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Abstract

Background: The variety of ways in which faces are categorized makes face recognition challenging for both synthetic and
biological vision systems. Here we focus on two face processing tasks, detection and individuation, and explore whether
differences in task demands lead to differences both in the features most effective for automatic recognition and in the
featural codes recruited by neural processing.

Methodology/Principal Findings: Our study appeals to a computational framework characterizing the features
representing object categories as sets of overlapping image fragments. Within this framework, we assess the extent to
which task-relevant information differs across image fragments. Based on objective differences we find among task-specific
representations, we test the sensitivity of the human visual system to these different face descriptions independently of one
another. Both behavior and functional magnetic resonance imaging reveal effects elicited by objective task-specific levels of
information. Behaviorally, recognition performance with image fragments improves with increasing task-specific
information carried by different face fragments. Neurally, this sensitivity to the two tasks manifests as differential
localization of neural responses across the ventral visual pathway. Fragments diagnostic for detection evoke larger neural
responses than non-diagnostic ones in the right posterior fusiform gyrus and bilaterally in the inferior occipital gyrus. In
contrast, fragments diagnostic for individuation evoke larger responses than non-diagnostic ones in the anterior inferior
temporal gyrus. Finally, for individuation only, pattern analysis reveals sensitivity to task-specific information within the right
‘‘fusiform face area’’.

Conclusions/Significance: Our results demonstrate: 1) information diagnostic for face detection and individuation is
roughly separable; 2) the human visual system is independently sensitive to both types of information; 3) neural responses
differ according to the type of task-relevant information considered. More generally, these findings provide evidence for the
computational utility and the neural validity of fragment-based visual representation and recognition.
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Introduction

One of the hallmarks of human face processing is our ability to

recognize faces across a multitude of levels. At the most general

level, we are able to locate and distinguish faces from non-faces in

a visual scene. We can also categorize faces by any number of

traits including gender, ethnicity, expression, and age. Finally, we

routinely discriminate faces from one another at the individual

level (which we refer to as ‘‘individuation’’). This range of abilities

leads us to ask whether the visual system carries out such

categorization tasks using a single general type of category

representation or, alternatively, translates task-specific constraints

into different representations of the overall category. Our study

focuses on the two ends of this categorization spectrum by

comparing the sensitivity of the human visual system to face

detection and face individuation.

Artificial systems for automatic face recognition typically treat

detection and individuation as two separate problems with two

different goals [1]. However it is less clear to what extent biological

systems such as the human visual system adopt a similar dual

approach. Models of human face processing acknowledge the

difference between multiple face recognition tasks. For instance,

two classical models of face processing [2] and its neural basis [3]

are centered around task differences. However, the main

dichotomy these models emphasize is that between expression

recognition and individuation. While an early stage of facial

feature processing is separated from these tasks, the locus of face

detection as well as its relationship with this early stage and the
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other tasks are less spelled out. Neuroimaging results also provide

mixed evidence for the neural separability of detection and

individuation. Some studies found that a set of common areas in

the fusiform gyrus [4–7] and the inferior occipital gyrus [5,7] are

sensitive to both face detection and individuation. However, a

recent study [8] uncovered an area sensitive to face individuation

in the right anterior inferior temporal cortex, outside the typical

face-selective regions recruited by detection. Consistent with this

result, studies of white matter connectivity linked behavioral

individuation performance with the structural integrity of fibers

connecting the fusiform gyrus with more anterior areas in the right

hemisphere, including the inferior temporal cortex [9,10]. Finally,

the neural markers of the time course for these two processes also

seem to be different: detection and individuation were associated

with separate M100 and M170 components in a magnetoencelo-

graphy study [11].

If face detection and individuation do recruit different brain

areas and exhibit different time courses, this may point to

processing and representational differences that characterize and

motivate their separation. One possibility is that the two tasks we

consider here pose objectively different constraints on the featural

codes underlying these two types of face recognition. The present

study investigates the neural separability of detection and

individuation precisely by exploring this issue. We hypothesize

that detection and individuation require separate sets of facial

features to optimally achieve their goals and that the visual system

adopts this separation to perform different aspects of face

recognition more effectively. Moreover, we surmise this difference

in the representational bases of the two tasks leads in turn to

differences in neural processing sufficiently robust to be tested by

functional magnetic resonance imaging (fMRI).

The present study investigates this hypothesis by appealing to a

framework for synthetic vision initially developed in the context of

automatic object detection [12]. More recently this framework has

been extended to a model of human vision and has been evaluated

with respect to its original use as a method for category detection

[13,14] and category learning [15]. Within this framework,

categories of objects are represented as sets of overlapping

rectangular image fragments of different aspect ratios, sizes and

resolutions. Many other candidates for the role of object and facial

features have been proposed in the literature: edge structures

[16,17], principal components of images [18,19] or image

segments [20,21], to name just a few. However, for the goals of

our present study, we find fragment features appealing for a

number of reasons. First, they are cue-agnostic in that they do not

commit themselves from the start to a single type of cue, for

example, edges. Second, they naturally account for configural

information, an important aspect of face processing [22], in that

allowing features to overlap constrains the spatial relationship of

otherwise disjoint image fragments. Finally, and most relevant for

the objectives of our present study, Ullman et al’s framework

provides a principled means for establishing optimal task-specific

sets of fragment features for a given category. In the case of faces,

it has been shown, for instance, that such features lend themselves

naturally to deal not only with detection [12] but also with other

categorization tasks, for example, individuation or expression

recognition [23].

We note the problem of mapping diagnostic areas for specific

object categories and particular tasks has been investigated in

human observers using other approaches. For instance, reverse

correlation methods [24–26] and ‘bubbles’ [27,28] in particular,

can effectively produce maps of task-diagnostic regions of images

with respect to a visually-homogeneous category such as faces.

Critically, the task-diagnostic maps produced by these methods are

compatible with different models of how one might divide an

object into features. The fragment-based approach we adopt here

produces concrete ways to decompose a stimulus category into

feature components. We take advantage of this property to gain a

finer-grained view of the representational codes used in task-

specific face processing.

Our investigation proceeds in three stages. First, we evaluate

and compare systematically the task-specific information of face

fragments for detection and individuation. This evaluation enables

the selection of sets of fragments whose task-specific information

varies independently in the two tasks. Second, using these

fragments, we assess and confirm the sensitivity of human subjects

to task-diagnostic fragment features. Third and finally, an fMRI

study tests and reveals that different cortical areas exhibit different

patterns of sensitivity to task-specific information with respect to

our two tasks. These results jointly confirm the separability of

detection and individuation in the human visual system and

provide evidence for different representational codes underlying

the two tasks and driving the noted separation.

Materials and Methods

Evaluation of Task-Specific Information
Stimuli. Image face fragments were extracted from a set of 60

face images (12 individuals65 expressions)–Figure S1–selected

from the Tarrlab face database (available online at www.face-

place.org). This set contains near-front-view grayscale Caucasian

faces, half of which were male and half female, wearing no glasses

or other facial accessories and displaying variable affective

expressions. The faces were cropped, down-sampled (60640

pixels) and normalized with the position of the main features, the

eyes and the nose, to permit the mapping of corresponding face

fragments across faces. A similar set containing 12 different

individuals was used for cross-validation of the computational

results. In addition, two sets of 605 natural scene images were

randomly selected from the McGill Calibrated Color Image

Database (tabby.vision.mcgill.ca). These images, mapped to

grayscale, were used in the computation of the amount of

detection-specific information and also provided non-face stimuli

for behavioral testing.

The image fragments were rectangular image patches of

different sizes and aspect ratios [12]. More precisely, we

systematically varied the size, aspect ratio and position of a

rectangular window across each face in steps of 4 pixels. Thus, the

smallest fragments were 464 pixel image patches while the largest

ones contained an entire face. For each face this procedure yielded

6600 image fragments. Consequently, application of the same

procedure to all face images yielded 6600 fragment types, where by

fragment type we mean a class of fragments corresponding to the

same area of the face across different images of the same or

different individuals. Examples of face fragments extracted from

the same image are shown in Figure 1.

Methods. The amount of face-detection information was

computed for each of 396000 fragments generated by extracting

6600 rectangular fragment types from 60 face images. We refer to

these fragments as well as the face images from which they were

extracted as the training set. A separate test set was composed of

an equal number of fragments extracted from a different set of face

images.

To estimate the task-specific information of a fragment of a

given type k, we cross-correlated the given fragment with all face

and non-face images. If the maximum correlation value surpassed

a certain threshold hk, the fragment was considered present in the

image. The threshold hk was computed for each fragment type k so

Task-Specific Codes
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as to maximize the average task-specific information of the

fragments of this type for face detection. Computation of the

amount of task-specific information carried by each fragment was

implemented following the original description of the method [12].

Briefly, for each face fragment we computed these values using the

mutual information between fragment presence and image

category, that is, face or non-face. The mutual information was

computed as [29]:

I F ,Cð Þ~
X

F~ 0,1f g
C~ 0,1f g

p F ,Cð Þlog
p F ,Cð Þ

p Fð Þp Cð Þ

� �

Here F is a binary variable indicating whether a given fragment

was present in an image or not and C is a binary variable

indicating whether the image contains a face or not. The threshold

hk was estimated by maximizing the mutual information of a

fragment over the training set (the best threshold was found by

brute-force search from 20.99 to 0.99 in steps of 0.01). In a

departure from the original method, a common threshold was

estimated for each fragment type rather than for each fragment

separately. The overall task-specific information for a fragment

type was computed as the average mutual information of all

fragments of that type in the training set.

The method described above was next extended to individu-

ation. For this task the training set was limited to faces and C

denotes in this case same/different individuals instead of face/non-

face information. More precisely, C encodes whether an image

contains the face of the same individual from which the fragment

tested was extracted or not–for any particular fragment there are 4

different images of the same individual in addition to the one from

which the fragment was initially extracted and another 55 faces of

11 different individuals. A new set of task-specific thresholds for

fragment presence was estimated again for each fragment type.

We note that a given face fragment can fail to be informative for

detection because it is not similar enough to other fragments of the

same type, because it is highly similar to recurrent image structures

found in non-face images or because of both. (Figure S2 shows

natural image fragments erroneously labeled as face fragments by

the method due to their similarity to actual face fragments.) It is

possible a fragment is highly diagnostic of a particular individual

but, due to the high variability of the type to which it belongs

across different individuals, it is less useful for detection. Thus, in

order to be diagnostic for the two tasks, fragment types need to

satisfy two different criteria: small extrapersonal (between-individual)

variability for detection versus large extrapersonal variability relative

to intrapersonal (within-individual) variability for individuation [30].

If the two criteria conflict for most fragments, we would expect a

relatively low correlation between their task-specific information

values for the two tasks. To verify this hypothesis, we computed

the Pearson correlation between the mutual information for

detection and individuation across all fragment types.

For cross-validation purposes, task-specific information for each

fragment type as well as the correlation between values for

detection-specific and individuation-specific information were

computed again within the test set. Cross-correlation thresholds

in this case were kept fixed at the values that maximized task-

specific information within the training set.

Behavioral Experiment 1–Face Detection
Participants. Sixteen adults from the Brown University

community volunteered to participate in the experiment in

exchange for pay. All participants had normal or corrected-to-

normal vision. All participants provided written consents and

procedures were approved by the Institutional Review Board of

Brown University.

Stimuli. From our 6600 face fragment types, we preselected a

subset adequate for the testing of human participants. For every

fragment type we verified whether it contained any subfragments

with the value of detection-specific information higher or equal to

that of its own. If this was not the case, the fragment type in

question was included in the mentioned subset. The fact that the

overall task-specific information for a fragment can be lower than

that of a subfragment it contains owes to the fact that the

evaluation of its task-specific information weighs in equally all

pixels. The selection criterion imposed above ensures the stimuli

used are categorized correctly with respect to the amount of

information they provide to our observers. In its absence, overall

task-specific information may be misleading in studying human

vision in that participants can zero in on the most diagnostic

subfragment(s) of a given fragment and disregard the rest.

Next, forty fragment types were selected for each of three levels

of detection-specific information (high, middle and low) from our

preselected set of candidates. Fragment types were selected so as to

homogenize the entire set of stimuli with respect to potential

confounds. Task-specific information for the irrelevant task, that is,

individuation, as well as geometric properties, size (in number of

pixels) and aspect ratio, were all considered in selecting the final set

of stimuli (p.0.1 for all pairwise comparisons between the

different levels of task-specific information across irrelevant

dimensions). Finally, for each of the forty fragment types, the

actual stimuli were selected by picking two fragments of that type

from two randomly selected faces of two different individuals. In

addition, 240 natural image fragments were extracted to match

the face fragments with respect to their geometric properties.

Contrast and mean luminance was equalized across all face and

natural image fragments.

We note that the qualitative labels applied to the three levels of

task-specific information are meaningful relative to each other

rather than by absolute ranking with respect to ideally diagnostic

fragments–see Table 1. This is not a reason of concern for

Figure 1. Example of face fragments extracted from the same face (displayed in reduced contrast).
doi:10.1371/journal.pone.0003978.g001
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recognition performance in that recognition, in this case detection,

does not rely on single ideal features but on multiple features that

jointly contribute to the process possibly based on their

independent amounts of information they provide [12].

Task. Participants were asked to perform a face detection task

by pressing one of two buttons on a buttonbox. More precisely,

participants were asked to judge whether the single image

fragment displayed at a time was a face fragment or not. The

response was made by pushing one of two buttons with the index

fingers of the left and right hands randomly assigned to signal a

face/non-face response across participants.

On each trial, a cross was presented in the center of the screen

for 400 ms followed by an image fragment for 250 ms. A black

screen replaced the stimulus until the participant made a response

signaling the end of a trial. A stimulus subtended on the average a

visual angle of 2.162.3 from a distance of 70 cm after doubling the

size of the image by pixel replication. Each participant completed

480 trials over the course of two blocks in a 30-minute session.

Each stimulus was shown only once in the entire experimental

session. Trial order was randomized for each participant.

Experimental trials were preceded by a short practice session

allowing the participants to familiarize with the task and the

stimuli. At the end of the experiment participants were asked to

report whether they were familiar with and able to recognize any

of the individuals whose faces were presented in the experiment.

Stimulus design and presentation relied on Matlab 7.5 (Math-

works, Natick, MA, USA) and the Psychophysics Toolbox 3

[31,32] running on an Apple Macintosh using OS X.

Behavioral Experiment 2–Face Individuation
Participants. Another sixteen adults from the Brown

University community with normal or corrected-to-normal vision

participated in the experiment. All participants provided written

consents and procedures were approved by the Institutional

Review Board of Brown University.

Stimuli. From all our face fragment types, we preselected a

subset in a manner analogous to the one described for the first

experiment. However, this time the relevant task-specific

information was computed for individuation instead of detection.

Next, the procedure described above was followed to select 40

fragment types for each of three levels of individuation-specific

information. In addition to controlling for low-level properties of

the stimuli we also attempted to homogenize the overall set with

respect to detection-specific information–see Table 1. Finally, for

each of the forty fragment types, the actual stimuli were selected by

picking four fragments of that type from two individuals where

each of these individuals supplied two distinct fragments of that

type showing two different expressions.

Interestingly, we note that, as a result of our selection

procedure, the average size of a fragment in this experiment was

significantly larger than the one in the first experiment (two-tailed

t-test p,0.01). This difference is mainly due to the fact that it is

more difficult to find intermediate-sized fragments with small

detection-specific information than it is to find small fragments

with high task-specific information. Conversely, it is more difficult

to find small fragments with high individuation-specific informa-

tion than to find intermediate-sized fragments with low amounts of

relevant information.

Task. Participants were asked to judge whether two

fragments of the same type shown in succession belonged to the

same individual or not. Each trial had the following structure: a

cross appeared for 400 ms in the center of the screen followed by

the first image fragment for 250 ms, a white noise mask with the

same size as the previously presented image for 200 ms, the second

face fragment for another 250 ms and a black screen until the

subject made a button press. Trials were equally divided between

same-individual versus different–individual trials for each

condition. A stimulus subtended on the average a visual angle of

3.462.3 from a distance of 70 cm after doubling the size of the

image. Each participant completed 240 trials over the course of

two blocks in a single a 45-minute session. Each stimulus was

shown only once in the entire experimental session and trial order

was randomized for each participant. In all other respects we

followed the procedure described for Experiment 1.

Functional Magnetic Resonance Imaging (fMRI)
Experiment

Participants. Eleven healthy adult members (7 female, age

range: 18–30) of the Brown University community, including one

of the authors JMV, volunteered to participate in the experiment

for pay. None of them took part in the behavioral experiments

described above. Participants were right-handed, with normal or

corrected-to-normal vision and reported no contraindications for

MRI scanning. All participants provided written consents and

procedures were approved by the Institutional Review Board of

Brown University.

Stimuli and behavioral task. Participants were presented

with the same face fragment stimuli as the ones from the

behavioral experiments but using only two levels of task-specific

information: high and low. Participants lay supine and viewed the

rear-projection display through an angled mirror in the bore of the

magnet. Stimuli were presented in 30-second blocks of face

fragments with high/low levels of information for detection or

individuation. The order of the blocks was counterbalanced across

participants. Half of the stimuli in each condition were presented

twice during the experiment but at most once within a block.

Stimulus duration was 800 ms with 700 ms inter-stimulus interval

(20 stimuli per block). The stimuli in the detection and

individuation conditions subtended different viewing angles

similar to those in the behavioral experiment. In each time-

Table 1. Task-specific information* carried by fragments used in the two behavioral tasks.

Level of Information Detection task Individuation task

detection MI individuation MI detection MI individuation MI

high 0.79 (0.02) 0.28 (0.03) 0.70 (0.09) 0.75 (0.03)

middle 0.51 (0.05) 0.25 (0.06) 0.65 (0.11) 0.55 (0.03)

low 0.21 (0.02) 0.3 (0.11) 0.64 (0.9) 0.25 (0.03)

*task-specific information is presented here as the average mutual information (MI) and the standard deviation of each fragment set relative to the mutual information
of a task-ideal fragment (one that is detected in all and only those instances in which the class of interest is present).

doi:10.1371/journal.pone.0003978.t001
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series there were four stimulus blocks separated by 30-second

fixation blocks during which participants were instructed to look at

a fixation cross displayed in the center of the screen. In total, we

acquired 6 time series with image fragments and 2 additional time

series with blocks of faces and objects serving as a standard face-

localizer.

On every trial the participants performed an unrelated task.

The stimuli were randomly jittered 1u to the left/right of the

center fixation cross and the participants performed a one-back

location task by pushing one of two buttons randomly assigned

with the index fingers of the two hands.

Scanning parameters. Scanning was carried out at the

Brown University MRI Research Facility with a Siemens 3T TIM

Trio magnet with an 8-channel phased-array head coil. Functional

images were acquired with an ascending interleaved echo-planar

imaging (EPI) pulse sequence (90 time points per time series;

TR = 3 s; TE = 30 ms; flip angle 90u; 3 mm isotropic voxels; field

of view 19261926144 mm3; 48 slices covering the entire cerebral

cortex). At the beginning of each session, we also acquired a T1-

weighted anatomical image (1 mm isotropic voxels; 160 slices of

size 2566256 mm).

Analysis of imaging data. Analysis was carried out using

AFNI [33] and custom in-house Matlab (Mathworks, Natick MA)

code. The first 5 images of each fMRI time series, during which

subjects maintained fixation, were removed to allow the

hemodynamics to achieve a steady state and to minimize

transient effects of magnetic saturation. Further preprocessing

involved slice scan time correction, 3-D motion correction,

smoothing with a Gaussian kernel of 6 mm FWHM,

normalization (each voxels’s time series was divided by its mean

intensity to convert the data from arbitrary image intensity units to

percent signal modulation) and linear trend removal. Group

analyses were performed after converting functional images into

Talairach space [34].

Conventional univariate mapping analysis was performed on

each participant’s data. For each experimental condition we

constructed a box-car predictor and convolved it with a gamma

function. The general linear model [35] was applied to compute

the coefficient of each predictor independently for each voxel.

Significance maps of the brain were computed by t-tests of

pairwise comparisons between relevant conditions. Significance

levels were corrected by taking into account cluster size and its

false detection probability[36] (p = 0.05 corrected). This type of

analysis was used to contrast the high and low information

conditions for detection and individuation as well as faces versus

objects in a standard face localizer test [7,37].

In addition, we performed multivariate pattern analysis [38] to

distinguish between the two levels of task-specific information for

each task in face selective areas. Principal component analysis

(PCA) was first applied to the coefficients of all voxels in a given

area across all blocks to reduce the dimensionality of the patterns.

A ‘leave-one-out’ (‘jackknife’) classification procedure was then

carried out on the resultant patterns. More precisely, we trained a

linear classifier on the patterns corresponding to all blocks except

one and tested it on this remaining pattern. This procedure was

repeated in turn for all blocks, every time leaving out a different

pattern. For the purposes of pattern classification we used a linear

support vector machine (SVM)–other classifiers we tested, such as

a single-layer perceptron, yielded similar results. Importantly,

multivariate analysis was carried out on a version of the data that

had not been spatially smoothed, thus preserving high-frequency

spatial information.

Results

Task-Specific Fragment Information for Detection and
Individuation

Task-specific information values for fragment types reliably

transferred from the training face dataset to a new dataset. The

correlation between the scores for the training and the test dataset

were significant for both detection (r = 0.93, p,0.001) and

individuation (r = 0.92, p,0.001). Fragments at three levels of

information, high, middle and low,–see Table 1–are shown in

Figure 2 for detection and in Figure 3 for individuation. While

fragments at each level of information covered together most of

the face, we note several tendencies. In the case of detection, the

most diagnostic fragments tended to span the area between the

eyes, less diagnostic ones tended to contain only one feature such

as one eye or the nose and the least diagnostic ones contained the

hairline or the chin. For individuation, highly and intermediately

diagnostic fragments contained the top part of the face while the

least informative ones contained the lower part of the face, the

chin, the mouth and the lower nose.

As far as the relationship between the two types of task-specific

information is concerned, the comparison of the scores for

detection and individuation showed a weak albeit significant

correlation both within the training set (r = 0.25, p,0.001) and

within the test set (r = 0.23, p,0.001). These results suggest that

the two types of information may be roughly separable from one

another. In line with this suggestion and providing further

confirmation for it, we were able to manipulate one type of task-

specific information independently of the other when selecting our

experimental stimuli while controlling at the same time for low-

level properties of the fragments.

Behavioral Results–Experiments 1 and 2
None of the participants were able to correctly identify any

individuals familiar to them from experience prior to the

experiments.

Figure 2. Face fragments with high (top), intermediate (middle) or low (bottom) levels of detection-specific information.
doi:10.1371/journal.pone.0003978.g002
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Accuracy scores for each participant were computed using d’, a

signal detection measure of discrimination performance between

two classes combining the relative contribution of hits and false

alarms [39]. In the case of detection, hits and false alarms were

provided by correct and incorrect ‘face’ responses, while for

individuation they were provided by correct and incorrect ‘same-

individual’ responses.

Repeated measures analysis of variance was conducted across

the discrimination performance of the participants in each

experiment. We found a main effect of information level for both

detection (F(15, 30) = 3.92, p,0.001) and individuation (F(15,

30) = 4.88, p,0.001) indicating that participants are less accurate

at recognizing faces with decreasing amounts of relevant

information–Figure 4. In addition, we performed a two-way

analysis of variance across the level of information and task

combining the results of the two experiments. The analysis

revealed significant effects for both the task factor (F(1,

90) = 231.71, p,0.001) and the interaction of the two factors

(F(2, 90) = 7.33, p,0.01). We also note that performance was

above chance for all information levels in both experiments

(significantly above d’ = 0).

Similar analyses computed for reaction times revealed no

significant effect of task-specific information for either task

(p.0.1)–Figure 5. In the two-way analysis of variance, we found

a main effect of task (F(1, 90) = 23.63, p,0.001) but no significant

interaction (p.0.5). The main effect of the task is a good indicator

of task difficulty: face individuation was more difficult than face

detection despite the larger size of the stimuli as reflected by both

discrimination performance and reaction times.

fMRI Results
Group maps of task-specific information effects were obtained

by averaging the statistical parametric maps of individual

participants–Figure 6. The comparison of the two detection

conditions revealed two areas more active for diagnostic fragments

than non-diagnostic fragments across participants (p,0.05,

Figure 3. Face fragments with high (top), intermediate (middle) or low (bottom) individuation-specific information.
doi:10.1371/journal.pone.0003978.g003

Figure 4. Discrimination accuracy for detection and individuation across three levels of task-specific information (mean6SEM).
doi:10.1371/journal.pone.0003978.g004
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corrected): a region in the right posterior fusiform gyrus (pFG) and

a bilateral region in the inferior occipital gyrus (IOG)–see Table 2.

The first of these regions borders the functionally-localized face-

selective region we find in the right fusiform gyrus, also known as

the right ‘fusiform face area’ (FFA) [27], while the second

surrounds and completely contains the functionally-localized

face-selective region we found in the right IOG, the right ‘occipital

face area’ (OFA) [26]. (Consistent with other studies, the left OFA

was not reliably found across a number of participants and

therefore excluded from analyses). In contrast, the comparison of

the two individuation conditions revealed one area more active in

the right anterior inferior temporal gyrus (aIT).

Specific region-of-interest analyses were performed in the

functionally-localized face-selective areas nominally forming the

core system for face processing [3]: the FFA, the OFA and another

region located bilaterally in the superior temporal sulcus (STS).

The areas were individually localized across participants using the

data from the standard face-localizer scans, and the average

percentage signal change was computed for each area and each

task. Detection effects were reliably found in the right FFA

(t(7) = 4.14, p,0.05) and the right OFA (t(7) = 3.22, p,0.05)–

Figure 7. In contrast, no individuation-specific information effects

were found in any of these regions (p.0.1).

In addition to the analysis of face-selective regions of interest, we

examined the response of regions localized for one task, with the

other task as well; for example, we examined whether there is

sensitivity to detection-specific information in the aIT region

already identified as sensitive to individuation-specific information.

No significant effects were found for any of these comparisons.

Next, pattern analysis was applied across blocks within each

face-selective region for each subject. The discriminability of the

two levels of information for each task was encoded using again the

d’ measure. Neural responses elicited by higher-information

fragments were encoded as hits or false alarms when recognized

correctly and incorrectly, respectively. The only region that

showed significant sensitivity across participants was the right FFA

when viewing fragments varying across levels of individuation-

specific information (t(7) = 3.67, p,0.01)–Figure 8. No other

region was significantly different from chance for either task

(p.0.05).

Discussion

Our study examines how different tasks impact the featural code

used in human face processing. From the many tasks that

constitute face recognition, we focused on detection and

individuation in that they represent two ends of the face

recognition spectrum. This comparison is made tractable by

adopting a general computational framework–fragment-based

category representations. The concrete question we ask within

this framework is twofold: how does the task-specific information

carried by face fragments objectively vary within and across tasks

and how sensitive is the visual system to these types of variation?

First, from a computational perspective, we find that the two

types of task-specific information, for detection and individuation,

are roughly separable when considering the mutual information

between fragment presence and the category of interest. This

result is not entirely unexpected given that in order to be

diagnostic for the two tasks a fragment type would need to satisfy

two criteria presumably at tension with each other. For detection,

the area of the face captured by a fragment would need to exhibit

small extrapersonal variability and be visually dissimilar from

recurrent non-face image structures. For individuation, on the

other hand, the same area would need to exhibit large extrapersonal

variability relative to intrapersonal variability [30]. Consistent with

this tension, the correlation we found between the two types of

task-specific information is relatively small although still signifi-

cant. The small size of this correlation is what justifies and explains

our ability to select (with relative ease) two subsets of fragments

that vary independently with respect to their task-specific

information for the two tasks. We then use these separate subsets

to examine the relationship between detection and identification in

Figure 5. Reaction times for detection and individuation across three levels of task-specific information (mean6SEM).
doi:10.1371/journal.pone.0003978.g005
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human visual processing–a high correlation would have made this

analysis less likely to succeed. To be clear, we are not using this

small, but significant correlation to argue alone for the separability

of detection and individuation features, nor are we arguing for

complete separability. Instead we suggest that partial but reliable

separability occurs with regard to task-specific features. Based on

these results, it would appear, detection-diagnostic fragments

should still be able to support individuation, albeit in a non-

optimal fashion, and vice versa. The extent to which this

prediction holds for automatic recognition should be the subject

of further investigation. Interestingly, our neuroimaging results

hint that this may indeed be the case with face processing in the

human visual system.

Second, our behavioral and neuroimaging results indicate that

the human visual system is independently sensitive to information

diagnostic for both detection and individuation. Behaviorally, visual

recognition performance with image fragments improves with

increasing amounts of task-specific information carried by face

fragments for both tasks. With respect to neuroimaging, a number

of regions in the ventral visual pathway were found that respond

more robustly to fragments carrying higher levels of task-specific

information relative to fragments carrying lower levels of informa-

tion for both tasks. Region-of-interest analyses revealed function-

ally-defined face-selective regions, such as the right FFA and OFA,

also showed sensitivity to detection-specific information. Given that

the procedure used to localize these regions is a form of face

detection, that is, comparing faces to objects, this may not be very

surprising. However, we note that detection sensitivity was tested

Figure 6. Group map superimposed on the brain of one participant.
doi:10.1371/journal.pone.0003978.g006

Table 2. Areas sensitive to task-specific information.

Task Region

Coordinates
(center) Size (mm3) Peak t-value

x y z

detection R.IOG 33 286 26 1647 6.98

detection L.IOG 236 283 210 648 5.64

detection R.FG 48 245 225 621 4.50

individuation R.aIT 50 29 228 702 4.33

doi:10.1371/journal.pone.0003978.t002
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using only face fragments and these fragments covered less than a

fifth of the area of a whole face. This suggests that some face parts

are preferentially represented relative to others given their

informativeness with regard to face detection. That the neural

coding of features is sensitive to the demands of face detection has

been previously noted [14] and is consistent with our present results.

Here we show that such results, presumably due to detection

sensitivity, are independent from individuation. Moreover, we

extend such results to individuation and we conclude that the visual

system responds to the constraints imposed by both tasks.

Third, the neural representation of faces appears to differen-

tially reflect detection and individuation demands. Sensitivity to

the former is revealed by the size of the neural response in a series

of regions in the bilateral IOG and the right pFG while sensitivity

to the latter is found both in the size of the neural response in one

area of the right aIT as well as in the neural pattern in the right

FFA. Overall, these findings support the idea of different types of

neural representations underlying detection or individuation.

One specific point of contention regards the role of the FFA and

the aIT in these two tasks. A considerable body of results from

neuroimaging [7,6,40,5,4,41] and neuropsychology [42–44] sug-

gests that the FFA is involved in detection and individuation.

However, at least one study [8] challenges this view and suggests the

FFA may delegate other regions, in particular the aIT, to process

faces at the individual level. On this account, the sensitivity of the

FFA to face individuation demands, as revealed by neuroimaging

results, could simply be due to the feedback received from such

regions rather than because of its direct involvement in the task.

Figure 7. Task-specific information effects in face-selective regions (mean6SEM).
doi:10.1371/journal.pone.0003978.g007

Figure 8. Pattern discrimination performance for the two tasks in face-selective regions (mean6SEM).
doi:10.1371/journal.pone.0003978.g008
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An interesting perspective on this issue comes from the study of

congenital prosopagnosia, a condition characterized by profound

impairment in face recognition, particularly at the individual level,

in the absence of an obvious insult to the brain. A recent diffusion

tensor imaging study [10] associated recognition performance in

prosopagnosics with the degree of structural integrity of the right

Inferior Longitudinal Fasciculus (ILF). ILF is one of the two major

fiber tracts passing through the fusiform gyrus and connects the

lingual and fusiform gyri with the superior, inferior and middle

temporal gyri as well as the hippocampus and the parahippo-

campus. While, given the length of the tract, this result by itself

may fail to directly involve the aIT, it could explain cortical

volume alterations in the inferotemporal cortex observed in this

population [45]. Interestingly, activation in face-selective areas in

prosopagnosics and normal humans appears to be comparable

[46,47]–but see [44]. This pattern of results seems to suggest the

aIT is important for face recognition and a partial breakdown in

the communication between the fusiform gyrus and the aIT may

be a plausible source of face individuation deficits.

Our results can help bridge two potentially divergent lines of

evidence. In agreement with most neuroimaging studies, we find

evidence for the direct involvement of the FFA in face individuation

and against the hypothesis of an indirect feedback-conditioned role.

At the same time, we also find evidence for the role of the aIT in

individuation [8], a role also suggested by the neuropsychological

literature. However, the FFA and the aIT turned out to exhibit two

different types of sensitivity to individuation, one revealed by

multivariate pattern analysis and the other by univariate analysis.

This difference by itself does not explain, of course, why the same

studies fail to involve both areas in individuation–they typically

implicate only the FFA or aIT, but not both. In addition to the

difference in sensitivity revealed by our two analysis methods, this

discrepancy can be accounted for in several other ways. First, face-

localizer tests are optimized primarily for detection, that is, they

compare faces to other categories of objects, and thus can fail to

involve neural structures that serve primarily face individuation.

Second, given the special status conferred to a group of regions

including the FFA as the ‘core system’ for face processing [3],

neuroimaging research has particularly focused on these restricted

brain areas and, thus, may fail to observe relevant activation in

other areas, for example, the aIT. Third, and most importantly, our

stimuli were face fragments selected based on their task-specific

information instead of whole faces. Thus, our study is aimed at

dealing in a more direct manner with individuation sensitivity than

previous studies using whole face images.

Overall, we interpret our current results as supporting the

involvement of the FFA primarily in detection and of the right aIT

in individuation. However, individual face differences are already

represented in the FFA. These differences seem to be further

amplified and recoded in the right aIT insofar as they lead to

different types of sensitivity to individuation-specific information.

If this is the case, we expect the FFA to support individuation

without the help of the aIT at least to some extent. However, if the

features encoded in the FFA serve primarily face detection,

individuation processing in this area is likely to be suboptimal.

This motivates and explains the recruitment of a different area, the

aIT, dedicated to a task critical in our everyday life, individuation.

Our current results are also interesting from the perspective of

the hierarchy of visual processing along the ventral visual pathway

[48]. The idea that visual features of increasing complexity build

successively upon each other at different levels of visual processing

has been incorporated in many neurally-inspired models of object

[16,49] and face recognition [17]. More recently, this approach

has also been extended to fragment-based processing [50,51].

Composing larger, more specialized fragments successively out of

smaller and more generic fragments across a series of represen-

tational levels is a computationally attractive means for instanti-

ating hierarchical processing. Relevant to our study, this hints that

larger individuation-dedicated fragments may be separately

represented and built upon smaller detection-dedicated fragments.

One concrete possibility suggested by the present results is that

features optimal for individuation are represented as patterns over

face detection features within the FFA and then recoded in a more

localist fashion within the right aIT. The neural plausibility of this

hypothesis is the goal of further research.

Finally, our results reinforce the assumption that overlapping

image fragments provide a neurally-plausible representational

schema for object features. The argument the present study makes

for their plausibility and utility is that they help clarify how

different tasks shape the neural code underlying face recognition.

However, we should also acknowledge the limits of this approach

as an actual model. One question regards the effectiveness of using

rectangular fragments to represent what are, most likely, non-

rectangular features. In response to this, we take rectangular-

shaped features to be a rough but reasonable approximation of the

actual features encoded by the visual system. More plausible

features with smoother edges without sharp corners should be

furthered examined. However, we argue, our investigation of task-

specific information as carried by fragments is systematic and

sufficiently detailed that the precise shape of the features should

not alter significantly the conclusions we reached above.

Consistent with this, replacement of square-like features with

circular ones did not significantly alter measurements of detection-

specific information in a related study [14]. Another more critical

issue concerns the manner in which fragments are actually

represented by the neural code. For instance, every fragment

contains a multitude of cues with different contributions to various

recognition tasks. How such cues are separately considered,

encoded and integrated into a unified representation is an

important problem that should be addressed further. For present

purposes, we treat rectangular image patches as reasonable stand-

ins for the actual biological representations of different face parts

and subparts.

To conclude, we examined and found that face detection and

individuation place different task constraints on the representa-

tional code required for automatic and human face recognition.

More generally, we interpret these results as further evidence for

the soundness of fragment-based models of human object

processing.

Supporting Information

Figure S1 Training set of face images

Found at: doi:10.1371/journal.pone.0003978.s001 (0.48 MB TIF)

Figure S2 Natural image fragments erroneously labeled as face

fragments by the method

Found at: doi:10.1371/journal.pone.0003978.s002 (0.08 MB TIF)
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