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Abstract

In humans, the pleasantness of odors is a major contributor to social relationships and food intake. Smells evoke attraction
and repulsion responses, reflecting the hedonic value of the odorant. While olfactory preferences are known to be strongly
modulated by experience and learning, it has been recently suggested that, in humans, the pleasantness of odors may be
partly explained by the physicochemical properties of the odorant molecules themselves. If odor hedonic value is indeed
predetermined by odorant structure, then it could be hypothesized that other species will show similar odor preferences to
humans. Combining behavioral and psychophysical approaches, we here show that odorants rated as pleasant by humans
were also those which, behaviorally, mice investigated longer and human subjects sniffed longer, thereby revealing for the
first time a component of olfactory hedonic perception conserved across species. Consistent with this, we further show that
odor pleasantness rating in humans and investigation time in mice were both correlated with the physicochemical
properties of the molecules, suggesting that olfactory preferences are indeed partly engraved in the physicochemical
structure of the odorant. That odor preferences are shared between mammal species and are guided by physicochemical
features of odorant stimuli strengthens the view that odor preference is partially predetermined. These findings open up
new perspectives for the study of the neural mechanisms of hedonic perception.
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Introduction

Olfaction is of great importance to mammals’ survival,

influencing a variety of social activities, including recognition,

mate selection, fear responses to predator odors, and food intake

[1–3]. Of the various aspects of olfactory perception, pleasantness

is particularly fundamental, and dominates odor perception [4].

Most odors we encounter induce attraction or repulsion behavior.

However, it is unclear what it is that makes a given component

pleasant or unpleasant. While, in the visual and auditory

modalities, perception can be predicted from the physical

properties of the stimuli, the rules that govern the relationship

between perception and chemical structure in olfaction are largely

unknown, making it difficult to predict the perceptual properties of

novel odorants. In a recent study, Khan and collaborators built a

mathematical model to predict the hedonic valence of molecules in

humans on the basis of their physicochemical properties. While it

is well established that odor hedonic perception is strongly

influenced by experience and learning [5,6] and that its

representations are characterized by a high level of plasticity [7–

9], these authors suggest that it nevertheless remains partially

dependent on the odorants’ physicochemical properties [10].

This, if true, suggests a predetermination of odor preferences

[10], and it might consequently be hypothesized that other species

may show similar odor preferences to humans. The present study

found that the same odorants were similarly attractive to mice and

humans, revealing for the first time a component of olfactory

preference conserved across the two species. Consistent with this,

behavioral responses to the odorants (hedonic rating and sniffing

in humans; investigation time in mice) were found to correlate with

the physicochemical properties of the molecules, suggesting that

olfactory preferences are indeed partially engraved in the structure

of the odorant molecule. Our data support the view that odor

preferences are partially predetermined, in contrast to the more

common view of them as predominantly shaped by experience.

Results

Our hypothesis was that humans and mice exhibit similar

preferences towards the same odorants. To test it, we first assessed

odor preference in humans (through odor pleasantness ratings)

and in mice (through investigation time) and then investigated the

relationship between these odor preferences and odorant struc-

tures.

Odorant selection was based on a recent study by Khan et al.

[10]. Using principal component analysis (PCA, a multivariate

statistical method), these authors generated two odor spaces:

(1) A perceptual space generated from a matrix of 144 odorants

and 146 verbal labels describing perceptual properties of odors

(see Dravnieks [11]). Given the complexity of interpreting such

a multidimensional matrix, PCA was applied to reduce this

multidimensional space to a small number of principal

components (PCs). The PCs are ordered so that each successive

PC has the maximal possible variance, the first PC explaining

the most variance of the original data set.

(2) A physicochemical space generated from a matrix of 1565

odorants and 1513 physicochemical descriptors. Here again,
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PCA reduced this multidimensional space to a small number

of PCs.

In the present study, the odorants used in Experiment 1 and in

Experiment 2 were respectively from Khan’s perceptual and

physicochemical space.

Mice and humans express similar odor preferences
Experiment in mice and humans using odorants selected

according to their perceptual pleasantness (Experiment

1). Odor preference was recorded using the same odorants in

both species. In mice, odorant investigation time, a behavioral

measure of the mouse’s interest in and attraction for the odorant,

was used as an index of odor preference: when smelling an attractive

odor, mice spend more time investigating the odorant source than

when encountering a less attractive odor [12,13]. Odorants were

presented to mice using a computer-assisted hole-board, and

odorant investigation time (nose poking into the hole) was

automatically recorded using electronic sensors [14]. Experiments

in humans consisted in sniffing odorized vials and rating compound

pleasantness, intensity and familiarity on a 9-point scale (‘‘not at all’’

(1) to ‘‘extremely’’ (9) pleasant, intense or familiar).

In the first experiment, nine odorants were selected from the

perceptual space of Khan et al. [10]. Multiple regression analysis

(F[3,89] = 4.111, p,.001) revealed that the odorants investigated

longest by mice were those rated most pleasant by humans

(t(89) = 2.232, p,.003) (Fig. 1A). Mouse investigation time was also

compared to other aspects of human olfactory perception represented

by intensity and familiarity ratings (see Materials and Methods): no

correlation was found, either with intensity (t(89) = 1.048, p..05) or

familiarity rating (t(89) = .340, p..05). Of the different parameters of

human olfactory perception measured here (hedonic, intensity and

familiarity ratings), mouse investigation time thus correlated only with

human olfactory pleasantness.

In brief, humans and mice showed similar preferences towards

the nine odorants tested.

Experiment in mice and humans using odorants selected

according to their physicochemical properties (Experiment

2). To further investigate similarity in odor preference, the above

experiment was replicated using ten different odorants, this time

selected from the physicochemical rather than the perceptual space

of Khan’s study [10]. Again, a significant correlation between odor

investigation time in mice and odor hedonic response in humans

was observed (F[1,149] = 31.190, p,.0001) (Fig. 1B).

Pooling data from both experiments confirmed that odor

investigation time in mice correlated positively with human

hedonic ratings (F[1,239] = 41.709, p,.0001).

Importantly, in order to compare homologous behaviors in

humans and mice, sniffing time, which reflects odor pleasantness

[15–17], was recorded in humans, and found to correlate with

investigation time in mice (F[1,239] = 15.535, p,.0001).

In brief, odor preferences correlated in mice and humans,

whether perceptual or physicochemical criteria were used to select

the odorants.

Mouse and human odor preferences correlate with
odorant structure

A possible link between odor preference in humans or mice and

odorant structure was explored using the first principal component

(PC1, which explains the most variance) of the physicochemical

space in Khan et al.’s study [10]. PC1 was found to correlate

positively with both investigation time in mice (F[1,289] = 22.940,

p,.0001) (Fig. 2A) and hedonic rating in humans

(F[1,239] = 6.186, p,.02) (Fig. 2B). These results clearly link the

physicochemical properties of odorants with their attractiveness in

the two different species.

Two groups of odorants with different physicochemical
properties evoke distinct behaviors in mice and humans

Strengthening the above results, we observed differences in PC1

values between the first and the second experiment: the average

value of PC1 across odorants in experiment 2 was significantly

greater than that in experiment 1 (t-test, p,.05, Fig. 3A). As a

positive PC1 value corresponds to increased investigation time in

mice and increased odor pleasantness in humans (see Fig. 2), this

difference may explain the distinct behaviors observed in response

to the two sets of odorants used in experiments 1 and 2 (for both

humans and mice): mice investigated longer and humans preferred

and sniffed odorants longer in experiment 2 than in experiment 1

(t-test, p,.05, Fig. 3B–D). Taken together, these results support

the view that odor preference is driven at least in part by the

physicochemical properties of the molecules, accounting for the

similar olfactory preferences found in both humans and mice.

Discussion

Mammals possess an excellent ability to detect and discriminate

odorants. They also exhibit odor preferences that seem to be

Figure 1. Mice and humans express similar odor preferences. A. In experiment 1, a significant and positive correlation was found between
odor investigation time in mice and odor hedonic rating in humans. B. In experiment 2, using different odorants, a significant positive correlation was
also observed between odor investigation time in mice and odor hedonic rating in humans.
doi:10.1371/journal.pone.0004209.g001
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crucial for survival [13,18,19] and represent a central component

of the quality of human experience [20]. The present study

examined whether odor preferences were similar between humans

and mice, and might thus include a predetermined component.

A first result of interest was the positive correlation in odor

preferences between mice and humans. Odor preferences result

from complex physiological and motivational states characterized

by experience-dependent plasticity in both animals [21,22] and

humans [4]. In particular, the hedonic representation of smells is

not fixed and may be modified by learning and experience in both

animals and humans [23–25]. For example, a smell may acquire a

novel hedonic valence through an associative learning procedure

[5,26]. Moreover, it is well known in humans that odor

pleasantness is modulated with repeated exposure to the same

stimulus: i.e., without any apparent mediation of environmental

stimuli [27]. Although hedonic representations are plastic, as seen

above, the present demonstration that two different species

exhibited similar preferences for the same odorants provides

evidence for odor representations conserved across mice and

humans, which emerge independently of life experience. These

findings are in line with reports that human newborns exhibit

olfactory preferences as shown by behavioral and physiological

responses to chemical stimuli [28], and are able to exhibit

behavioral markers of disgust in response to unpleasant odors [29].

Such predisposition in odor preference may be underlain by

genetically programmed neural circuits, as has been suggested in

the olfactory systems of mammals [13], Drosophila melanogaster [30]

and Caenorhabditis elegans [31].

Secondly, the present investigation further showed that olfactory

preferences in humans and mice are linked to the physicochemical

Figure 3. Two groups of odorants with different physicochemical properties evoke distinct behaviors in mice and humans. A.
Physicochemical PC1 significantly differed for the two sets of odorants. B. Mice investigated odorants longer in experiment 2 than in experiment 1 C.
Humans sniffed odorants longer in experiment 2 than in experiment 1 D. Humans preferred the odorants of experiment 2 to those of experiment 1.
(t-test, *: p,.05, **: p,.001, ***: p,.0001)
doi:10.1371/journal.pone.0004209.g003

Figure 2. Mouse and human odor preferences are driven by odorant structure. Physicochemical PC1 correlated positively with
investigation time in mice (A) and with hedonic rating in humans (B), indicating that hedonic behavior in both species may be driven in part by the
physicochemical properties of the molecules.
doi:10.1371/journal.pone.0004209.g002
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structure of odorants. The data suggest that physicochemical

properties are prominent factors in orchestrating the activation

pattern of the predetermined neural code for odor preference. It

may be asked why odorant structure should correlate more

strongly with odor preference in mice than with hedonic

perception in humans (F-values of 22.940 in mice, vs 6.186 in

humans). One explanation may be that mouse preferences are

very weakly colored by the environment (the laboratory mice were

raised in an olfactory poor environment) whereas odor pleasant-

ness in adult humans is likely to be more affected by learning and

experience. Nevertheless, despite the strong influence of experi-

ence, the physicochemical properties of odorants still played a

prominent role in determining odor preferences, strengthening

Khan et al.’s model [10]. In other words, even if pleasantness is the

result of culture, life experience and learning, the present

interspecies comparison shows that there is an initial part of the

percept which is innate and engraved in the odorant structure.

In conclusion, our phylogenetic heritage includes systems

enabling the attribution of a positive or negative value, driving

attraction to or avoidance of odorants. This suggests that,

upstream of the hedonic plasticity occurring throughout life, we

are endowed with a partly predetermined neural basis for these

odor hedonic representations–even if the odorant has no biological

significance, such as predator, conspecific or spoiled food odors

[13,29,32]. Perception of the hedonic aspect of odorants is thus a

complex process which involves both innate and learned

components. Taken as a whole, these results substantially affect

our view of olfactory hedonic perception and open up new

avenues for the understanding of its neural mechanisms. They also

suggest that odor exploration behavior in mice may be used to

predict human olfactory preferences.

Materials and Methods

Experiments in mice
Adult (8-week old) male C57Bl6/J mice (Charles River

Laboratories, L’Arbresle, France) were tested under procedures

in accordance with the European Community Council Directive

of 11/24th/1986 (86/609/EEC) and the French Ethics Commit-

tee.

Upon arrival in the lab, mice were housed in groups of five in

standard laboratory cages and were kept on a 12 hr light/dark

cycle (constant temperature), with food and water ad libitum.

Experiments were conducted in the afternoon (2–5 pm) on a

specially designed computer-assisted one-hole-board apparatus

(40640 cm; central hole 3 cm diameter, 4.5 cm deep), with

capacitive sensors to detect automatically the beginning of each

trial (when the mouse was placed in the starting area facing the

hole) and monitor the duration of nose-poking into the hole. A

polypropylene swab impregnated with 60 mL of odorant (1 Pa)

was placed at the bottom of the hole, under a grid and covered

with bedding [14]. The bedding was replaced after each trial. One

odorant was presented per day (random order for each animal).

Each trial lasted 2 min. Duration of nose-poking into the hole was

used as a measure of odor preference. Ten mice were tested in the

first experiment and twenty in the second.

Experiments in humans
Respectively ten (mean age, 21.1 yr+/21.07) and twenty

human subjects (mean age, 21.85 yr+/23.37) recruited from the

University of Lyon (France) participated in experiments 1 and 2.

Olfactory and/or neurological disease was the exclusion criterion.

The study was conducted in accordance with the Declaration of

Helsinki.

Testing was performed in an experimental room designed

specifically for olfactory experiments. Odorants were presented in

15 ml flasks (opening diameter: 1.7 cm; height: 5.8 cm; filled to

5 ml) and were absorbed on a scentless polypropylene fabric

(367 cm; 3 M, Valley, NE, USA) to optimize evaporation and

air/oil partitioning.

After providing written informed consent to the procedure,

which was approved by the ‘‘LyonSud-Est2’’ ethics committee,

subjects were taken to the test room, where they sniffed each vial

in random order and rated compound pleasantness on a 9-point

scale (from 1: ‘‘not at all pleasant’’ to 9: ‘‘extremely pleasant’’).

Subjects rated compound intensity and familiarity (in experiment

1) on similar scales. The instructions given to the subjects were as

follows: ‘‘You are going to smell several odors one after the other.

Your task will be to sniff each vial and then to decide how intense,

pleasant or familiar the smell was. To give your estimates, you will

rate each odorant on a scale from 1 (not at all intense, familiar or

pleasant) to 9 (very intense, familiar or pleasant).’’ Once the

instructions had been read, the experimental session started.

Odorants were presented every 45 sec.

Physiological data were acquired using a PROCOMP+ system

(Thought Technology, Montreal, Canada; sampling rate, 32 Hz).

Sniff duration was measured using an airflow sensor (AWM720,

Honeywell, France) connected to nasal cannulae positioned in

both nostrils [33] throughout the experimental sessions.

Odorants
The nine odorants used in the first experiment and the ten used

in second were diluted in mineral oil so as to achieve an

approximate gas-phase partial pressure of 1 Pa (Table 1). Briefly,

vapor pressures of pure odorants were estimated using ACD

Chem-Sketch software (Advanced Chemistry Development, Tor-

onto, Ontario, Canada) and variously diluted in mineral oil to

concentrations theoretically emitting the same vapor-phase partial

pressure for each odorant.

Data analysis
Statistical analysis used SYSTAT software (SSI, Richmond,

CA). In Experiment 1, ‘‘odor investigation time’’ in mice on the

one hand and ‘‘odor pleasantness, intensity and familiarity’’ in

humans on the other hand were compared by multiple regression

analysis. In Experiment 2, ‘‘odor investigation time’’ in mice and

‘‘odor pleasantness’’ in humans were compared by simple

regression analysis. Human sniff duration was compared to mouse

Table 1. Odors and their percentage (vol/vol) dilutions (1 Pa).

Experiment 1 Experiment 2

acetophenone 0.56 hexanol3 0.07

amyl acetate 0.03 heptanol1 0.91

diphenyl oxide 13.55 thioglycolicAcid 0.32

ethyl butyrate 0.01 carvone-l 2.36

eugenol 13.12 geraniol 21.25

guaiacol 2.08 1-Decanol 33.73

heptanal 0.07 benzyl acetate 1.46

hexanoic acid 3.63 ionone blowconc 30.60

phenyl ethanol 2.65 dodecanal 27.74

santalol 14139.92

doi:10.1371/journal.pone.0004209.t001
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investigation time using a similar analysis. Finally, the relation

between ‘‘odorant PC1’’ and ‘‘investigation time’’ in mice (or

‘‘odor pleasantness’’ in humans) was also assessed by simple

regression analysis.
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