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Abstract

Background: The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor
types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as
well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of
the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing
mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise.

Methodology/Principal Findings: Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome
Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions.
Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from
a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser
software application was developed and is made public to provide a user-friendly graphical interface in which the reported
results can be reproduced. The application source code and stand alone executable are available at http://code.google.
com/p/cancergenome and http://bioinformaticstation.org, respectively.

Conclusions/Significance: The most important known copy number alterations for glioblastoma were correctly recovered
using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell
proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors
were also detected. A detailed map of aberrant regions is provided.
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Introduction

Copy number alterations (CNAs) are known to be among the

triggers of tumor formation [1,2]. Furthermore, tumor progression

is associated with further variation in the copy number [3].

Although the association between chromosomal aberration and

cancer has been known for a long time [4], recent advances in

array-based techniques allowed a more refined description of the

genomic structure, thus yielding a better characterization of copy

number events.

Beginning with BAC and cDNA arrays [5,6], the resolution of

the array techniques increased to the current sensitivity level

capable of detecting events with a size of thousands of base pairs

[7,8]. As a consequence of ongoing methodological advancement,

a growing number of new oncogenes and tumor suppressors have

been identified [9].

During cancer progression, tumor cells undergo several

genomic changes. Mutations that enhance tumor progression are

most likely to be positive selected in the neoplasm environment,

and the cells that carry these mutations tend to be dominant in the

tumor [10]. Due to the nature of CNAs, some mutations might

carry genes that confer selective advantage, along with genes that

do not. This creates a mutation background that obfuscates the

localization of the major players of cancer [11]. Furthermore,

tumor progression may take various routes as it occurs in the

context of an individual genome and individual cell physiology. To

track this variability, the analysis of several patients can be used to

identify the recurrent regions of aberration (RRA).
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Currently, most of the available mathematical tools for

analyzing copy number data deal with segmentation methods

and breakpoint detection [12,13]. These techniques are used to

define discrete regions in the genome that have the same copy

number, analyzing each sample individually. However, few studies

have addressed the detection of RRA, which are common

amplification or deletions that occur in the same locus in a group

of samples. One common approach to detecting RRA is to define

arbitrary thresholds to identify amplifications and deletions [14],

using the frequency of events as a measure of abnormality for a

given region in the genome. However, the signal from each

experimental platform may differ in variance, which implies that a

different threshold may be needed for each new analysis.

Furthermore, tumor samples typically contain normal cells that

contaminate the tumor DNA, thus altering the amplitude of copy

number aberrations. Using absolute copy number values as

thresholds to segment CNAs ignores both confounding effects. A

number of other studies report more sophisticated methodologies

for RRA detection, but they still rely on arbitrary calling for

amplifications and deletions [11,15–17].

In this study, we propose a new method for identifying RRA

based on the information content of each probe position. The

main goal is to provide an approach that detects aberrant regions

while making minimal assumptions about their nature, scale or

prevalence.

Another aim of this study is to provide an exploratory

framework for analyzing the data from glioblastoma multiforme

(GBM) patients generated by The Cancer Genome Atlas project

(TCGA;[18]). Despite the recent advances in the molecular

pathology of GBM, the underlying mechanism of the origin and

invasiveness of malignant glioma remains obscure [19].

As often noted in quality analysis surveys [20], data analysis

results without dissemination of the applications that generated

them are of unknown reproducibility. Therefore, an accompany-

ing graphical tool is included to provide analysis of the copy

number results as they are made available by the TCGA project

and, more specifically, to allow the reproduction of the results

reported here.

Results and Discussion

Exploring the TCGA data
In order to analyze the data generated by the TCGA project, a

new graphical tool was developed, the Cancer Genome Browser

(CGB), which is freely available at http://code.google.com/p/

cancergenome/. The rationale for this tool is to provide a client

application that can be used for the visualization and data

processing reported here. In the tool, the input data is directly

accessed from a semantic database [21] that provides the TCGA

raw data in data structures designed to support the graphic

representations reported here. The raw copy number data is

stored alongside its preprocessed segmented values.

Assessment of aberration
We present a new mathematical method that uses Shannon’s

entropy as a measure of genomic aberration. The entropy

measures the deviation from the common state in a system. In

the genomic context, the common state would be that all the

samples have a copy number around 2. Any deviation from that

state should be reflected in the entropy so that the more aberrant a

region is, the lower the entropy.

The detection of aberrant regions by the proposed procedure

was first assessed using a simulation study (see Methods). Goodness

of classification was determined using the area under the receiver

operating characteristic curve, with 1 indicating perfect recogni-

tion of all alterations and 0.5 indicating random classification of

the variation. Several simulated datasets were tested, encompass-

ing different combinations of amplitudes and prevalences (the

frequency of mutation in the population). In each one, a

determined region of the genome had its copy number values

added (amplified) by a certain amplitude value in a fraction of

samples (controlled by the prevalence). The results were virtually

the same when deletions were tested instead of amplifications (data

not shown). The area under curve results are displayed in Figure 1,

where it can be observed that, for amplitudes greater than 0.2, a

perfect classification can be obtained if the prevalence is greater

than 5%.

There are two main forms of CNA [11]: broad events, which

can encompass several Mb or even the whole chromosome, and

focal events, which are normally restricted to a few Mb. The

search for new oncogenes and tumor suppressors in broad events

can be extremely difficult due to the large number of genes within

these regions. Therefore, we chose to analyze only the focal events

and remove the influence of broad events in the entropy analysis.

This was done by performing the analysis in each chromosome

separately (thus nullifying the influence of whole chromosome

aberrations) and applying baseline removal techniques to reduce

the effects of other broad events in the entropy signal (see

Methods).

GBM analysis
A total of 169 RRA were found using the 167 tumor samples

(Table S1), being the majority of these regions annotated as copy

number variation (CNV) that occurs in normal samples. CNV in

normal cells has recently been described as a relatively common

occurrence in the human genome [22]. To separate the mutations

related to tumor progression from the normal CNV, the results

were screened to identify the regions in which more than 50% of

the probes were annotated as normal CNV or were detected in

low-entropy peaks in normal samples. Thirty-one regions passed

this test and were the objects of further analysis (Table 1 and

Figure 2). The chromosomes X and Y were not analyzed. The

entropy analyses for each chromosome are available on Figures

S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15,

S16, S17, S18, S19, S20, S21, S22.

Among those 31 regions, there are 10 genes known to modulate

cell proliferation in GBM: EGFR, MDM2, MDM4, CDK4,

PTEN, PDFGRA, CDKN2A, CDKN2C, NF1 and CHD5

[23,24]. However, the total number of CNAs involved in cell

proliferation is still unknown, and recent studies have added new

genes to the pool of oncogenes and suppressors of GBM

[11,24,25].

Amplitude and prevalence of the CNA
The rationale of the entropy method allows a straightforward

interplay between the prevalence and amplitude of CNAs. Some

of the detected mutations, such as MDM4 and PTEN, have a low

prevalence in the population but high copy number amplitude.

Conversely, other regions, such as #51, have relatively low

amplitude and a high prevalence.

Measures of the amplitude and prevalence directly on the log2

ratio copy number can lead to bias due to the whole chromosome

variation and broad events. To avoid this problem, the amplifica-

tion prevalence in an aberrant region was measured as the

proportion of probes within the region, considering all samples,

with a copy number above the 0.975 quantile of all copy number

values for all samples at the same chromosome. For deletions, the

proportion of values below the 0.025 quantile was used.

Copy Number Variation
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The amplitude of a given probe position was obtained in a

similar way: considering all samples and all probes within the

region, the 0.975 and 0.025 quantiles of the copy number of the

aberrant region were obtained. Then the quantile of these values,

in comparison with the copy number for all the probes in the same

chromosome, was used as a measure of amplitude called QQ0.025

and QQ0.975. For instance, let q be the 0.975 quantile among all

the copy number values from all samples within a determined

aberrant region. The amplitude of amplification, QQ0.975, for

that region will be the quantile relative to q when compared to all

of the copy number values for the same chromosome. If the

observed region was not aberrant, QQ0.975 would be around

0.975. Consequently, a QQ0.975 close to 1 indicates amplifica-

tion, and a QQ0.025 close to 0 indicates deletion. To consider an

aberration as an amplification or deletion alike, the one tailed area

is considered (which is to say, the area at either end of the two

tailed distribution) and the amplification amplitude is expressed as

1- QQ0.975. Interestingly, the known aberrations for GBM tend

to have the most extreme values of amplitude and are therefore

found at the end of the distribution tails with QQ0.025 and 1-

QQ0.975 values close to 0 (Figure 3). The separation between

amplification and deletion is done by observing each value,

QQ0.025 or 1-QQ0.975, is close to 0.

Genes within low-entropy regions
The recurrence of an aberration can be related to the influence

of its genes in tumor progression [10]. However, some regions can

contain other genes that may not be related to cancer. In [11], the

genes that have influence on cancer are designated as ‘‘drivers’’

and the genes that are near the ‘‘drivers’’ but have no effect on

tumor progression are designated as ‘‘passengers.’’ Most authors

assign only one ‘‘driver’’ per region [7,11,14], but there may be

other genes related to cancer within the same region. For instance,

region # 100 in Table 1, which contains the known described

tumor suppressor CDKN2A, also contains the gene ELAVL2,

which is related to neuronal proliferation and differentiation [26].

A cluster of interferon genes is also present in this region and can

influence tumor growth and progression [27]. Another example of

a region with more than one ‘‘driver’’ is region #117. Besides the

well-described oncogene CDK4, this region also contains glioma-

associated gene 1, which has been described as affecting cell

proliferation and differentiation [28]. However, the CNA that is

most likely to have multiple ‘‘drivers’’ is the well-known deletion of

1p36 [25,29]. This deletion is present in gliomas and neuroblas-

tomas, but a single ‘‘driver’’ could not be defined [29] in previous

studies. Together with the tumor suppressor CDH5, analysis of the

low-entropy regions shows that the genes TNFRSF9, CAMTA1

and AJAP1 are among the candidates for tumor suppressors. A

complete list of genes found in low-entropy regions is available in

Table S2.

The gene CDKN2C, a well-known tumor suppressor [30], was

found in region #9 (Table 1). Being an important player in

oligodrendroglioma and medulloblastoma, the deletion of

CDKN2C was recently described in GBM [17]. Moreover, a

deletion of gene NF1, a gene associated with neurofibromatosis

type 1 that appears to be a negative regulator of the Ras pathway

[31], was also detected.

Among the candidates for suppressors in GBM listed in Table 1

are the genes LSAMP and ACCN1. The former has been

described as a tumor suppressor in renal carcinoma [32], and the

Figure 1. Evaluation of the entropy method performance by the area under the ROC curve from simulated datasets, accessing
different amplitudes and prevalences of copy number aberrations. An area under the ROC curve of 1 means a perfect separation between
mutated and normal regions, while a value of 0.5 means a random classification.
doi:10.1371/journal.pone.0004076.g001
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latter has been described as an inhibitor of glioma cell proliferation

[33]. Some new candidates for oncogenes in GBM have also been

found. The gene ATOH8 is a transcriptional regulator related to

glial determination [34], but has never been described as an

oncogene. Finally, non-annotated normal CNVs might be the

cause of some low-entropy peaks, as in regions #91 and 112,

which are located close to known CNV events.

Paralog regions may contribute to the pool of detected of

aberrant regions. An example of the former is region #79, which

is paralog to the region 55715461–55763010 on chromosome 7

[35],that lies within the EGFR amplified area, The Pearson’s

correlation between the copy number values of the two paralog

regions is 0.79.

Comparison with other methods
The literature reports two methods for the identification of

RRA that were applied to the TCGA glioblastoma dataset by the

TCGA Research Network [36]: GISTIC [11] and GTS [17].

GISTIC uses an arbitrary threshold to define deletions and

amplifications and calculates the q-value [37], which is an upper

bound to the false discovery rate, as a measure of aberration. GTS

searches for RRA using a statistic that considers the number of

genes in aberrant area and their copy number value. It also uses

arbitrary thresholds to define aberrant regions.

Despite the differences in the methods, the main mutations in

GBM (EGFR, CDKN2A, CDKN2C, PDGFRA, PTEN, CDK4,

MDM2 and MDM4) were correctly recovered by the entropy

Table 1. Amplifications and deletions in the GBM data.

Type Region #

Known
genes in
GBM Candidates Ch Start End Entropy

# of
genes Amplitude Prevalence

Amplification 82 EGFR 7 54027966 55983910 22.5865 7 0.000275 0.234739

55 PDFGRA 4 53634367 57090231 20.94003 22 0.000708 0.139728

117 CDK4 12 56097914 56851736 20.69274 26 0.001321 0.122698

118 MDM2 12 67315903 67981156 20.49955 7 0.000446 0.103178

79 7 32978614 32991778 20.48806 1 0.002777 0.101796

22 MDM4 1 201942811 203355851 20.48298 19 0.000311 0.084066

34 2 113106316 113112980 20.4263 0 0.000597 0.083832

38 2 202864197 203906650 20.26864 9 0.014994 0.038269

51 3 181382003 181447344 20.22919 0 0.000371 0.071856

44 3 106776838 106776898 20.21799 1 0.003143 0.047904

91 7 152135252 152147233 20.20795 1 0.005562 0.05988

96 SGK3* 8 67783070 68102356 20.18707 3 0.017116 0.041916

27 NCOA1* 2 24616100 24712348 20.18293 1 0.008564 0.053892

26 2 24426149 24551934 20.16724 1 0.008564 0.05988

31 ATOH8* 2 85806436 85899917 20.15732 1 0.012083 0.047904

28 2 24819254 24866786 20.15088 2 0.008564 0.047904

Deletion 100 CDKN2A 9 20336123 24769734 21.89499 25 0.001192 0.258973

112 11 70513145 70559392 20.67419 0 0.018841 0.052181

3 CHD5 AJAP1 1 4028404 6333694 20.36827 10 0.004095 0.137835

9 CDKN2C 1 50961735 51283220 20.33261 2 0.000366 0.066068

99 9 20240063 20280240 20.31992 0 0.002421 0.147705

83 7 86779323 86785351 20.26366 0 0.000305 0.065868

106 PTEN 10 89545841 89680005 20.24913 3 0.000401 0.06373

5 TNFRSF9 1 7889543 7926197 20.23605 1 0.000965 0.155689

2 1 3928417 3978407 20.21835 0 0.006145 0.113772

4 CAMTA1* 1 7728761 7742417 20.21773 1 0.005078 0.149701

146 17 28797037 29337463 20.2158 1 0.01771 0.054943

45 LSAMP 3 117520637 117525922 20.2012 1 0.015102 0.05988

145 NF1 17 26438606 26453055 20.19121 1 0.004396 0.053892

67 5 164370828 164522125 20.19096 0 0.013057 0.05988

147 ACCN1 17 29404279 29546036 20.17745 1 0.021171 0.053892

Aberrant regions determined by the entropy method. These tables do not include regions for which more then half of the DNA probes were annotated as normal CNV.
Candidate oncogenes / suppressors were selected by their potential association with cancer based on their molecular function or for being the only gene in the region.
The genomic mapping was based on Build 18. The calling for amplifications and deletions was made by observing which amplitude measure, QQ0.025 (deletion) or 1-
QQ0.975 (amplification), was closer to 0.
*Not described or validated as oncogene or tumor suppressor in previous studies.
doi:10.1371/journal.pone.0004076.t001
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method and the TCGA Research Network analysis, which used a

combination of methods that included GISTIC and GTS.

Confirming the simulation results, the entropy analysis was

insensitive to mutations with low prevalence (,4–5%). Some

known oncogenes and suppressors in GBM were not detected by

the entropy method, but were correctly identified by the combined

GISTIC and GTS analysis (prevalence in parentheses): MET

(3%), CDK6 (1%), TP53 (1%), CCND2 (2%) and PIK3CA (2%).

The tumor suppressor RB1 was not detected by entropy because it

is located in the peak of a broad deletion event and is obfuscated

by the baseline removal. However, low prevalence mutations will

always represent a challenge for statistical methods that consider

the whole population in the analysis. With arbitrary thresholds for

amplification and deletion of 1.5 and 21.5, respectively (log2

scale), some mutations were not detected by any method, such as

CCNE1 and CCND3 (genes with a prevalence less than 1%).

The absence of any unique pattern on the GBM genotype and

the influence of low prevalence mutations suggest that a better

description of the copy number data can be achieved if individual

characteristics of each sample is considered instead of a summary

for the whole population. In that context, the entropy method

should be used as an initial scan of the copy number data due to its

speed, in the order of seconds, robustness and lack of parameter

calibration. Future versions of the CGB tool will include GTS and

GISTIC, thus allowing the integration of different methods of

RRA detection with heatmap visualization and data exporting.

Tumor vs. normal samples
In this study, normal samples were used for identifying germline

CNV (see Metods). However, the comparison of the paired normal

and tumor samples reveals mutations that are only present in the

normal samples, which contradicts the common assumption that

blood samples contain only germline CNV (Figure 4). A detailed

analysis of these mutations indicates that most of them are artifacts

of the segmentation procedure, which creates very small segments

in the normal samples that are not present in the tumor samples.

Also, the samples from patient TCGA-06-0178 appears to be

mislabeled; while the tumor sample has almost no mutation, the

blood sample contains several CNAs, including the oncogene

CDK4.

In a comparison between the low-entropy regions on the normal

samples (Table S3) and the regions annotated in the CNV

databases (described in Methods), 62% of the DNA probes of the

low-entropy regions in normal samples are also located in known

CNV regions. Moreover, some of the low-entropy regions are

located close to a CNV, and it might be reasonable to assume that

they are part of the CNV, once it is difficult to achieve a precise

definition of the boundaries of a CNV with array techniques [38].

This observation suggests incompleteness of the current databases

for normal CNV. Indeed, some of the low-entropy regions in

normal samples (e.g. region 85219839–85227131 on chromosome

12) were later confirmed by sequencing to be CNVs [38].

Experimental artifacts may also be underlying reason for the low-

entropy regions in normal samples.

Conclusion
This study presents a new method for detecting RRA that uses

low entropy as an indicator. A stand-alone graphic application is

provided for the exploration of the TCGA data and the replication

of the detection of low-entropy regions presented here.

From a dataset of 167 GBM samples from the TCGA project,

31 aberrant regions were found, including 10 known CNAs in

GBM, namely the genes EGFR, MDM2, MDM4, CDK4,

PDGFRA, PTEN, CDKN2A, CDKN2C, NF1 and CHD5. Also,

candidates that were never described as being major players in

cancer, such as the glial differentiation gene ATOH8 and the

transcription factor NCOA1, were detected in aberrant regions.

The unusual level of enrichment of the list of candidate oncogenes

and tumor suppressors lends considerable expectation to those few

regions for which neither variability nor association with tumor

formation could be found.

The analysis of the entropy in the blood (non-tumor) samples

showed that only 62% of the aberrant regions were previously

annotated as normal CNV regions. The expansion of the CNV

databases may refine the separation between normal CNV and

copy number aberrations that have influence on cancer.

Methods

Source data
A total of 227 normalized array comparative genomic

hybridization (aCGH) results for GBM patients were retrieved

from the TCGA data portal (http://tcga-data.nci.nih.gov/). The

aCGH experiments were performed by the Memorial Sloan-

Kettering Cancer Center using the Agilent Human Genome CGH

Microarray 244A (Agilent Technologies, Inc., Santa Clara,

California) platform. From the 227 samples (Table S4), 167 were

tumor samples and 60 were blood samples. When there was more

than one sample of the same tissue for a patient, one sample was

randomly selected (see Supplementary Material for a sample list).

Of the 167 tumor samples, 58 had a paired blood sample from the

same patient.

The normalized copy number data obtained from the 227

samples were mapped into the human genome using the Build 18

(NCBI 36) assembly with an annotation file provided by the

manufacturer (http://www.chem.agilent.com/). The array nor-

malization procedure was performed by Memorial Sloan Ketter-

ing Cancer Center with their in–house algorithm that corrects for

CG contents bias (see TCGA Data portal; http://tcga.cancer.gov/

dataportal). The copy number data was filtered using the Circular

Binary Segmentation (CBS) algorithm as implemented in the R

package DNAcopy with the default parameter settings [12].

Data analysis method
The detection of aberrations was pursued here as that of an

unqualified deviation. As a consequence of this critical concern

with untested null models, the choice of method must satisfy two

concerns about possible bias. First, it must make no assumptions

about a reference non-deviant signal. Secondly, it must make no

assumptions about the shape of the variation. These non-

Figure 2. Entropy analysis for the GBM data entire genome (A), chromosome 1(B) and chromosome 7 (C). The segmented copy number
values per sample are displayed as a heatmap on the left, with the tumor samples as columns; the entropy values are shown on the right. The gaps
on the heatmap indicate genomic regions that lack coverage, such as the p arms of acrocentric chromosomes. The number in A corresponds to the
region number in Table 1. Beside each region label, a plus sign indicates an amplification and a minus indicates a deletion. Note that a low-entropy
region can be either a amplification or a deletion. The red line in the entropy plot shows the threshold for defining an aberrant region, which is the
0.05 quantile of the bootstrap distribution of the entropy. Peaks that are below the threshold but have no region assigned are normal CNV. The
cytoband annotation was retrieved using the UCSC Table Browser.
doi:10.1371/journal.pone.0004076.g002
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parametric requirements are satisfied by approaches that use the

density of observed measures to assess the information content of

the signal. The individual signal is thus assessed by the probability,

p, of the deviation in the context of observed signals. Shannon’s

entropy (Eq. 1) was calculated for each of the DNA probe

positions, i = 1,…,n.

Figure 3. Interplay between the amplitude, prevalence and entropy in deletions (A) and amplifications (B). The prevalence measure
adopted is the proportion of DNA probes on determined regions that have a log2 ratio above or below the 0.025 and 0.975 quantiles.
doi:10.1371/journal.pone.0004076.g003
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The probability, pij, for each copy number value was

determined as the fraction of the kernel density, K, observed in

all samples, j = 1,…m, at that position (Eq. 2).
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The Parzen window method [39] with the Gaussian kernel

function was used to approximate the probability density value K

of the log2 ratio of copy numbers observed at that position, CNi,j.

This technique considers that every element in the population is a

center of a Gaussian curve, and that the probability density value

for a given point is the sum of all Gaussian values at that point.

The calculation of the kernel density for all DNA probes would

have required a large amount of computational effort. Therefore,

the kernel density was sampled in 100 equally-distributed points,

KS, ranging from the minimum to the maximum value of the copy

number log2 ratio (Eq. 3). The probability density value, K(CNij),

was then obtained by interpolation with the vector KS. The

parameter s, relative to the bandwidth of the kernel, was defined

as the standard deviation of the raw data inside each segment

summarized for all segments in all samples. Methods for

bandwidth estimation that were designed for Gaussian populations

yielded a bandwidth parameter that was too short, which resulted

in several peaks in the probability density distribution (data not

shown). Our bandwidth selection criteria resulted in a unimodal

probability density centered at 0. Since most of the important

CNAs have high amplitudes, and consequently low probably

densities, the detection of aberrant regions is relatively insensitive

to large bandwidth parameters.
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The amount of information associated with an ‘‘aberration’’ is

inversely proportional to the entropy S. If a determined region is

recurrently amplified or deleted, it should have a higher

information content, and thus a lower entropy, when compared

to the overall distribution of the entropy.

The implementation of this three step procedure is detailed

using Matlab’s m-code :

[n,m]=size(X);

1. Generate reference distribution

[f,xi]=ksdensity(X(:), bandwidth);

and replace each value by its density (Eq. 3)

P=X;P(:)=interp1(xi,f,X(:));

2. Calculate the actual probability now as the proportion of row

density (Eq. 2)

P=P./repmat(max(sum(P,2)),1,m);

3. Calculate Shannon’s entropy (Eq. 1)

H=2sum(P.*log2(P),2);

Although applied to aCGH experiments in this work, the

entropy method is suitable for any array-based copy number

platform.

Detecting the regions of interest
As discussed in [11], there are two main forms of CNAs in tumor

cells: broad events, which can contain several Mb of nucleotides and

encompass numerous genes; and focal events, which are much more

localized. Focal events inside broad events represent a challenge for

methods that are based on thresholds for the binary calling of

amplifications and deletions, once the entire broad region can be

considered significant, hence hidden the focal events. However, some

methods for RRA detection, while relying on arbitrary thresholds, use

the amplitude to separate these nested focal events [11,17].

Even though broad events can be prevalent in the cancer

genome [14], their applicability for finding new oncogenes or

tumor suppressors is limited due to the large number of genes

present in those regions. Thus, in this paper the detection of RRA

was limited to the focal events. To remove the influence of entire

chromosome amplification or deletion, the kernel density was

calculated individually for each chromosome. Moreover, to

diminish the effects of broad events on the entropy, the baseline

of the entropy signal was removed using a Whitaker filter [40]

(smoothing). For each probe position, the value of the entropy was

determined as follows: Final entropy = Original entropy2S-

moothed entropy. Therefore, only peaks in the entropy, which

represent focal events, remained in the signal. Finally, a threshold

for the entropy was obtained using the 0.05 quantile of the

bootstrap distribution of the entropy. The regions that had a final

entropy lower than the threshold were considered RRA. Regions

represented by only one probe were not considered.

In the CGB tool, the baseline removal is given as an option to

the user. Therefore, it is possible to deactivate this procedure in

Figure 4. Log2 ratio of copy number of the 58 tumor-normal
sample pairs. The values in the diagonal line correspond to variations
similarly observed in tumor and normal tissue. The values in the
horizontal line correspond to amplifications (right) and deletions (left)
observed only in the tumor samples.
doi:10.1371/journal.pone.0004076.g004
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order to analyze broad events as well. Since the entropy method

does not consider the size of the events, it is capable of detecting

broad events such arm-size or even whole chromosome events. For

whole chromosome events, the entropy should be measured in the

whole genome instead of individually on each chromosome.

Identifying normal CNV
CNV in normal cells has recently been described as a relatively

common occurrence in the human genome [22]. To detect

whether an RRA is a normal copy number variation or an

aberrant alteration that promotes cell proliferation, the regions

were compared to the entries of the Database of Genomic

Variants (http://projects.tcag.ca/variation/; version 18v1; [22])

and the ‘‘Structural Variants’’ annotations in the UCSC Genome

Browser [41]. Also, the entropy was calculated for the 60 normal

samples using the same procedure described above. The low-

entropy regions in normal samples were not used when analyzing

the tumor dataset.

Simulation of aberrant regions
One hundred simulations were performed to analyze the

behavior of the entropy according to variations in the amplitude

and the prevalence of CNAs. The length of each aberration was not

changed since our method considers each position independently.

A set with 100 artificial patients was built using randomly

sampled copy number values from the GBM data. The simulated

CNA amplitude ranged from 0 to 0.4 (log2 ratio scale) with a

prevalence from 0 to 25%. The area under the receiver operator

characteristic curve (ROC) was used for performance evaluation in

each simulated condition. The analysis of the simulation is

described in the Results section.

Supporting Information

Figure S1 Entropy analysis of chromosome 1, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s001 (0.26 MB TIF)

Figure S2 Entropy analysis of chromosome 2, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s002 (0.34 MB TIF)

Figure S3 Entropy analysis of chromosome 3, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s003 (0.33 MB TIF)

Figure S4 Entropy analysis of chromosome 4, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s004 (0.34 MB TIF)

Figure S5 Entropy analysis of chromosome 5, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s005 (0.32 MB TIF)

Figure S6 Entropy analysis of chromosome 6, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s006 (0.37 MB TIF)

Figure S7 Entropy analysis of chromosome 7, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s007 (0.48 MB TIF)

Figure S8 Entropy analysis of chromosome 8, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s008 (0.34 MB TIF)

Figure S9 Entropy analysis of chromosome 9, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s009 (0.35 MB TIF)

Figure S10 Entropy analysis of chromosome 10, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s010 (0.40 MB TIF)
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Figure S11 Entropy analysis of chromosome 11, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s011 (0.39 MB TIF)

Figure S12 Entropy analysis of chromosome 12, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s012 (0.39 MB TIF)

Figure S13 Entropy analysis of chromosome 13, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s013 (0.38 MB TIF)

Figure S14 Entropy analysis of chromosome 14, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s014 (0.39 MB TIF)

Figure S15 Entropy analysis of chromosome 15, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s015 (0.34 MB TIF)

Figure S16 Entropy analysis of chromosome 16, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal

samples.

Found at: doi:10.1371/journal.pone.0004076.s016 (0.32 MB TIF)

Figure S17 Entropy analysis of chromosome 17, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s017 (0.41 MB TIF)

Figure S18 Entropy analysis of chromosome 18, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s018 (0.39 MB TIF)

Figure S19 Entropy analysis of chromosome 19, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s019 (0.38 MB TIF)

Figure S20 Entropy analysis of chromosome 20, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s020 (0.42 MB TIF)

Figure S21 Entropy analysis of chromosome 21, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s021 (0.40 MB TIF)

Figure S22 Entropy analysis of chromosome 22, containing the

copy number heatmap (on the right) and the entropy signal (left).

The threshold for determining aberrant regions is displayed in the

entropy plot as a red line, and it is defined by the quantile 0.05 of

the bootstrap distribution of entropy. Only tumor samples are

included. The assignments of the regions is the same on the Table 1

of the manuscript and peaks that don’t have any regions assigned

represent normal CNV or low-entropy regions in normal samples.

Found at: doi:10.1371/journal.pone.0004076.s022 (0.39 MB TIF)

Table S1 Low-entropy regions, including the normal CNV

regions.

Found at: doi:10.1371/journal.pone.0004076.s023 (0.10 MB

XLS)

Table S2 Genes within low-entropy regions

Found at: doi:10.1371/journal.pone.0004076.s024 (0.05 MB

XLS)

Table S3 Low-entropy regions in the 60 normal samples.

Found at: doi:10.1371/journal.pone.0004076.s025 (0.22 MB

XLS)

Table S4 List of the samples used and the tissues where it came

from. A sample code is composed by two parts, the patient code
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and the tissue code. For instance, the sample TCGA-02-0001-01A

can be devided in tow parts: TCGA-02-0001 (patient code) and -

01A (tissue coide). Therefor, the samples TCGA-02-0001-01A and

TCGA-02-0001-10A came from the same patient. For further

information on the sample barcode, please refer the TCGA data

description (http://tcga-data.nci.nih.gov/docs/TCGA_Data_Pri-

mer.pdf).

Found at: doi:10.1371/journal.pone.0004076.s026 (0.03 MB

XLS)
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