detection System)

and presented as relative expression levels. Primers for ADAR2R

splice variant: A2E0F: 59-GGTATAAAAGGAGGCGCAA-

GAAG-39, A2E0R: 59-GTTTCTTGACTGGCGGAGACT-39,

A2E0M1 (FAM labeled): 59-CTGAGAGGAAAGACAGAAAC-

39. Primers for the ADAR2 major splice form: A2MF: 59-

CTATTCCCAGTGAGGGTCTTCAG-39, A2MR: 59-GGAC-

CAGGCGTGAGACA-39, A2MM1(FAM labeled): 59-CATT-

TACCGCAGGTTTTAG-39.

RNA editing analysis
Commercially available matched pairs of total RNA and

genomic DNA derived from one individual (Clontech) were

analyzed for evidence of RNA editing using standard procedures

as described previously [26]. RNA editing analysis was done by

direct sequencing of gene-specific, gel-purified RT-PCR products

as described [26].

Transient co-expression of human ADAR2a and ADAR2R

separately with a minigene for the glutamate receptor subunit

GluR-2 R/G editing site [27] in human embryonic kidney cells

(HEK293) and HeLa cells was performed as described [27].

Analysis of RNA editing at the R/G site of ectopically expressed

GluR-2 transcripts was determined with RT-PCR using GluR-2

specific primers as described above [26].
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