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Abstract

C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA
interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the
presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple
criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a
decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger
lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the
conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the
soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We
conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to
specific environmental signals.
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Introduction

The RNA interference (RNAi) and micro-RNA (miRNA)

pathways employ small RNAs to modulate gene expression [1].

In both pathways the small RNAs are ,21–25 nucleotides in

length and are processed from dsRNA precursors by the RNase III

enzyme Dicer. While some organisms encode multiple Dicer

enzymes that function specifically in one pathway or the other, H.

sapiens and C. elegans have a single Dicer enzyme that generates

both siRNA and miRNA.

A number of the factors required for the RNAi pathway in C.

elegans have been identified. The dsRNA-binding protein (dsRBP)

RDE-4 acts with Dicer (DCR-1) to facilitate processing of long

dsRNA into primary (1u) siRNAs (Fig. 1; [2–4]). The Argonaute

protein, RDE-1, interacts with RDE-4 [4,5], but is not necessary

for processing long dsRNA by DCR-1 [3]. Rather, RDE-1 acts

downstream of 1u siRNA production to facilitate a sequence

specific interaction between the 1u siRNA and targeted mRNA.

While not understood in detail, RDE-1 is also required to recruit

RRF-1, an RNA dependent RNA Polymerase (RdRP; [6]). RRF-1

amplifies the RNAi response by using the mRNA as a template for

producing secondary (2u) siRNAs, which ultimately direct the

cleavage of the targeted mRNA by the enzyme, CSR-1 [7].

When DNA is introduced into C. elegans to form a transgenic strain,

it is covalently linked to form long, repetitive arrays. In addition to

‘‘sense’’ mRNA, the arrays often give rise to antisense transcripts that

allow formation of dsRNA, which can trigger silencing by the RNAi

pathway [8,9]. While not yet proven, the antisense RNA may arise by

read-through transcription of repeats juxtaposed in a converging

orientation, or alternatively, by spurious transcription from a cryptic

promoter. In C. elegans, silencing of transgenic DNA occurs readily for

genes expressed in the germline [10,11] but less so from genes

expressed in the soma. The somatic tissue of C. elegans is less

susceptible to transgene-induced silencing, at least in part, because of

the existence of the RNA editing enzymes called Adenosine

Deaminases that act on RNA (ADARs; [8]). ADARs convert A:U

base pairs in dsRNA to the less stable I:U mismatch, thus shifting the

dsRNA: ssRNA equilibrium to effectively decrease the amount of

dsRNA. Not surprisingly, dsRNA that is pre-treated with ADAR is

inefficient in triggering an RNAi response [12].

In theory, C. elegans that lack ADARs should have higher

concentrations of dsRNA than wildtype animals. We were

interested in the effects of higher than normal concentrations of

dsRNA on the RNAi pathway. To this end, we compared transgene

silencing in wildtype animals with that occurring in mutant strains

lacking all ADAR activity, as well as to that occurring in strains

designed to express even higher concentrations of dsRNA. We

found that, contrary to previous reports, rde-4 mutant animals are

not completely RNAi defective. Instead, in the presence of high

concentrations of trigger dsRNA, rde-4 animals silence a transgene

through an rde-1 dependent mechanism, that by all criteria,

corresponds to the canonical RNAi pathway. We also find that

high concentrations of dsRNA trigger lead to increased accumu-

lation of primary siRNAs, consistent with the existence of a rate-

limiting step during the conversion of primary to secondary siRNAs.

Our studies also revealed that transgene silencing occurs at low

levels in the soma, even in the presence of ADARs, and that at least

some siRNAs accumulate in a temperature-dependent manner.
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Results

C. elegans encode two ADAR genes, adr-1 and adr-2, and our

studies employed a double mutant containing homozygous

mutations in both genes (herein referred to as adr). In addition,

both wildtype (WT) and adr animals used in our studies contained

an identical, integrated transgenic array [8]. The array encoded an

endogenous protein, SUR-5, fused to the reporter protein, GFP,

driven by the sur-5 promoter (sur-5::gfp). In addition, the transgenic

array included the rol-6 phenotypic marker (pRF4) and an inverted

repeat consisting of GFP sequence driven by the hsp-16-2 heat

shock promoter (GFP[IR]). As mentioned, because of their

repetitive nature, most transgenic arrays introduced into C. elegans

produce dsRNA. In addition, the GFP[IR] included in this array

allowed additional dsRNA to be synthesized by heat shock.

Overexpression of dsRNA leads to silencing in adr;rde-4
worms

As shown previously [8], in the absence of heat shock, GFP

expression from the transgenic array is dramatically reduced in adr

mutants compared to WT animals (Fig. 2A, – panels). The

silencing observed in adr animals results from dsRNA generated

from the transgenic array and is dependent on factors required for

RNAi. For example, GFP expression is restored when rde-1(ne219)

or rde-4(ne299) mutant alleles are introduced into the adr strain

(Fig. 2A, – panels; [8]).

Although GFP expression was clearly rescued in adr;rde-1 and

adr;rde-4 strains, we considered the possibility that some degree of

transgene silencing was occurring in these strains, despite the fact

that both RDE-1 and RDE-4 are considered essential for RNAi

[13,14]. We reasoned that if the putative silencing involved

dsRNA, the phenotype would be enhanced when the concentra-

tion of dsRNA was increased. We tested this idea by inducing

GFP[IR] expression in adr;rde-1 and adr;rde-4 strains with heat

shock. Indeed, there was a dramatic reduction in GFP expression

in adr;rde-4 following GFP[IR] induction (Fig. 2A, – vs. hs; Table 1,

20uC vs. hs). For unknown reasons, the pattern of expression of

sur-5::gfp was asymmetric in adr;rde-1 animals, with the majority of

animals showing GFP expression predominantly in posterior

regions (Fig. 2A, 6A). However, this posterior GFP fluorescence

was generally lower after heat shock (Table 1).

To verify that the decrease in GFP expression correlated with a

loss of mRNA, as expected if the RNAi pathway was involved, we

used northern blotting to measure the levels of sur-5::gfp mRNA in

strains grown with and without heat shock (Fig. 2B). Using a probe

specific to sur-5, we detected a single band corresponding to

endogenous sur-5 mRNA in wildtype worms lacking the transgenic

array (N2), whereas two additional bands were detected in strains

containing the transgenic array. The slowest migrating species was

mRNA encoding the sur-5::gfp translational fusion, and we focused

on this band in our quantitative analyses. The fastest migrating

species was likely an alternatively spliced product of the

translational fusion (see Fig. 2A legend) and paralleled expression

of the longer sur-5::gfp transcript.

In wildtype animals containing the transgene (WT), heat shock

induction of GFP[IR] led to an 87% reduction in sur-5::gfp mRNA

(Fig. 2B, lane 3 vs. 4; Fig. 2C). The reduction was consistent with

the mRNA degradation predicted for RNAi-mediated silencing.

Consistent with the reduction but not complete loss of GFP

fluorescence when adr;rde-4 animals were heat shocked (Fig. 2A), a

64% reduction in mRNA levels was measured in these animals

(Fig. 2B, lane 7 vs. 8; Fig. 2C). Results for adr;rde-1 animals were

also consistent with assays of GFP fluorescence in that sur-5::gfp

mRNA levels were slightly lower in the adr;rde-1 strain after heat

shock (Fig. 2B), but a statistically significant difference between the

untreated and heat shocked samples was not observed (Fig. 2C).

These findings suggested that when presented with high

concentrations of trigger dsRNA, in this case provided by the

GFP[IR] transgene, RDE-4 deficient strains were capable of

silencing transgene expression through a process that involved loss

of target mRNA, as expected in the canonical RNAi pathway.

Silencing in adr;rde-4 worms depends on RDE-1
All studies to date indicate that RDE-4 is essential for RNAi in

C. elegans, and thus we sought further evidence that the GFP

silencing observed in the adr;rde-4 strain involved the canonical

RNAi pathway. We reasoned that, if the silencing was due to

Figure 1. siRNA-mediated silencing in C. elegans. (A) dsRNA
consisting of a sense (gray) and antisense (black) strand, is processed
into primary (1u) siRNAs by the RNase III enzyme DCR-1, in concert with
the dsRBP, RDE-4. As is typical of products of RNase III enzymes such as
DCR-1, 1u siRNAs are double-stranded, with a monophosphate (p) at the
59 terminus and a hydroxyl at the 39 terminus, which overhangs the
duplex by two nucleotides; each strand is ,23 nucleotides long. In vitro
studies show that human Dicer prefers to cleave from one end of the
dsRNA substrate [31], and although not definitively proven, experi-
ments with cell-free extracts indicate C. elegans DCR-1 acts similarly [32].
Thus, the three 1u siRNAs shown from left to right represent successive
cleavage from the end of the duplex. (B) The Argonaute protein RDE-1
escorts one strand of the primary siRNA to its target mRNA which
contains a complementary sequence. (C) The RNA-dependent RNA
polymerase, RRF-1, is recruited to the target message where it
synthesizes secondary siRNAs that are antisense to the mRNA. The
siRNAs are generated by de novo synthesis, are 21–22 nucleotides in
length, and contain a 59 triphosphate (ppp). (D) The Argonaute protein
CSR-1 promotes cleavage of mRNAs that are base-paired to the
secondary siRNA.
doi:10.1371/journal.pone.0004052.g001
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canonical RNAi, loss of a second RNAi factor that acted

downstream of RDE-4 would abrogate GFP silencing in the

adr;rde-4 strain. Previous work indicates RDE-1 acts downstream of

RDE-4 in the RNAi pathway [3,6], and thus, we introduced the

rde-1(ne219) mutation into the adr;rde-4 strain. adr;rde-1;rde-4

animals exhibited bright, uniform GFP expression that was

unaffected by heat shock (Fig. 3A, Table 1). Consistent with the

robust GFP expression, we detected only a minor decrease (,4%;

P = 0.6, Wilcoxon rank sum) in sur-5::gfp mRNA levels in this strain

following induction of GFP[IR] (Fig. 3B). This result indicated

that the silencing observed in adr;rde-4 animals was dependent on

RDE-1, providing further evidence that it occurs via canonical

RNAi. The lack of a significant decrease in GFP expression in the

adr;rde-1;rde-4 strain also confirms that the silencing observed in

adr;rde-4 animals (Fig. 2A) was not due to a general heat shock

stress response, but due to induction of GFP[IR].

Secondary siRNAs are produced during silencing in
adr;rde-4 worms

Our studies indicated that in the absence of RDE-4, silencing

can occur through the canonical RNAi pathway. To get further

support for this idea, we tested whether small RNAs associated

with active RNAi were present in our rde-4 deficient strains. As

illustrated in Fig. 1, canonical RNAi involves both primary and

secondary siRNAs. Primary (1u) siRNAs arise by cleavage of

dsRNA by DCR-1, and thus, have both a sense and antisense

strand. Secondary (2u) siRNAs are synthesized by an RNA-

dependent RNA polymerase (RdRP; RRF-1, Fig. 1), using the

target mRNA as a template, and are distinguished from 1u siRNAs

in that they are only one strand, antisense to the mRNA.

Furthermore, 2u siRNAs are more abundant than 1u siRNAs,

because the RdRP amplifies the siRNA signal. Thus, a normal

RNAi response in a wildtype animal gives rise to a mixture of 1u
and 2u siRNAs, characterized by low amounts of sense strand (1u)
and much greater amounts of antisense strand (predominantly 2u).

Figure 2. Expression of the GFP transgene in WT and RNAi
defective strains, in the presence and absence of heat shock.
(A) GFP fluorescence of various strains containing the transgene (uuIs1)
was monitored in adult worms grown at 20uC, without (2) or with (hs)
heat shock treatment. (B) The northern blot shows hybridization to
poly(A+) RNA isolated from adult worms (strains as indicated) that were
untreated (2) or heat shocked (hs). All strains carried the transgene
except N2, the wildtype parental strain, which served as a control for
migration of endogenous sur-5 mRNA. Membranes were probed for sur-
5 (top panel) or the gpd-3 loading control (lower panel). The upper
band (top panel) present in transgenic lines represents full-length sur-
5::gfp mRNA. The middle band represents the mRNA originating from
the endogenous sur-5 gene. The lower band is likely a spliced variant of
the sur-5::gfp transgene as it is detected by probes specific to sur-5 and
gfp coding sequence, and also present in an independent strain

(SM475) containing the sur-5::gfp transgene, but lacking Phsp16-2::GFP(IR)
(data not shown). (C) Bands from multiple northern analyses as in (B)
were quantified (see Materials and Methods). Bar height shows the
average sur-5::gfp mRNA level relative to untreated (2) WT animals, for
various strains cultivated without (2) or with heat shock (hs). All
samples were normalized to the gpd-3 loading control; error bars
indicate the standard error of the mean (SEM; n = 3–6). sur-5::gfp mRNA
levels were significantly different (P#0.04) between untreated and heat
shocked samples for all strains except adr;rde-1 (P = 0.21) and adr
(P = 0.15); t-test, one-tailed, equal variance.
doi:10.1371/journal.pone.0004052.g002

Table 1. Visual scoring of worms for GFP expression (scale 0-
5).

Strain 16uC 20uC 25uC h.s.

ildtype 4.06.1 4.060.1 3.960.1 1.060.0

dr 0.560.0 0.560.0 0.560.0 0.560.0

Adr;rde-4 2.460.3 3.660.4 3.960.1 1.460.3

adr;rde-1 2.260.2 3.160.4 3.960.1 2.360.2

dr;rde-4;rde-1 4.060.1 4.060.1 4.060.1* 4.060.0

de-1 4.060.1 4.160.1 4.160.2 4.060.0

de-4 4.160.0 4.160.1 4.160.1 4.060.0

*Values represent average6std; 3$n#16, except *, where n = 2.
doi:10.1371/journal.pone.0004052.t001
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We performed northern blot analyses on small RNAs isolated

from various strains, either untreated, or heat shocked to induce

GFP[IR]. Blots were probed separately for sense or antisense

siRNAs using strand-specific radiolabeled DNA oligonucleotides

(Fig. 4A). The specific activities of each probe differed slightly, and

thus, to allow quantitative comparison of sense and antisense

siRNAs, a defined amount of a control radiolabeled DNA

oligonucleotide was loaded onto each gel. By normalizing the

radioactivity in each band to the radioactivity of the control DNA

oligonucleotide we were able to quantify and compare these data

(Fig. 4B; Fig. S1).

As expected, high levels of antisense siRNAs with comparatively

lower levels of sense siRNAs were detected in WT worms

following the induction of GFP[IR] (Fig. 4A, lane 2; Fig. 4B,

antisense ,7-fold higher than sense). Similarly, antisense siRNAs

were observed at higher levels compared to sense siRNAs in

adr;rde-4 worms that were silencing GFP in response to induction

of GFP[IR] (Fig. 4A, lane 6; Fig. 4B). The accumulation of

siRNAs in the adr;rde-4 strain was dependent upon RDE-1 as

siRNAs were nearly undetectable in adr;rde-1;rde-4 animals (Fig. 4A,

B). These results further support the model that in the presence of

high concentrations of dsRNA, RDE-4 is not necessary for siRNA

production and canonical RNAi.

WT animals treated with heat shock to induce GFP[IR] had a

characteristic sense:antisense siRNA ratio that typifies a normal

RNAi response, where antisense siRNAs are more abundant than

sense siRNAs (Fig. 4B, WT, hs). Similarly, adr worms that were

silencing GFP under normal conditions (no heat shock) had a

profile of sense and antisense siRNAs similar to that observed in

WT worms after heat shock to induce GFP[IR] (Fig. 4B, adr, -). In

contrast, we observed a much higher accumulation of sense

siRNAs after heat shock in both the adr and adr;rde-1 strain. The

accumulation of 1u siRNAs in the adr;rde-1 strain is consistent with

the idea that rde-1 deficient animals cannot pass 1u siRNAs to the

next step of RNAi. Further, the levels of sense and antisense

siRNAs were roughly equivalent in the adr;rde-1 animals, as

expected if these siRNAs were 1u siRNAs that derived from DCR-

1 cleavage of dsRNA. The accumulation of 1u siRNAs in the adr

strain after heat shock suggests that at the high levels of dsRNA

produced under these conditions, a step between 1u and 2u siRNA

production is rate-limiting.

Low levels of silencing occur in soma of wildtype worms
The previous experiments were done in adr deficient strains as a

means of increasing the amount of unedited dsRNA available to

DCR-1 and the RNAi pathway. However, we noticed that we were

able to detect low levels of siRNAs from the transgene in our WT

strain, where normal levels of endogenous ADAR exist, even without

heat shock (Fig. 4A, lane 1). We wondered if the GFP small RNAs

detected in the WT strain were entering the RNAi pathway to silence

GFP expression. To this end, we introduced the rde-1(ne219) and rde-

4(ne299) alleles into the WT background (hereafter referred to as rde-1

and rde-4, respectively). Indeed, even without heat shock, GFP

fluorescence was slightly brighter in rde-4 and rde-1 animals compared

to wildtype animals (Table 1, 20uC). In addition, even without heat

shock, the sur-5::gfp message levels were elevated in rde-4 and rde-1

animals compared to WT (Fig. 5A, compare - lanes between strains).

Further evidence that some transgene silencing was occurring in the

presence of ADARs was the appearance of low levels of GFP siRNAs

in the WT strain, even in the absence of heat shock (Fig. 5B, WT, -

lane). As shown in Fig. 5B, GFP siRNA levels increased in each strain

following induction of GFP[IR], consistent with the fact that ADARs

are inhibited by high levels of their dsRNA substrate ([15]; see

Discussion). These findings suggest that gene expression in wildtype

animals is modulated by the RNAi pathway even in the presence of

ADARs.

Rescue of transgene silencing by RNAi factors is
temperature sensitive

As mentioned previously, during our studies we observed

variability in the intensity and expression pattern of GFP in the

adr;rde-1 and adr;rde-4 strains when grown at 20uC; this was not true

of any other strains. We considered the possibility that there was an

aspect of silencing that was sensitive to small temperature changes.

Thus, we compared GFP expression in each strain cultivated at 16

or 20uC. Indeed, while most strains showed a characteristic level of

GFP expression that was constant over the temperature range, both

adr;rde-1 and adr;rde-4 strains showed a decrease in GFP expression

as the temperature decreased (Fig. 6A, Table 1). The decrease in

expression correlated with only a slight decrease in sur5::gfp mRNA

(Fig. 6B), and we did not observe a significant difference between the

levels of small RNAs at 16uC and 20uC in adr;rde-1 and adr;rde-4

animals (Fig. 6C). The discrepancy between the dramatic difference

in GFP expression at lower temperatures, and the relatively small

changes in mRNA levels, may indicate that our northern analyses

are not sensitive enough to detect these small changes. Alternatively,

the discrepancy may indicate that some aspect of GFP silencing at

16uC involves inhibition of translation, without loss of mRNA, as

would occur if the small RNAs were diverted into the miRNA

pathway [16,17].

Temperature dependent accumulation of X-cluster
siRNAs

We wondered whether the temperature sensitive accumulation

of siRNAs was specific to the dsRNA coming from the array, or if

Figure 3. Silencing in adr;rde-4 depends upon a functional copy
of RDE-1. (A) GFP expression in adr;rde-1;rde-4 adult worms grown at
20uC is shown for untreated (2) and heat shocked (hs) animals. (B)
Northern analysis of poly(A+) RNA isolated from adr;rde-1;rde-4
transgenic worms that were either untreated (2) or heat shocked
(hs). Membranes were probed for sur-5 (upper panel) or the gpd-3
loading control (lower panel). A statistically significant difference was
not observed between untreated and heat shocked samples (n = 3;
P = 0.47, t-test, one-tailed, equal variance).
doi:10.1371/journal.pone.0004052.g003
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Figure 4. Silencing in adr;rde-4 animals correlates with siRNA accumulation. (A) Total RNA isolated from adult worms of indicated
genotypes (cultivated at 20uC), without (2) or with heat shock (hs), was analyzed by northern analyses. Sense (s, top panel) and antisense (as, middle
panel) GFP siRNAs, and the loading control (U6, bottom panel), were detected using 32P-end-labeled DNA oligonucleotide probes. To allow
visualization of the less abundant sense siRNA, the top blot (s) was slightly overexposed compared to the middle blot (as). (B) Bands from multiple
northern analyses as in (A) were quantified after normalizing to a radiolabeled DNA oligonucleotide loaded on the gel to adjust for differences in
exposure time. The plot shows sense and antisense siRNA levels calculated as the ratio of GFP siRNA to U6; error bars indicate the SEM (n = 3–6).
Various datasets were evaluated with a student’s t-test (two-tailed, equal variance), and relevant p-values are shown in Figure S1.
doi:10.1371/journal.pone.0004052.g004
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it could be observed for endogenous small RNAs as well.

Therefore, we probed our northern blots for the miRNA, let-7,

and the X-cluster endo-siRNAs, as they are both readily detectable

in adult worms. Consistent with previous studies [18,19], our

ability to detect the X-cluster endo-siRNAs was dependent upon

RDE-4, and this held true at all temperatures (Fig. 7A, lanes 5–6

and 9–10). However, their accumulation was not dependent upon

RDE-1 as high levels of X-cluster endo-siRNAs were observed at

low temperatures in adr;rde-1 (Fig. 7A, lanes 7–8) and rde-1 animals

(data not shown). Furthermore, as reported [20], these endo-

siRNAs were strand-specific as we were unable to detect endo-

siRNAs at any temperature when probing for the opposite strand

(data not shown).

Accumulation of the X-cluster endo-siRNAs was very sensitive

to cultivation temperature. While the endo-siRNAs were barely

detectable at 25uC, a dramatic increase was observed as the

temperature was lowered to 16uC (Fig. 7A,B). The same trend did

not apply to the miRNA, let-7, (Fig. 7A, bottom panel) indicating

the effect was not applicable to all DCR-1 substrates.

Discussion

RDE-4 is not necessary for RNAi in the presence of high
concentrations of dsRNA

RDE-4 facilitates processing of dsRNA by DCR-1, and rde-4

mutant animals are defective for RNAi [2,13,14]. However, our

studies indicate that RNAi occurs in C. elegans deficient for RDE-4

if the trigger dsRNA is provided at high concentrations. The

transgene silencing we observed in RDE-4 defective worms has

attributes of conventional RNAi. Silencing was dependent upon

RDE-1, and correlated with decreased mRNA levels and the

production of 1u and 2u siRNAs.

If RDE-4 is not essential for silencing via the RNAi pathway,

what is its function? RDE-4 is required for DCR-1 cleavage of

long dsRNA to siRNA, but is not required for DCR-1 processing

of pre-miRNA to miRNA. In vitro studies show that RDE-4

preferentially binds long dsRNA [2,21], and possibly RDE-4 exists

to confer this specificity to DCR-1. Since pre-miRNA processing

requires only a single DCR-1 cleavage event, one possibility is that

RDE-4 increases the affinity of DCR-1 for long dsRNA so that

multiple cleavage events can occur before the enzyme dissociates.

Alternatively, DCR-1 may be more often bound to the abundant

miRNA precursors, and RDE-4 functions to divert DCR-1 from

the processing of miRNA precursors to the processing of long

dsRNA. This mechanism might be especially useful in responding

to long dsRNA associated with viral replication. Consistent with

this idea, both rde-1 and rde-4 have roles in suppressing VSV

replication in C. elegans, although to different extents [22].

RDE-4 is necessary for accumulation of certain endo-siRNAs,

including the X-cluster (Fig. 7; [18,19]). The importance of these

endo-siRNAs remains unclear as RDE-4-deficient worms develop

normally and are fertile. However, our finding that the level of the

X-cluster endo-siRNAs is influenced by cultivation temperature

raises the possibility that some endo-siRNAs have roles in

environmental responses, for example, to down-regulate metabolic

processes at lower temperatures. As reported by others, we saw a

dependence upon RDE-4 for accumulation of X-cluster endo-

siRNAs, and in addition, we found that X-cluster accumulation

was not dependent upon RDE-1 (Fig. 7). This suggests that these

small RNAs are not entering into the canonical RNAi pathway

despite their dependence upon DCR-1/RDE-4. Thus, RDE-4

appears to have multiple cellular roles, one in canonical RNAi and

another in the endo-siRNA pathway. It will be interesting to

determine if these roles are separable in the cell, such as in cellular

localization or through distinct complexes. Alternatively, the

separation of the pathways may be dependent upon sorting of

siRNAs following processing by the DCR-1/RDE-4 complex.

Accumulation of primary siRNAs suggests an siRNA
amplification step is rate limiting in vivo

During an RNAi response, 1u siRNAs are present at low levels

relative to the more abundant 2u siRNAs [23,24]. Using northern

blotting to probe for sense and antisense siRNAs independently,

on average, we observed ,12-fold more antisense siRNAs than

sense siRNAs in the adr strain when grown normally without the

heat shock treatment (Fig. 4B). However, when GFP[IR] was

induced in this strain by heat shock, the fold increase in sense

siRNAs was greater than that for the antisense siRNAs. Following

heat shock, antisense siRNAs were on average only 4-fold greater

than sense siRNAs. Since sense siRNAs are 1u siRNAs, this result

indicates that one of the steps involved in the conversion of 1u
siRNAs into 2u siRNAs is rate limiting. Further studies are

necessary to determine whether one of the proteins involved in

Figure 5. Low levels of silencing occur in the presence of
endogenous ADARs. (A) The graph compares sur5::gfp mRNA levels
derived from the transgene in rde-4, rde-1, and WT strains in the
absence (2) or presence (hs) of heat shock treatment. All strains contain
wildtype adr alleles. Northern analyses were performed and quantified
as in Figure 2. All samples were normalized to the untreated (2) WT
reference; error bars indicate the SEM (n = 4–6). Differences between
sur-5::gfp mRNA levels in untreated and heat shocked rde-4 and rde-1
strains were not statistically significant, but both strains showed sur-
5::gfp mRNA levels (-, hs) that were significantly greater than that of WT
(P#0.07) (B) Northern analysis of small RNAs isolated from adult worms
grown at 20uC without (2) or with heat shock (hs). GFP antisense (as,
top panel) siRNAs, and the loading control (U6, bottom panel) were
detected using end-labeled DNA oligonucleotide probes.
doi:10.1371/journal.pone.0004052.g005
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RNAi is limiting or perhaps the mRNA target itself has been

consumed in the reaction.

Keeping silencing at bay
The studies we describe were performed with a transgenic array

that encodes GFP as well as a heat shock inducible GFP hairpin.

Upon heat shock, dsRNA transcribed from the hairpin enters the

RNAi pathway so that GFP expression is silenced. In addition,

even without heat shock, low levels of antisense transcripts are

produced from this repetitive transgenic array [8]. Presumably,

these antisense transcripts hybridize with a fraction of the much

more abundant GFP sense mRNA to produce a small amount of

GFP dsRNA. Thus, in the absence of heat shock, we observed that

WT animals exhibited robust GFP expression, but also showed

detectable levels of GFP siRNAs (Fig. 5B). As further evidence that

a low level of silencing was occurring in these animals even in the

Figure 6. Silencing in adr;rde-4 and adr;rde-1 transgenic worms is enhanced at 16uC. (A) GFP expression is compared for adult animals of
indicated genotypes grown at 16uC (left) and 20uC (right). (B) Bar height shows sur-5::gfp mRNA levels for various strains cultivated at 16uC (black) or
20uC (gray). mRNA levels were determined from northern blots of poly(A+) RNA as in Figure 2, and are represented as the ratio of the sur-5::gfp mRNA
level to the gpd-3 loading control, normalized to the WT reference grown at 20uC; error bars indicate the SEM (n = 4). Evaluation by student’s t-test
showed no significant difference between the levels of sur-5::gfp mRNA at 16 and 20uC for any of the strains analyzed. (C) Sense (black) and antisense
(gray) GFP siRNAs were quantified from northern blots of RNA isolated from adult animals grown at 16 or 20uC. Data were analyzed as in Figure 4. Bar
height shows the ratio of GFP siRNA to U6; error bars indicate the SEM (n = 3–6). Evaluation by student’s t-test showed no significant difference
between the levels of siRNA at 16 and 20uC for any of the strains analyzed.
doi:10.1371/journal.pone.0004052.g006
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absence of heat shock, sur-5::gfp expression from the transgenic

array in the WT strain was lower than that of the same array in the

rde-1 or rde-4 mutant background (Fig. 5A, compare - lanes

between strains).

Silencing in wildtype animals by the low levels of dsRNA

produced in the absence of heat shock was ameliorated, at least in

part, by the presence of ADARs. This is evidenced by the

observation that, in adr mutants, the low level of dsRNA was

sufficient to completely silence GFP expression. ADAR enzymes

are quite sensitive to substrate inhibition, and at high concentra-

tions of their dsRNA substrate, are catalytically inactive (reviewed

in [25]). This is consistent with our observation that in WT

animals expressing normal amounts of ADAR, the increased

amount of dsRNA produced during heat shock was able to trigger

robust silencing.. Of course, it is also possible that the dsRNA

binding capability of ADARs, rather than their deaminase activity,

is responsible for antagonizing RNAi. In this scenario, ADARs

would sequester dsRNA so that it was unavailable to the dsRNA

binding proteins involved in RNAi. However, at high concentra-

tions of dsRNA as produced during our heat shock protocol,

ADARs would be titrated, allowing the excess dsRNA to enter the

RNAi pathway.

Our study with the GFP transgenic array has interesting

implications in regard to expression of endogenous transcripts.

The data suggest a model whereby there is a constant interplay

between mRNA expression and its silencing, dictated by the

relative levels of sense and antisense transcripts, as well as by

processes that regulate silencing, such as ADARs. Transcriptome

profiling indicates many genes give rise to both sense and antisense

RNA (see [26,27]), and we speculate that such genes may be

subject to RNAi-mediated regulation.

Materials and Methods

C. elegans strains
Transgenic strains were generated in the Bristol strain N2. C.

elegans culture conditions were as previously described [28].

Transgenic lines all include the integrated array uuIs1(sur-

5::GFP,pRF4.phsp16::GFP[IR] IV.): WT, BB14 (uuIs1); adr, BB

(adr-1(gv6) I, adr-2(gv42) III, uuIs1); adr;rde-4, BB109 (adr-1(gv6) I,

adr-2(gv42) III, rde-4(ne299) III, uuIs1); adr;rde-1, BB111 (adr-1(gv6)

I, adr-2(gv42) III, rde-1(ne219) V, uuIs1); adr;rde-1;rde-4, BB118 (adr-

1(gv6) I, adr-2(gv42) III, rde-4(ne299) III, rde-1(ne219) V, uuIs1); rde-

1, BB107 (rde-1(ne219) V, uuIs1); rde-4 BB112 (rde-4(ne299) III,

uuIs1).

Transgenics
The transgenic array previously described [8] was integrated

and out-crossed in the N2 background (Scott Knight, unpub-

lished). The array was subsequently crossed into all other

backgrounds; genotypes were confirmed by single worm PCR.

The adr;rde-1 and adr;rde-4 strains were independently generated

multiple times to ensure observed phenotypes were not associated

with changes in the array during mating.

Heat shock treatment and culture conditions
Worms were synchronized at the L1 stage by bleaching adults

and hatching embryos overnight using standard protocols [29].

Hatched worms were washed in M9 and filtered through

Miracloth (Calbiochem) before starting liquid cultures (100 mL

S-basal complete with HB101 as food source). Cultures were

incubated with shaking at the desired cultivation temperature (16,

20, or 25uC).

Each heat shock was performed by transferring liquid cultures

to a shaking water bath preset to 33uC followed by a two-hour

incubation. The initial heat shock was performed 8 hours after the

addition of food to the synchronized liquid cultures. Subsequent

heat shocks (2 through 4) were performed similarly after allowing

the cultures 12 hours of recovery at 20uC between heat shocks.

The control worms were grown under identical conditions (20uC)

but did not undergo the heat shock treatment.

Visual scoring of GFP
Young adult worms were scored for intensity of GFP

fluorescence on a scale of 0 to 5. For each determination, several

worms were picked at random and photographed with a

compound fluorescence microscope using a constant exposure

time. Images were compared to estimate relative GFP expression

(Table 1). A baseline of 0.5 was assigned to adr worms, which are

completely silenced for GFP except for slight expression in

neuronal tissues. Numerical values were assigned by successive

Figure 7. X-cluster endo-siRNAs are more abundant in worms
cultivated at lower temperatures. (A) Northern analysis of total
RNA isolated from adult worms grown at 16 or 25uC. The X-cluster
endo-siRNAs (top panel), loading control (U6, bottom panel) and miRNA
(let-7, bottom panel) were detected using end-labeled DNA oligonu-
cleotide probes. (B) Northern analyses as in (A) were quantified, and the
bar height shows the ratio of X-cluster siRNA to U6 at various
temperatures (relative to 16uC); error bars indicate the SEM (n = 3). Data
are not shown for adr;rde-4 and adr;rde-1;rde-4 strains because X-cluster
endo-siRNAs were undetectable in these strains at any of the
temperatures monitored (Fig. 7A).
doi:10.1371/journal.pone.0004052.g007
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side-by-side comparisons. In general, brighter neuronal expression

and/or very dull non-neuronal expression was scored near 1.0,

dull GFP expression in non-neuronal tissues was scored near 2.0,

medium fluorescence was scored near 3.0 and bright fluorescence

was scored near 4.0. Very bright sm475 (control) worms were

scored as 4.8. For unknown reasons, GFP expression in adr;rde-1

worms was asymmetric, with posterior expression predominating.

adr;rde-1 worms were scored by monitoring posterior expression.

Total RNA isolation
Worms were isolated as young adults (3 days of growth for

control worms; 4 days of growth for heat shocked worms). Worms

were harvested by allowing to pellet by gravity and washing three

times with 0.1 M NaCl to remove bacteria. Worms were then

vortexed in 4 volumes of Trizol (Invitrogen) and frozen using

liquid nitrogen; total RNA was isolated as per the manufacturer’s

protocol (Invitrogen).

Northern Blot Analysis
Analysis of sur-5::gfp mRNA levels was performed using

standard northern blot protocols (1.2% agarose/formaldehyde)

on poly(A+) RNA. Poly(A+) RNA was isolated using the Oligotex

mRNA Midi Kit (Qiagen), starting with 50–60 mg of total RNA

from each sample. In each case the entire poly A+ sample was

electrophoresed for northern blot analysis. RNA was transferred to

nylon membranes and probed using strand-specific sur-5 or gpd-3

probes made using the Strip-EZ RNA T7 kit (Ambion).

Analysis of small RNAs by northern blot was performed by

electrophoresing 40 mg of total RNA on a 15–17% polyacryl-

amide, denaturing gel. RNA was transferred to Hybond-NX

membrane (Amersham Biosciences) in 0.56 TBE using a Biorad

transfer-cell. Membranes were treated with EDC [1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide] for 30 minutes at 60uC to

cross-link small RNAs to the membrane [30]. Membranes were

hybridized with 32P-labeled DNA oligonucleotides (T4 Polynucle-

otide Kinase) in Ultrahyb Oligo Buffer (Ambion). GFP siRNA

were probed using a mix of 10 different DNA oligonucleotides

specific to either the sense or antisense GFP sequence. Probing for

U6 was performed using a mix of DNA oligonucleotides

complementary to U6, whereas probing for let-7 was performed

using a single DNA oligonucleotide complementary to the mature

let-7 sequence. To allow for comparison of sense and antisense

levels, all samples were normalized to a radiolabeled DNA

oligonucleotide (internal control) loaded alongside the samples on

the gel [e.g. ((sense or antisense)/internal control)/(U6/internal

control)]. Membranes were exposed and scanned using Phosphor-

Imager cassettes and the STORM (Molecular Dynamics).

Visualization and quantification was performed using Image-

Quant software (Molecular Dynamics). Blots were stripped with

three 20 min washes at 80uC (0.1% SDS/TE) in between each

probing, and the absence of radioactivity was verified by scanning.

Supporting Information

Figure S1 Relevant P-values.

Found at: doi:10.1371/journal.pone.0004052.s001 (0.04 MB

PDF)
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