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Abstract

Background: The fish medaka is the first vertebrate capable of full spermatogenesis in vitro from self-renewing
spermatogonial stem cells to motile test-tube sperm. Precise staging and molecular dissection of this process has been
hampered by the lack of suitable molecular markers.

Methodology and Principal Findings: We have generated a normalized medaka testis cDNA library and obtained 7040 high
quality sequences representing 3641 unique gene clusters. Among these, 1197 unique clusters are homologous to known
genes, and 2444 appear to be novel genes. Ontology analysis shows that the 1197 gene products are implicated in diverse
molecular and cellular processes. These genes include markers for all major types of testicular somatic and germ cells.
Furthermore, markers were identified for major spermatogenic stages ranging from spermatogonial stem cell self-renewal
to meiosis entry, progression and completion. Intriguingly, the medaka testis expresses at least 13 homologs of the 33
mouse X-chromosomal genes that are enriched in the testis. More importantly, we show that key components of several
signaling pathways known to be important for testicular function in mammals are well represented in the medaka testicular
EST collection.

Conclusions/Significance: Medaka exhibits a considerable similarity in testicular gene expression to mammals. The medaka
testicular EST collection we obtained has wide range coverage and will not only consolidate our knowledge on the
comparative analysis of known genes’ functions in the testis but also provide a rich resource to dissect molecular events and
mechanism of spermatogenesis in vivo and in vitro in medaka as an excellent vertebrate model.
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Introduction

The testis is the male gonad where spermatogenesis takes place

throughout adult life to continuously supply sperm for the next

generation. Defects in testicular structure and function lead to

testicular tumors and male infertility. In mammals, the adult testis

consists of male germ cells and three major somatic cell types [1].

The germ cells undergo spermatogenesis through sequential stages

that exhibit remarkably differential gene expression. The somatic

cells are Sertoli, Leydig and peritubular myoid cells, which express

different molecules and provide the environment to maintain

sexual development, support and orchestrate spermatogenesis.

Much is known about the cell biology of spermatogenic germ cell

development, which proceeds through three major stages: mitotic

phase of proliferation and differentiation, meiosis and postmeiotic

spermiogenesis [1]. Meiosis results in round spermatids, spermio-

genesis leads to sperm. In mammals, in vitro spermatogenesis cannot

proceed beyond the spermatid stage [2,3]. In lower vertebrates like

fish, however, in vitro spermatogenesis from spermatocytes can

proceed fully to produce fertile sperm [4,5]. Specifically, medaka

spermatocytes in culture can give rise to functional sperm without

any supporting cells. Previously we have established that the medaka

fish is a unique vertebrate model for the in vitro recapitulation of full

spermatogenesis from a self-renewing spermatogonial cell line

through meiosis to motile sperm [6]. However, the analysis of

molecular events and mechanism of medaka spermatogenesis in

vitro and in vivo has been hindered in this organism by the paucity of

suitable molecular markers for various types of cells at different

stages. One of the approaches is to obtain the testicular

transcriptome or expressed sequence tags (ESTs). Testicular

transcriptome or EST projects have recently been reported in

mouse [7–11] and human [12]. In fish, testicular EST collections
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have been reported in two species. Zeng and Gong [13] reported 501

testicular ESTs in zebrafish, and Chini et al [14] described 2907

ESTs for the blue fin tuna testis.

This study aimed to establish a medaka testicular EST

collection. For this, we generated a normalized cDNA library

from the adult medaka testis and sequenced 7040 random EST

clones. Comparative sequence analysis revealed a total of 3641

unique gene clusters.

Results and Discussions

Construction of a normalized medaka testicular cDNA
library

The expression levels of each individual genes in a genome can

vary considerably in different cells, tissues or organs, and can even

be very different in the same tissue or organ at different

developmental stages or physiological conditions. The magnitude

of difference can range from a few to as much as thousand folds.

When RNA samples from an organism or an organ or a tissue are

directly used for cDNA library construction, the differences among

different genes in expression levels will normally be reflected in

such libraries. If such a library is used for EST sequencing project,

the problem of high redundancy will be brought in [15,16]. A

common practice to avoid high redundancy during EST

sequencing is to construct a normalized cDNA library. The

principle for constructing normalized cDNA libraries is based on

the fact that, during cDNA annealing, rare cDNA transcript

anneal less rapidly than abundant cDNA species, thus the single-

stranded fraction of cDNA (ss-cDNA) becomes progressively more

normalized during the course of annealing [17,18]. To reduce

redundant sequencing, we constructed a normalized medaka

testicular cDNA library. The procedure of normalization is

illustrated in Figure 1A (for details, see Materials and Methods).

In brief, total RNA was isolated from a pool of adult testes, mRNA

was purified for cDNA synthesis. The resulting double stranded

(ds) cDNAs were linked to an adaptor, and after fractionation,

those between 0.5–2.0 kb were recovered (Figure 1B and 1C).

Normalization of cDNAs was performed by three rounds of PCR

– denaturation – reassociation – ss-cDNA purification – PCR

([17]; also see Materials and Methods). ss-cDNA was enriched and

purified using hydroxyapatite chromatography (HA-column)

(Figure 1D), which effectively separates the ss-cDNA from ds-

cDNA. Finally, the normalized ss-cDNA was used as the template

for the synthesis of ds-cDNA for the library construction.

EST clones and sequencing
A total of 8736 clones from the normalized cDNA library was

sequenced, generating 7040 high quality (7033 having reads

$200 bp read each) EST sequences (EMBO Accession numbers

FM165707–FM172746). These 7040 sequences were subjected to

clustering analysis using CLUSTAL W (1.83) Multiple Sequence

Alignments program and 3641 clusters were obtained (Table 1;

Table S1). Overall redundancy is around 48% and this rate is

significantly lower than that for a non-normalized zebrafish cDNA

library [15]. Statistical analysis showed that 743 out of 3641

clusters are each represented by a single clone, 2450 clusters by

two clones and the remaining 448 clusters by 3–6 clones (Table 2).

There are only two clusters containing 6 individual clones each

and these two clusters represent two novel genes and are the most

abundant in this library. No cluster was found to contain more

than 6 clones. This is in sharp contrast to the observed large

number of redundant clones in non-normalized zebrafish and

medaka cDNA libraries [15,16]. In a separate EST sequencing

effort, 747 ESTs were obtained from an unnormalized medaka

testis cDNA library (Laszlo Orban and YHH, unpublished).

Sequence analysis showed that synaptonemal complex protein 3 (SCP3,

meiosis marker) gene and kallikreini gene (Leydig cell marker) was

represented by six and two EST clones, respectively, in the 747

unnormalized EST collection whereas no corresponding clones

was found in our 7040 EST clones. synaptonemal complex protein 1

gene (SCP1, meiosis marker) was represented by three EST clones

in the 747 unnormalized ESTs and was represented by only one

clone in our EST set. From the mathematic view, all these facts

demonstrate the effectiveness of normalization in our library.

Figure 1. Construction of a normalized medaka testicular cDNA
library. (A) Diagram showing the procedure for cDNA normalization.
The cDNA library was constructed from cDNA after three rounds of
normalization. RT: reverse transcription. (B and C) Size-selection of cDNA
for normalization. Total cDNA before size-selection (B) and size-selected
cDNA (C). (D) Sketch showing the setup of a jacketed HA-column. ss-
DNA: single-stranded DNA.
doi:10.1371/journal.pone.0003915.g001

Table 1. Summary of statistics of ESTs obtained from medaka
testis.

Total ESTs obtained 7040

Total unique clusters identified 3641

Clusters matching sequences in the medaka UniGene database 1034

Clusters having hits in the nr database 2057

Clusters having no hits in the nr database 550

doi:10.1371/journal.pone.0003915.t001

Table 2. Clustering analysis of 7040 ESTs.

Number of EST clones in a cluster 1 2 3 4 5 6

Number of clusters 743 2450 403 39 4 2

doi:10.1371/journal.pone.0003915.t002

3640 Medaka Testis Genes
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The total EST collection for medaka in NCBI database is

approaching 315,000 (http://www.ncbi.nlm.nih.gov/UniGene/;

dated at February 28th, 2008) [16]. Clustering analysis of these

ESTs identified a total of 17307 Unigene clusters as released

on February 2008 (ftp://ftp.ncbi.nih.gov/repository/UniGene/

Oryzias_latipes/). The longest sequences in each of our EST clusters

were retrieved and used to blast search against the NCBI medaka

Unigene database, with the aim to assess the representation of our

library in the public database. Unexpectedly, only a small fraction of

our 3641 unique clusters (n = 1034; 28%) exhibit a match in the

NCBI medaka UniGene database (Table 1; Table S2), whereas the

majority (n = 2607; 72%) do not hit, representing new gene clusters

for medaka expressed genes. The addition of the medaka testicular

ESTs we obtained to the existing database gives rise to a total of

19914 unique gene clusters for medaka and these ESTs are

invaluable references in assisting the annotation of medaka genome

in the near future. Due to the fact that some cDNAs may contain

more than one EcoRI sites and that EcoRI fragments were used to

construct the normalized cDNA library, the final number of unique

clusters could be overestimated when fragments generated from the

same cDNA failed to form one cluster due to sequence discontinuity.

Characteristics of medaka testicular ESTs
For the 1034 of our EST clusters that have corresponding hits in

the NCBI medaka Unigene database we downloaded the gene

information for these Unigenes based on Unigene number (Table

S2). The 2607 new unique clusters in our EST collection that have

no matches in the NCBI medaka Unigene database their

sequences were translated into all six frames to blast the NCBI

blastx database (ftp://ftp.ncbi.nlm.nih.gov/blast/), and 2058

clusters were found to have their corresponding hits with high

confidence in the non-redundant database (Table S3). Due to the

fact that the size of cDNA was selected between 0.5–2.0 kb after

cDNA was synthesized using oligo-dT, for those genes with long

39-UTR, the sequences obtained might not have reached their

ORF sequences. Therefore, it is possible that the rate of sequences

with no hit in nr database is overestimated.

Analyzing the 1034 clusters that identified their corresponding

Unigenes in the database and the 2058 clusters that have hits in

the NCBI database revealed that 550/1034 Unigenes and genes

corresponding to 647/2058 clusters have each been assigned a

putative molecular function based on amino acid sequence

homology, whereas the rest of Unigenes and gene clusters are

recorded as hypothetical, unnamed or predicted genes (function-

ally unassigned putative genes) (Table S2 and S3).

The 1197 genes (550 Unigenes and genes corresponding to 647

clusters) with known putative molecular function were combined and

subjected to ontology analysis based on molecular and cellular

functions. As expected, genes encoding for metabolic enzymes

(including hydroxylase, oxidase, reductase, dehydrogenase, synthase,

metabolic kinase and phosphatase, transferase) form the major group

in our EST set and in total 162 out of 1197 (,14%) genes were

recorded (Table 3, Table S4). A total of 63 out of 1197 genes are

found to encode products related to DNA biosynthesis (e.g

polymerase for replication and reverse transcriptase for reverse

transcription) and to DNA structure and stability maintenance (e.g

DNA binding protein, telomerase binding protein etc) while 60 genes

are for RNA biosynthesis (polymerase), maturation (e.g ribonucleo-

protein) and degradation (e.g RNase) and 100 genes for protein

biosynthesis (e.g ribosomal proteins), protein conformation (e.g

chaperones) and degradation (e.g proteins involved in proteasome

pathway) (Table 3, Table S4). In total, 94 genes were found to encode

proteins related to transcription regulation (including transcription

factors and coactivators), 54 related to cellular motor complex, 41

related to exocytosis and endocytosis and 41 related to cell cycle and

cell death (e.g apoptosis) (Table 3, Table S4). A significant number of

genes encode products for extracellular proteins (52/1197) (including

extracellular matrix protein and carrier etc), transmembrane proteins

(excluding receptors) (49/1197) and proteins with binding activity

(44/1197) (excluding receptors, carriers, and DNA and RNA binding

proteins) (Table 3, Table S4). A group of genes (65/1197) are also

linked to different diseases (causal factor or antigens) (Table 3, Table

S4). Surprisingly, molecules involved in different signaling pathways

(including different types of ligands, receptors, protein kinases and

Table 3. Summary of ontology analysis of 1197 genes with
known putative functions.

Molecular and cellular
process Molecular function

Number of
genes

Cellular signaling (total:
188)

Protein kinase 45

receptor 41

Others (ligand, cofactors, protein
phosphatase, transducers etc)

102

Transcription regulation
(total: 94)

Zinc finger 30

Others 64

DNA biosynthesis, structure
and stability maintenance
(0total: 63)

Polymerase 6

Transposase 13

Others (DNA binding protein,
replication complex, nucleosome
assembly protein etc)

44

RNA biosynthesis, maturation
and stability (total: 60)

Polymerase 10

RNA binding protein 11

Others (RNase, RNA helicase, RNA
processing protein etc)

39

Protein biosynthesis,
conformation and
degradation (total: 100)

Ribosomal protein 20

Chaperone 10

Proteasome pathway 38

Others (proteinase, tRNA synthase,
translation initiation factor etc)

32

Cell cycle and cell death
(total: 41)

Cell cycle 35

Apoptosis 5

Extracellular protein
(total: 52)

Extracellular matrix protein 26

Carrier 14

Others 12

Transmembrane and
channel protein (total: 49)

Transmembrane protein 30

Channel protein 19

Metabolic enzymes 162

Motor proteins 54

Trafficking 41

Disease-related 65

Protein with binding activity 44

WD repeat protein 8

doi:10.1371/journal.pone.0003915.t003
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phosphatases, signal transducers and cofactors) constitute the largest

group with a total 188 genes falling in this category (Table 3, Table

S4). The remaining 174/1197 (,14.5%) genes encode products

involved in many other diverse biochemical and cellular processes

(Table 3, Table S4).

It would be interesting to compare medaka testis-enriched genes

with other vertebrates through genomic analysis. For example, are

the genes conserved among the vertebrates? Is there any synteny

relationship among these conserved genes? Are these genes

alternatively spliced from annotated genes? Are there genes

completely new without any annotated protein domains? Howev-

er, these bioinformatic analyses rely on the availability of full

length cDNA. This is mainly because cross-species comparison is

normally performed on the amino acid sequence level but not at

the nucleotide sequence level (because of the high variation of

nucleotide sequences for ortholog genes between species during

evolution). Use the amino acid sequences derived from full length

cDNA will permit the identification of true conserved or novel

genes. Then the in situ hybridization method can be used to prove

if the novel gene is enriched in the testis. For this purpose, we

designed a python program to retrieve information for the 1034

unigenes listed in Table S2 from NCBI. For each unigene cluster,

the section ‘Sequences’ was screened for mRNA sequence

information and mRNA sequence information (e.g gene identifi-

cation (id) number, gene annotation, complete cDNA sequence

(cds) or not) was retrieved and analyzed. For 1034 unigenes, only

48 of them have mRNA sequences information available in the

unigene database and among which 28 of them have complete cds

(Table S5). Apparently, the lack of full length cDNA sequences in

medaka in general disallowed us to perform more detailed

systematic bioinformatic analysis. This fact further shows the

importance of our EST set for gene annotation in medaka in the

future. In addition, we can get important information (though not

authentic) from our EST analysis which will guide us to select a

group of target genes for in situ hybridization to identify who are

genuinely enriched in the testis. Based on the in situ hybridization

result we then can get the full length sequences corresponding to

these testis-enriched genes, then we can perform cross-species

analysis to finally answer if it is a novel testis –enriched gene.

Counterparts of well-known mammalian testicular genes
in medaka

The availability of 1197 gene homologs in our medaka testicular

EST collection enabled us to search for conserved testicular genes

between fish and mammals. At least 50 genes whose mammalian

homologs are highly expressed in the testis have been identified in

the medaka testicular EST collection. These include genes

encoding transcription regulators (Blimp1, Bmi1, YY1 etc) and

receptors, ligands and signaling molecules (Notch, Lifr, BMPR1, and

TGFR1 etc) in testis (Table 4) [19–28]. Gene markers for different

cell types in testis and for different stages of spermatogenesis are

also among the list, including somatic cell markers (Dmrt1 and

cytochrome P450 11b for Sertoli cell; 3-beta hydroxysteroid dehydrogenase

and luteinizing hormone receptor/gonadotropin receptor II for Leydig cell;

beta-catenin-binding protein for myoid cell), germ cell markers (Bruno2,

Gasz, Gustavus, polo-like kinase, piwi etc), pre-meiosis markers (Cyclin

E1, ALF, CDC-like 2 etc), meiosis regulator&structural protein

(Gld1, meiosis-activating kinase, SCP1, Rad51, NME2 etc), and

postmeiosis marker (Msap and Rsh) (Table 5) [29].

To validate the genes obtained via cross-comparison analysis,

expression patterns of two genes, namely pum1 (germ cell marker)

and rad51 (meiosis marker), were examined via in situ hybridiza-

tion in medaka testicular sections. The pum1 gene is expressed

weakly in Spermatogonia at the periphery, but highly in primary

spermotocytes and moderately in secondary spermatocytes

(Figure 2A). On the other hand, rad51 is specifically expressed in

the primary spermatocytes but absent in spermatids (Figure 2B).

Counterparts of mouse X-chromosome encoded testis
genes in medaka

A recent report identified 33 X-chromosomal genes whose

expression are enriched in the mouse testis [30]. We cross-compared

these 33 mouse genes with our medaka testis EST dataset and found

that 13 of these are expressed in the medaka testis (Table 6),

indicating that medaka and mammals share common features in

testicular gene expression and possibly functions.

Conclusion
We added 2607 new EST clusters (possibly unique genes) to the

medaka EST collection and these new EST clusters/unigenes will

be invaluable in assisting gene annotation once the medaka

Table 4. Signaling molecules and transcription regulators in
the medaka testicular EST collection.

Gene
name Description EST Clone ID

Receptors, ligands and signaling molecules

Notch1 Receptor for Notch signalling M039–B1_013

Notch2 Receptor for Notch signalling M071–B2_014

Notch3 Receptor for Notch signalling m014–G1_003

Lifr leukemia inhibitory factor receptor alpha M036–H11_081

gp130 leukemia inhibitory factor receptor M064–C3_027

Stam signal transduction adaptor molecule M030–H3_017

BMPR1a
(Alk3)

Bone morphogenetic protein receptor 1a M035–G10_068

Smad2/3 Component of BMP signalling pathway M065–G10_068

Smad4 Component of BMP signalling pathway M057–E7_055

Smad
anchor

Smad anchor for receptor activation M090–H2_002

TGFbR TGFb receptor M063–A2_016

PI3K phosphatidylinositol 3 kinase M089–G8_052

Pten1 Phosphatase and tensin homolog, antagonist
of PI3K

M043–G10_068

Akt/PKBb RAC-gamma serine/threonine-protein kinase,
protein kinase Akt-3, Protein kinase B gamma

M069–B10_078

Tor target of rapamycin M025–G4_020

Transcription regulators

Dmrt1 Sertoli cell marker, male sex determination M057–E1_007

Blimp1 B lymphocyte maturation protein, repress
somatic fates for germ cell fate in mouse

M054–B2_014

Bmi1, pcgf3 polycomb group ring finger 3 M090–E4_024

Klf4 Krüppel-like factor 4, essential for pluripotency M046–D9_073

ATF4/Creb2 activating transcription factor 4/cAMP response
element-binding protein 2

M031–D2_010

Pax6b Paired box gene 6 M053—F2_006

Par3 leucine zipper kinase, essential for embryo
polarity and blastomere identity

M076–D6_042

Phc2 polyhomeotic-like 2 M018–G2_004

Yin-Yang,
YY1a

overexpression associated with unchecked
cellular proliferation and resistance to
apoptotic stimuli

M035–D3_025

doi:10.1371/journal.pone.0003915.t004
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genome sequencing is completed. The wide range coverage of

genes involved in diverse cellular activities and large number of

novel sequences in our EST collection will not only consolidate

our knowledge on known genes in testis [31–37] but also provide

us rich resources to identify novel genes functioning during

spermatogenesis. Although the 3640 EST clusters/unigenes were

obtained from the testis majority of them will be house keeping

genes (i.e also expressed in other organ/tissue) and only a fraction

of these EST clusters/unigenes will be testis-enriched genes. Our

long term goal is to carry out systemical screen for the testis-

enriched genes. Take the advantage of the medaka fish we can

study the functions and mechanisms of these testis-enriched genes

in the future.

Table 5. Gene markers for testicular cell types and
spermatogenic stage in medaka testicular EST collection.

Gene
name Description EST Clone ID

somatic cell marker

Dmrt1 Sertoli cell marker, male sex determination M057–E1_007

Cyp45011b cytochrome p450 11b, steroid synthesis, Sertoli
marker

M020–D12_090

HSD3b 3-beta hydroxysteroid dehydrogenase, Leydig
cell marker, steroid synthesis

M061–H12_082

LHR luteinizing hormone receptor/gonadotropin
receptor II, Leydig cell marker

M017–D7_057

Catenin a3 beta-catenin-binding protein, cell adhesion,
myoid cell marker

M018–A12_096

Germ cell markers

Bruno2 =
CUG2

CUG triplet repeat, RNA binding protein 2,
translational repressor in fly germ cells

m012–G12_084

Gasz germ cell-specific four ankyrin repeats and
sterile-alpha motif and a basic leucine zipper

m013–E3_023

Gustavus SPRY domain SOCS box protein, suppressor
of cytokine signaling

M035–F5_037

mago nashi proliferation-associated M044–H1_001

Pelota Polo-like kinase, germ cell development M037–C10_076

Pili Piwi-like, homologous to Drosophila Piwi m014–E6_040

Pum1 Pumilio 1, homologous to Drosophila Pumilio m006—C8_055

Pum2 pumilio 2, homologous to Drosophila Pumilio M037–H6_034

Tdr9 tudor domain containing 9 M025–H12_082

Tdr11 =
Snd1

staphylococcal nuclease&tudor domain1 M030–H9_065

Pre-meiosis

Cyclin E1 Cell cycle regulator, B spermatogonial marker M062–G1_003

ALF TFIIAa/b-like factor M038–E5_039

PKA cAMP-dependent protein kinase A, meiosis
regulator

M049–C3_027

Clk2 CDC-like2 cell cycle regulator, B spermatogonia M053–B4_030

Meiosis

Qkr/gld quaking homolog, KH domain RNA binding
protein for germline development and meiosis
entry,

M089–G11_083

SCP1 synaptonemal complex protein 1, meiosis I
prophase

M029–C7_059

Rad51 Eukaryotic homolog of RecA involved in DNA
repair, meiosis I prophase

m015–H9_065

NME2 nucleoside diphosphate kinase B, oncogene/
tumor suppressor

M034–G9_067

Mnd meiotic nuclear division&recombination,
meiosis I prophase

m008–G7_051

Chimerin GTPase-activating protein, meiosis I prophase m015–G2_004

Postmeiosis

Msap meichroacidin-like sperm axonemal protein M079–A4_032

Rsh radial spokehead-like sperm axonemal protein M037–C11_091

doi:10.1371/journal.pone.0003915.t005

Figure 2. Analysis of pum1 and rad51 expression by in situ
hybridization on medaka testicular sections. (A) pum1 is
expressed highly in the primary spermotocytes (sc1), moderately in
the secondary spermatocytes (sc2) and weakly in the Spermatogonia
(sg) at the periphery. (B) rad51 is mainly expressed in the primary
spermatocytes (sc1) but absent in spermatids (st).
doi:10.1371/journal.pone.0003915.g002

Table 6. Counterparts of 13 mouse X-chromosome encoded
testis genes in the medaka testicular EST collection.

Mouse gene name Genebank ID
Medaka EST
clone ID

Homology
(e-value)

Pabpc1l2 GC0XP072139 M063–H1_001 7E-80

MGC58426 237009[uid] M054–D9_073 4E-48

Zfp161 gi|6678637 M068–A8_064 2E-34

Zxd gi|158937319 m007–E1_007 2E-30

LOC278181 278181[uid] M035–A4_032 5E-12

Tgif2lx gi|23346541 M091–A10_080 5E-11

4933434C23Rik 71210[uid] M079–B10_078 1E-9

Rhox gi|115311558 M091–B4_030 4E-9

Ott 18422[uid] M060–B12_094 2E-7

4930567H17Rik 619303[uid] M084–F11_085 7E-6

LOC665542 665542[uid] M061–H10_066 2E-4

4930527E24Rik 75140[uid] M059–G3_019 4E-4

Srsx 100151772[uid] M034–D8_058 5E-4

doi:10.1371/journal.pone.0003915.t006
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Materials and Methods

Construction of the normalized medaka testicular cDNA
library

All procedures conducted with medaka fish are adhered to

animal care guidelines (Guidelines on the Care and Use of

Animals for Scientific Purposes) as outlined by the National

Advisory Committee For Laboratory Animal Research in

Singapore. Total RNA was extracted from pooled testes of adult

medaka fish, using the Tri-Reagent according to the manufactur-

er’s protocol (Molecular Research Centre Inc., USA). Total RNA

was used for mRNA purification using mRNA purification kit

(Qiagen, Germany). Both the 1st and 2nd stranded cDNA was

synthesized using cDNA synthesis system (GibcoBRL, USA).

Oligo-(dT)20-V (V = G, C, A) was used as primer for the 1st strand

cDNA synthesis. Two primers LLR1A (59-gagatattagaattctactc)

and LLR1B (complementary strand 59-gagtagaattctaatat-39) [17]

were annealed at equal molar ratio and used as adaptor to ligate to

the blunt-ended ds-cDNA and the ligated product was subjected to

size selection. Total cDNA-adaptor ligated mix was loaded on an

agarose gel (1%) for size fractioning and gel containing cDNA size

between 0.5 kb and 2.0 kb was sliced out. This slice containing the

size-selected cDNA was inserted into a pre-sliced slot in a fresh gel

and electrophoresed in reverse current to concentrate the cDNA

on the gel. Gel purified cDNA was amplified via PCR

(denaturation at 94uC, 30 s; annealing using temperature gradient

from 47uC to 50uC, 2 min; extension at 72uC, 3 min; 20 cycles)

and the PCR product was pooled and concentrated for the first

round denaturation/reassociation step (1 ug PCR product in 50 ul

reassociation buffer containing 0.3 M Sodium Phosphate, 0.4 M

EDTA, 0.04% SDS, pH 6.8). After denaturation at 100uC for

5 minutes, DNA was immediately transferred to 65uC for 24 hrs

for reassociation and then quenched on ice. The yielded mixture

of ss- and ds- cDNA was separated on a 1 cm Hydroxyapatite

(Bio-Gel HTP gel # 130-0520, DNA-grade) jacketed column

maintained at 65uC; using the AKTA FPLC system as described

below. The reassociated DNA was diluted in 1 ml column

equilibration buffer A (10 mM Sodium Phosphate, 0.1% SDS,

pH 6.8, 65uC) and loaded onto the pre-equilibrated HA column.

The column was washed with 3 CV (column volume) of buffer A,

then eluted with a continuous gradient buffer from 0%–100%

Buffer B (0.4 M Sodium Phosphate, 0.1% SDS pH 6.8, 65uC)

over 10 CV, followed by 4 CV of buffer B to wash the column. ss-

DNA eluted at ,120 mM sodium phosphate and dsDNA at

,300 mM sodium phosphate under these conditions. Fractions

containing ssDNA were pooled and concentrated using Centricon-

YM30 filter cartridge and the obtained ssDNA was used for the

2nd round PCR. Two more rounds of normalization were

performed and the final PCR products were digested with EcoRI

and ligated to pre-digested pBluescript SK+ vector for library

construction. Colony picking and bacteria culturing are as

described previously [15].

High throughput sequencing
Pasmid DNA was prepared in 96-well format using the

conventional alkaline/SDS lysis method using robotics Biomek

FX (Beckman) followed by ethanol precipitation [15]. Vector T3-

primer was used to determine the EST sequence from each clone

using either the Big Dye terminator cycle sequencing kit (Perkin

Elmer) or DYEnamic ET terminator cycle sequencing kit

(Amersham Pharmacia Biotech).

Sequence Assembly
All sequences obtained were subjected to mass editing for vector

and adaptor sequence clipping and elimination of low quality or

short sequences using the pregap4 program in staden package

(http://www.mrc-lmb.cam.ac.uk/pubseq/manual/pregap4_unix_

toc.html). In total 7040 ESTs (7033 with reads .200 bp) were

obtained after editing (Table1) and clustering using Tigr-Assembler

(http://www.tigr.org/software/assembler) identified a total of 3641

unique clusters (Table S1).

Sequence comparison against public database
The longest EST sequence in each of the 3641 unique clusters

were retrieved and used as queries for BLASTN searches against the

section Medaka UniGene (ftp://ftp.ncbi.nlm.nih.gov/repository/

Unigene/) containing 17,307 unique clusters (released on February

2008). Sequences are considered identical if the blast E value is less

than e250 [38]. The longest EST in each of the 2607 unique clusters

was translated into six frames and then compared to nr (ftp://ftp.

ncbi.nlm.nih.gov/blast/db/nr). Only blast E value,e28 were

considered significant (Makabe et al. 2001).

Gene ontology analysis
Gene information for the 1197 genes assigned with putative

molecular and/or cellular function was analyzed manually and

then classified based on their molecular and cellular functions.

In situ hybridization and microscopy
In situ hybridization was performed essentially as described [39]

by using the sense and antisense RNA probes derived from pum1

and rad51 clones, respectively. Observations and documentations

were made under a Zeiss Axiovert invert microscope using a Zeiss

Axiocam MRc digital camera.

Supporting Information

Table S1 3641 unique medaka testis EST clusters.

Found at: doi:10.1371/journal.pone.0003915.s001 (0.65 MB XLS)

Table S2 List of 1034 unique medaka testis EST clusters having

hits in the medaka unigene database.

Found at: doi:10.1371/journal.pone.0003915.s002 (0.26 MB XLS)

Table S3 List of 2057 unique medaka testis EST clusters having

hit in the NCBI non-redundant database.

Found at: doi:10.1371/journal.pone.0003915.s003 (0.42 MB XLS)

Table S4 Summary of ontology analysis of 1197 genes with

known molecular/biochemical putative function

Found at: doi:10.1371/journal.pone.0003915.s004 (0.21 MB XLS)

Table S5 List of 48 unigenes which have mRNA sequences in

the unigene database.

Found at: doi:10.1371/journal.pone.0003915.s005 (0.02 MB XLS)
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