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Abstract

Background: Serum antibody-based target identification has been used to identify tumor-associated antigens (TAAs) for
development of anti-cancer vaccines. A similar approach can be helpful to identify biologically relevant and clinically
meaningful targets in M.tuberculosis (MTB) infection for diagnosis or TB vaccine development in clinically well defined
populations.

Method: We constructed a high-content peptide microarray with 61 M.tuberculosis proteins as linear 15 aa peptide
stretches with 12 aa overlaps resulting in 7446 individual peptide epitopes. Antibody profiling was carried with serum from
34 individuals with active pulmonary TB and 35 healthy individuals in order to obtain an unbiased view of the MTB epitope
pattern recognition pattern. Quality data extraction was performed, data sets were analyzed for significant differences and
patterns predictive of TB+/2.

Findings: Three distinct patterns of IgG reactivity were identified: 89/7446 peptides were differentially recognized (in 34/34 TB+
patients and in 35/35 healthy individuals) and are highly predictive of the division into TB+ and TB2, other targets were
exclusively recognized in all patients with TB (e.g. sigmaF) but not in any of the healthy individuals, and a third peptide set was
recognized exclusively in healthy individuals (35/35) but no in TB+ patients. The segregation between TB+ and TB2 does not
cluster into specific recognition of distinct MTB proteins, but into specific peptide epitope ‘hotspots’ at different locations within
the same protein. Antigen recognition pattern profiles in serum from TB+ patients from Armenia vs. patients recruited in
Sweden showed that IgG-defined MTB epitopes are very similar in individuals with different genetic background.

Conclusions: A uniform target MTB IgG-epitope recognition pattern exists in pulmonary tuberculosis. Unbiased, high-
content peptide microarray chip-based testing of clinically well-defined populations allows to visualize biologically relevant
targets useful for development of novel TB diagnostics and vaccines.
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Introduction

Serum antibody-based target identification has been extensively

used to identify tumor-associated antigens (TAAs) for development

of anti-cancer vaccines and early diagnostic markers. cDNA tumor

expression libraries (SEREX, serological analysis of recombinant

cDNA expression libraries) were instrumental in identifying humoral

targets which were further tested for T-cell recognition in patients

with cancer [1]. B-cell antigens, and humoral and cellular targets

appeared to be closely linked in malignant disease: the majority of

TAAs have been identified using SEREX and proved to be

indicative of CD4+ and CD8+ T-cell responses [2,3,4]. A similar

approach can be helpful to identify biologically relevant and

clinically meaningful targets in M.tuberculosis infection for diagnosis

or TB vaccine development [5]. Comprehensive testing of immune

recognition in arrayed MTB antigens in a clinically well defined

population will help to reveal the profile of a successful protective

immune response, most likely associated with CD4+ and CD8+ anti-

MTB responses [6,7,8,9,10] in individuals capable of containing

MTB infection. More recent studies have emphasized the usefulness

of antibody-based diagnostics in TB and although these have been

extensively tested in low-income countries, they did not deliver

sufficient accuracy and sensitivity since humoral immune responses

may depend on the individual and test sensitivity can vary

[11,12,13]. In most cases, these tests gauge antibody responses using

single recombinant TB antigens. The remedy to limited MTB target

testing would be the implementation of protein arrays, as recently

reported for autoantigens recognized by sera from patients suffering
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from autoimmune diseases [14] . Expression of recombinant

antigens is time-consuming and challenged by the need for correct

folding of the target antigen. An alternative approach represents the

construction of a high-content peptide microarray which displays a

comprehensive set of MTB antigens in the form of linear peptide

stretches without ‘pre-meditated’ target-selection. This approach

enables a detailed epitope profiling of the humoral immune response

and defines ‘hotspots’ of antibody recognition in clinically well

defined patient cohorts. Since T-cells are instrumental in mediating

anti-MTB responses, we examined IgG responses, whose presence

implies T-cell recognition.

Results

Serum profile using MTB peptide microarray analysis:
differential target recognition

Sera from 34 individuals with sputum, acid-fast positive,

pulmonary TB as well as 35 sera from healthy participants were

tested for recognition of 61 MTB proteins (listed with details and

segregated according to the MTB life cycle in the Supplementary

Table S1 online) in the form of single peptide epitopes. Each peptide

was 15aa and showed a 12aa overlap resulting in 7776 epitope spots

arranged in 24 blocks on the microarray slide. After incubation with

serum, antibody binding to individual peptides was identified

(Figure 1), and a cluster analysis of the two groups (TB+ and TB2

individuals) was carried out (Figure 2). Quality data was extracted as

described in materials and methods, and for each group we

normalized the responses of all peptides that were recognized in at

least one of the samples. Three individual patterns emerged: Peptides

recognized i) exclusively in TB+ individuals ii) exclusively in TB2

individuals and iii) peptides which are differentially recognized in the

two groups. We identified 1089 peptides that were exclusively

recognized in the TB+ group (Figure 3, left panel), 1001 in the TB2

group (Figure 3, right panel) and 89 common peptides that were

predictive of the groups by PAM analysis (see cluster image in

Figure 4) with an classification error of approximately zero. The ‘top

12’ most strongly predictive peptides are shown in Figure 3 (centre

panel), and the whole list is provided in Supplementary Table S2

online. These 89 peptides all appeared among the 172 peptides

identified by SAM analysis as having significantly higher response in

TB+ individuals, and also among the 301 with significantly lower

response (Supplementary Table S3 online).

Figure 1. Overview of peptide microarry chip analysis. The analysis platform (left) consists of two identical sub-arrays, each with 7776 spots
arranged in 24 blocks, each block has 324 spots, and these are arranged in columns and rows of 18. The 7776 peptide spots represent 7446 unique
peptides, 153 negative control spots, 96 Cy3 controls for GAL file orientation and 24 positive controls spots (4 repetitions each of IgG, IgA, IgM, IgE).
Plasma is tested for IgG binding to peptides and the slide is scanned with the GenPix 4000B microarray scanner (Axon Instruments with the features
described in the method section. A magnification (right) shows the Cy3 controls in order to orient the Gal file (mask) which allows the identification of
the aa sequence of each peptide printed in a designated location. Positive controls serve to detect the function of the secondary reagent, empty
spots are devoid of peptides, serum antibody-peptide antigen complexes are visualized using the appropriate secondary reagent. The plot shows a
representative positive result with the target epitope sequence identified.
doi:10.1371/journal.pone.0003840.g001
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Cluster analysis of MTB epitopes segregates TB2 and
TB2 individuals

A compilation of the ‘top 24’ peptides recognized in serum from

TB+ individuals but not in any sample from TB2 individuals are

segregated by proteins and compiled in the supplementary Table

S4 online. Of note, the segregation between TB+ and TB2 does

not cluster into specific recognition of certain MTB proteins, but

rather into specific peptide epitopes at different locations within

the same protein. For instance, the highly immunogenic Ag85B

mycolylstransferase protein Rv1888c is recognized in different

groups: the peptide epitope QSSFYSDWYSPACGK is exclusively

recognized in 34/34 of the TB+ individuals (and not in any of the

35 healthy TB2 individuals), while YNGWDINTPAFEWYY and

SPACGKAGCQTYKWE are exclusively recognized in 35/35 of

the TB2 group (Supplementary Tables S2, S3 and S4 online) and

WGPSSDPAWERNTDPT is strongly recognized in healthy

individuals but only weakly in individuals with acid-fast+ TB

(Figure 3, middle panel). Among the strongly recognized linear

peptide epitopes are peptides from protein antigens which have

been described in the past, e.g. Ag85B, or isocytrate dehydroge-

nase [15]. We identified additional target peptides from proteins

involved in cellular metabolism (glycosyl transferase), lipid-

degradation (acyl-CoA Synthase) or lipid formation (e.g. cyclo-

propane-fatty-acyl-phospholipid synthetase). The latter enzyme is

also present in MOTT (mycobacteria other than tuberculosis) and

could therefore be recognized in sera from healthy individuals,

exposed to MOTT.

Uniform Ig-recognition pattern in pulmonary TB
The formation of IgG is dependent on T-cell help, which is

determined by MHC class II-restricted presentation of antigenic

peptides. It may very well be that differences in the T-cell

‘immunome’, and the IgG B-cell recognition patterns the TB+ and

TB2 subjects presented in the current study is due to their

different genetic background and different exposure to environ-

mental bacterial species. We therefore obtained an additional 6

serum samples from Swedish individuals who presented with

pulmonary (acid-fast stain positive) TB in Stockholm, and

compared these with the 35 serum samples from the TB2

individuals and the 34 samples from the Armenian patients. The

average responses of peptides that were detectable in all patients in

either the two TB+ groups are presented in Figure 5A, where it

can be seen that (i) for peptides that are detected in both groups,

the magnitude of the responses are strongly correlated, (ii) this

correlation remains high when we limit to peptides that are never

recognized in the 35 healthy controls (iii) there is a group of

Figure 2. Cluster analysis of the normalized IgG responses from TB+ and TB2 individuals Spots flagged as ‘‘bad’’ and false positive
responses were excluded.
doi:10.1371/journal.pone.0003840.g002

Peptide Microarray in TB

PLoS ONE | www.plosone.org 3 December 2008 | Volume 3 | Issue 12 | e3840



peptides exclusively defined by IgG in patients from Sweden, but

not from Armenia, and vice versa, and (iv) approximately half of

these exclusive peptides in each group are not recognized in any of

the 35 healthy controls. The sets of peptides defined by IgG

reactivity in patients (from Armenia and from Sweden), but not in

healthy controls have considerable overlap: from among the 100

top peptides exclusively recognized by IgG in TB+ individuals

from Armenia, but not in 35/35 TB-negative individuals, we

found 60 that were also recognized in the additional six TB+
patients from Sweden (Supplementary Table S5 online). The

responses in each patient group were highly coherent: most of the

peptides that had a response for any patient in a group had a

response for all patients in the group: this was true for 5864/5999

peptides for the 34 TB+ patients from Armenia and for 4733/

4748 peptides for the 6 patients recruited in Sweden.

The IgA immune responses in the sera from the 6 additional

patients showed a different profile than the IgG ‘immunome’: a

specific set of peptides were exclusively recognized by IgA and not

by IgG and vice versa, but for peptides recognized by both, the

responses were strongly correlated (r = 0.75) (Figure 5B and

Supplementary Table S6 online).

Discussion

We studied the serum IgG recognition pattern in patients with TB

and used as a paradigm a ‘high content chip’ peptide microarray

with 61 MTB proteins as linear peptide stretches. This excludes the

identification of conformation-dependent epitopes and non-protein

targets, e.g. carbohydrates, glycolipids and fatty acids which may also

serve as biologically relevant targets for humoral and cellular

immune responses [16]. A recent survey examining TB-related

epitope data revealed that 65 percent of the known TB epitopes

derive from the top 30 most studied protein antigens, and that 357

humoral responses have been identified [17]. Until now, the most

frequent target proteins for T- and B-cell responses are associated

with either the cell wall (i.e. Ag85b, PE/PPE) or MTB pathogenicity

[17]. Indeed, Ag85B and PPE-protein family members were

Figure 3. IgG recognition of MTB epitopes segregates TB+ (marked in red) and TB2 (marked in green) individuals. The left panel
shows the peptides that gave a detectable response for 34/34 individuals with TB but were never recognized in any sample from 35 TB2 individuals.
Conversely, the right panel shows the responses of peptide epitopes that were recognized by 35/35 TB2 individuals but not recognized by any of the
34 TB+ individuals. A predictive analysis using PAM found 89 peptides differentially recognized by TB+ and TB2 individuals with a classification error
of approximately zero. The center panel plots the ‘top 12’ most strongly predictive of these: the header of each plot shows the peptide sequence, and
the corresponding protein with the accession number and the location of the peptide (given in brackets) within the protein is listed under each plot.
A compilation of the ‘top 24’ responses (boxed) of the peptides recognized exclusively by TB+ or TB2 individuals (left and right panel) segregated by
proteins are compiled in Supplementary Table S4 online. Segregation between TB+ and TB2 does not cluster into specific recognition of certain MTB
proteins, but rather into specific peptide epitopes at different locations within the same protein.
doi:10.1371/journal.pone.0003840.g003

Figure 4. Prediction of TB+ using pattern analysis. Differential
IgG responses to 89 peptides (listed in Supplementary Table S2 online)
identified by PAM analysis segregate TB+ from TB2 individuals. The
amino acid sequences of the 89 peptides are listed individually with the
corresponding index in the TB+ / TB2 groups in the supplementary
Table S2.
doi:10.1371/journal.pone.0003840.g004
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frequently detected in the three different categories of recognition in

our study: (i) exclusively recognized in the TB+ group, (ii) exclusively

recognized in the TB2 group and (iii) differentially recognized in

TB+ vs. TB2 individuals (Fig. 3, middle panel). The 89 differentially

responding peptides were highly predictive, with a classification error

of approximately zero. The immune focus on these proteins may, in

part, be biased from the work in the pre-genomic area of MTB

research which targeted proteins secreted into culture medium, or

proteins which have been extensively used in vaccine trials, e.g. the

proteins Esat-6, Ag85B or TB10.4 are more easily available to the

research community since they have been expressed as recombinant

proteins.

Some of the top 100 peptide epitopes identified by antibody

profiling belong to surface-associated MTB proteins (Supplemen-

tary tables S2, S3 and S4 online), other targets belong to factors

associated with subcellular organization, i.e. epitopes from the

RNA polymerase sigma factor F (CAB07069) as well as the Acyl-

CoA Synthase which are recognized in TB+ individuals. These

targets are interesting in the dormant phase of MTB infection for

rational drug design, for example the MTB sigma factor F (sigF) is

responsible for transcriptional initiation [18,19] and Acetyl-CoA

represents the central intermediate in the TCA cycle and in fatty

and amino acid biosynthesis. The use of carbon through Ac-CoA

is critical for survival of non-replicating bacteria, since fatty acids

(and not carbohydrates) present the primary source for carbon in

granulomas. Targeting drugs to this pathway has been suggested

to disrupt the carbon flux necessary for MTB survival [20]. Not a

single individual among the 35 healthy subjects recognized any of

100 epitopes from the sigma factor. In contrast, sigF was

frequently recognized in serum from the 34 individuals with

tuberculosis. Proteins involved in lipid generation and modifica-

tion, such as the cyclopropane fatty-acyl phospholipid synthase

which provides targets for IgG (Fig 3, Supplementary tables S2

and S3 online) and T-cells (defined by IL-2, TNFa and IFNc
production in intracellular cytokine staining, our unpublished

data) may add to the list of immune targets associated with MTB

pathogenesis. Mycolic acids, modified by cyclopropane synthease,

provide major components of the mycobacterial cell wall involved

in MTB persistence. Mycolic acids protect mycobateria against

injuries, decrease permeability for antibiotics and affect MTB

survival within the host phagolysosome [21]. Cyclopropane-

mediated alterations of trehalose dimycolate (cord factor) is

responsible for proinflammatory reactions in early mycobacterial

infection [22].

Most immunology studies are undertaken with the aim of

defining diagnostic markers and identifying new MTB vaccines

[11,23,24]. The cornerstone of studies that investigate the

association between immune-profiling and clinical events is a

well-defined study population. This is very challenging in the

context of TB: although patients with clinical TB were

characterized by pulmonary tests (acid-fast stain positive TB),

the history of the infection could differ from patient to patient. The

positive stain could represent a recently acquired infection or

activation of an infection aquired in the past. Exposure to

environmental bacteria as well as BCG vaccination may also alter

the response to MTB proteins. The same is true for TB2

individuals: in our study, these had not received BCG vaccination,

had tested negative in the tuberculin skin test (TST) and the

Quantiferon test. However, we cannot exclude exposure to

environmental mycobacterial species, e.g. M. fortuitum, M smegmatis.

Figure 5. Ig-recognition: Genetic background and IgA/IgG focus. (A) Genetic background of the test population. Normalized
responses of 5864 peptides detected in all 34 patients with TB+ from Armenia patients and 4733 peptides detected in all 6 TB+ patients from Sweden.
Peptides recognized by one patient group but not the other are assigned the minimum detectable response (approximately 21.0). Peptides that
were not recognized in any of the 35 healthy controls are highlighted in red. (B) Differential epitope recognition in IgA and IgG responses in
patients with TB. Material from 6 individuals with TB, recruited in Stockholm, was tested for IgA and IgG responses directed against the MTB
peptide library. Three groups of peptides are apparent (supplementary Table S6a–c online): those recognized by both IgG and IgA (n = 2544 peptide
species, supplementary Table S6a) only by IgG (n = 1703 peptides, supplementary Table S6b), or only by IgA (n = 845 peptides, supplementary Table
S6c). For peptides not recognized by IgG, we assigned the minimum detectable response (approximately 21.0) on the plot, and similarly for IgA.
Peptides recognized by both IgG and IgA are strongly correlated (r = 0.75).
doi:10.1371/journal.pone.0003840.g005
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Formally, we also cannot exclude previous exposure to MTB

which may have resulted in a clearance of the infection (the most

likely case in immune-competent individuals) in the absence of a

positive TST and Quantiferon test at the time of the blood draw.

We performed a Blast search of the top 12 peptides exclusively

recognized in TB-negative individuals. If greater variation with the

query peptides was allowed concerning the peptide length,

matches with peptides derived from non-mycobacterial species

were obtained. This would suggest that cross-recognition would

account for anti-peptide specific humoral immune responses in the

TB2 cohort, it could also imply that ‘heterologous immunization’

may contribute for the epitope recognition pattern in TB2

individuals, which is absent in the TB+ cohort. Antigen

recognition signatures in a healthy population will also define

individuals who have been exposed to MTB but who were able to

fight off the infection, worthwhile study subjects for vaccine

developers.

A significant difference between our 2 main groups (TB+ and

TB2 individuals) is not only the geographic location (Armenia and

the US), but also the genetic background. Considering these

caveats, it is surprising that additional serum samples obtained

from individuals testing positive for TB in Sweden shared 60/100

peptide epitopes which were exclusively recognized in 34/34 sera

from the patients with TB from Armenia (supplementary Table S5

online). It is also important to note that none of the peptide

epitopes which are exclusively recognized in the TB-negative

population were recognized by 6/6 serum samples from patients

with TB-infection recruited in Stockholm. In addition, most of the

peptides recognized by any of the patients in a group were

recognized by all. This suggests that TB is most likely associated

with a rather uniform epitope target recognition. In order to

develop the peptide chip described in the current report for

diagnostic purposes, appropriate clinically well defined cohorts

need to be analyzed. For instance, the control sera are from PPD

negative, quantiferon- negative subjects. The use of sera from

absolutely ‘clean controls’ from a non-endemic country and

advanced TB patients has been the major source of problems in

previous efforts to devise a diagnostic assay for TB. The PPD+
subjects from the same geographical area as the patients will

certainly aid to define clinically meaningful biomarkers. However,

the fact that PPD-, ‘clean’, individuals exhibit a uniform

recognition pattern of a defined set of ‘MTB epitopes’, suggests

that ‘cross-recognition’, exposure to MOTT and to other bacterial

or viral species (see supplementary Table S7 online) shapes the

immune recognition profile even in low endemic environments,

and most likely also the immune response to BCG and MTB.

The biological underpinning of differential peptide epitope

recognition could be twofold: first, differential recognition of

MTB-associated proteins may be dependent on antigen accessi-

bility and the nature of presentation. MTB has recently been

shown to access the cytosol of host cells, while BCG or MOTT are

unable to do so [25]. This may in part explain why certain

immune epitopes from the same protein are recognized exclusively in

TB+ and not in TB2 individuals. Second, there is a vast literature

concerning ‘crossreactive’ antibodies that may recognize very

similar epitopes from unrelated targets [26,27] or from closely

related proteins, e.g. TB10.3 and TB12.9 in the case of peptides

derived from TB10.4 [28]. Differential profiling of IgA and IgG,

due to the different half life of the immunoglobulin (IgA has a half

life of 6 days) may aid in dissecting the nature and specificity of the

immune response at the time of the blood draw (Fig. 5B and

Supplementary table S6 online). IgA-mediated immune recogni-

tion of MTB target proteins may also be helpful in designing assays

to gauge anti-MTB recognition profiles in sputum, or to design

MTB vaccines targeting protective immune responses on mucosal

surfaces. In conclusion, high content peptide microarray antibody

profiling represents a powerful tool to visualize the global B-cell

response for diagnostics and vaccine candidates.

Materials and Methods

Patients and slide preparation
Slide production has recently been reported in detail [29]. Slides

with MTB epitopes in the current study were manufactured by

JPT, Germany and consist of two identical subarrays, each with

7776 spots arranged in 24 blocks of 324 spots arranged in columns

and rows of 18. The 7776 peptide spots represent 7446 unique

peptides, 153 negative control spots, 96 Cy3 controls for GAL file

orientation and 24 positive controls spots (4 repetitions each of

IgG, IgA, IgM, IgE). A single slide was prepared using serum from

each of the study subjects; 34 patients who tested positive for active

pulmonary TB (defined by acid fast stain, AFS, in sputum) from

the Medical Yerevan State university hospital in Armenia who

received routine BCG vaccination in childhood, 6 patients with

TB (defined by AFS in sputum and MTB culture) from the

Karolinska Hospital Huddinge and 35 healthy individuals prior to

BCG vaccination (testing negative in the tuberculin skin test (TST)

and the Quantiferon-test) at Saint Louis University, USA. Ethical

approval was obtained from the Stockholm South ethical

committee (Dnr 238/02) for use of the specimens from the

Karolinska Hospital Huddinge, and from St Louis University,

USA (number 12968), for use of the samples provided from

healthy individuals. Ethical approval for the analysis of serum

samples from the Armenian patients is filed at the University of

Mainz, Germany (837.327.99-2271). A further 13 slides (7 from

the batch used for the TB patients, and six from the batch used for

the healthy subjects) were prepared using only buffer and

secondary antibody, in order to help identify peptides giving a

‘false positive’ response, which were removed for further analysis

(see below). Serum obtained from patients with TB or from the

healthy controls was diluted 1:100 using a buffer consisting of PBS,

3% FCS and 0,5% Tween and pipetted onto the slide (300

microliter), on which the incubation area was defined using a

liquid blocker pen before the slide was covered with a cover slip.

Plasma and serum yielded identical results (data not shown). The

slide was incubated at 4uC in a humid chamber for 16 hours. On

day 2, the cover slip was removed and the slide washed five times

(two times rotating in washing solution for 5 minutes, two times

rotating in sterile water for 5 minutes, and finally one rotation in

filtered Milli Q water for 5 minutes). The slide was tapped on dry

tissue to remove droplets and 300 ml of the polyclonal goat anti-

human IgG, heavy and light chain specific, affinity purified Cy5-

labeled secondary reagent (Abcam, cat no: 6561-100, diluted to

1:500) was pipetted at one end of the frame and a cover slip was

carefully applied. Anti-human IgA was a human IgA alpha chain

specific, affinity purified rabbit secondary reagent labeled with

Cy3 (Jackson ImmunoResearch, USA, cat no 309-165-01) and

diluted 1:500. After this step, all work was performed in the dark.

Incubation with the secondary reagent took place for 1 hour at

room temperature in a humid chamber, the 5 washing steps were

repeated, and the slide was dried using a slide centrifuge (Euro

Tech, UK) for 10 seconds.

Scanning and analysis
Each slide was scanned with the GenPix 4000B microarray

scanner (Axon Instruments) at two wavelengths, 532 and 635 nm,

and the images were saved in TIFF and JPG formats.

Peptide Microarray in TB
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Image analysis was performed utilizing the circular feature

alignment of the GenePix Pro 6.0 software and Genepix Array List

(GAL) files and the following criteria were used to flag spots with

non-uniform foreground or background signal for IgG detection:

([F635 Mean].(1.5*[F635 Median])) AND ([F635 Medi-

an].40)

OR

([B635 Mean].(1.5*[B635 Median])) AND ([B635 Medi-

an].40)

For IgA detection, these same criteria were applied, but with

635 replaced by 532. In addition to these ‘bad’ spots, GenePix also

flagged spots as ‘‘not-found’’ and ‘‘empty’’, resulting in four types

of spots: ‘good’ or ‘non-flagged’ spots (labelled as ‘0’), ‘bad spots’

(labelled as ‘2100’), not-found spots (labelled as ‘250’), and empty

spots (labelled as ‘275’). The digitized image from each sub-array

was saved as a GenePix Result (GPR) file and the median

foreground and background intensities for the 635nm wavelength

from individual peptide spots were used for further analysis of the

IgG responses, and the median foreground and background

intensities of the 532nm wavelength were used for the IgA

responses. All GPR files were saved in a common folder and

imported into R/Bioconductor using the read.GenePix function

from the marray R/Bioconductor package.

Quality data extraction
To examine the quality of the data, we examined the

distribution of the flags. We performed this quality control

exercise for each group, first by combining the data from all the

subarrays and inspecting all spots regardless of whether they were

from control or peptide spots, and subsequently stratifying by the

type of feature. The individual subarray images, produced with the

Image function in Bioconductor, were also visually inspected to

check whether there were any strange or aberrant subarrays that

should not be included in the analysis. The ratio of median

foreground to background (on a log scale) was chosen as the

measure of the strength of the response. The values of this

response index were computed for all spots with background

greater than zero (those with zero background, and thus undefined

index, were noted and excluded). The data for each of the seven

groups of slides (IgG responses from TB+ patients from Armenia,

IgG and IgA from TB+ patients from Sweden, IgG from healthy

subjects, and IgG from three groups of control slides as listed

above) were arranged in a large matrix with identifiers for slide,

subarray, and block, and these master datasets used in all analyses

described below.

Data reduction
The volume of data was reduced while maintaining all the

important information. Removing spots flagged as ‘not found’

would result in a drastic reduction of the data volume, as many spots

have intensity values not substantially different from experimental

noise. However, low responding spots on some slides can be

informative if they represent peptides that have a high response on

one or more of the other slides. Thus, we removed only the ‘‘not-

found’’ spots with high intensity and the spots with no ‘detectable’

response on any slide, where the distribution of the negative controls

was used to define a cut-off for a detectable response as follows: for

each slide, we examined first the negative control responses on a

scatterplot of the index vs. the log-background[29] to identify and

eliminate any outliers. The negative control responses on all slides in

a group were then normalized to remove the effects of slide, sub-

array, and block. We performed this normalization using the simple

linear model: Yijk = slidei+subarrj+blockk where Yijk is the response

(i.e. the index) for block k in sub-array j on slide i. The model was

run using the lm function in R, and from the mean and SD of the

normalized values (i.e. the residuals from the regression model) we

defined a threshold for a detectable normalized response as

t = mean+2SD. Every spot with at least one detectable response

on one slide was retained in the analysis.

Identification of false positive peptide responses
Since no peptides are expected to give a detectable response on

a slide with only buffer and secondary antibody, the responding

peptides on the buffer slides were considered as false positives. We

normalized all the valid (i.e. unflagged) peptide responses on these

slides using the same linear model as above applied to each group

in turn. From a scatter plot of the normalized indices vs.

normalised background, the false positives were identified and

excluded in the analysis of the patient data.

Analysis of peptide responses
For each group of patient slides, we used the cut-off from the

negative controls to select all detectable responses for all unflagged

peptides on each slide. If a peptide had no detectable response on

any slide it was excluded from further analysis. All other peptides

had all their responses included i.e. any peptide that had a

detectable response on at least one slide had its responses from all

slides analyzed, whether or not these were above or below the cut-

off. Any peptides defined as false positive by the analysis of the

buffer slides were excluded, and the remaining peptide responses

were normalized using the model Yijk = slidei+subarrj+blockk

where Yijk is the response (i.e. the index) from block k in sub-

array j on slide i. This model was fit using the biglm R-package to

accommodate the much larger dimension of the data. Since

inclusion of a ‘peptide effect’ term in the model was computa-

tionally intractable, we estimated the peptide effects as the

differences between the observed responses and the responses

estimated by the model shown (i.e. the residuals). Since the

systematic effects of slide, subarray, and block have been removed,

we refer to these as the ‘normalized responses’, and we use them as

input data for further analysis (differential expression or predictive

analysis). For the peptides that had replications, their normalized

values were averaged to produce a list of unique peptides with

their normalized values for each slide. The normalized values for

each peptide and slide were stored in one expression matrix for

each group.

Significance and predictive analysis
For each of the groups in the following comparisons, we identified

the peptides that had a normalized response on each slide in the

group, and the peptides that were not common to the two groups: a)

Armenian TB+ vs. controls (IgG), b) Swedish TB+ vs. controls (IgG),

c) Swedish TB IgG vs. Swedish TB IgA. For a) and b), we identified

the common peptides for differential expression analysis, and a two-

group comparison was then carried out using the SAM library in

R[30], and a parallel predictivity analysis was performed using the

PAM library[31]. The proteins from which the peptides are derived

were identified using the GAL file, although peptide sequences could

also be submitted to any online data bank. For all three comparisons

(a, b, c) peptides present in only one of the groups were identified and

ranked by the strength of their responses and the number of

replications of the peptide in the group, and these two quantities

illustrated on a plot. For comparison of IgG and IgA responses (IgG

responses using the red channel, and IgA responses using the green

channel) we present the normalized index values in each group on a

scatter plot (Fig 5(b)) to identify strongly recognized IgA and IgG

target epitopes.
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Supporting Information

Table S1 Compilation of MTB proteins displayed as linear

peptide stretches on a peptide microarray chip

Found at: doi:10.1371/journal.pone.0003840.s001 (0.09 MB PDF)

Table S2 89 peptides predictive of TB+ (n = 34) vs TB2 (n = 35)

by PAM analysis

Found at: doi:10.1371/journal.pone.0003840.s002 (0.02 MB PDF)

Table S3 Peptides predictive of TB+ (n = 34) vs TB2 (n = 35) by

SAM analysis

Found at: doi:10.1371/journal.pone.0003840.s003 (0.08 MB PDF)

Table S4 Top 24 peptides recognized by TB+ patients(n = 35)

but not by TB2 controls (n = 34) and vice versa

Found at: doi:10.1371/journal.pone.0003840.s004 (0.02 MB PDF)

Table S5 Comparison of MTB peptides defined by IgG in

patients from Armenia and from Sweden.

Found at: doi:10.1371/journal.pone.0003840.s005 (0.19 MB PDF)

Table S6 S6a: MTB Peptides recognized by both IgG and IgA,

S6b: MTB Peptides recognized by IgG and not by IgA, S6c: MTB

Peptides recognized by IgA and not by IgG.

Found at: doi:10.1371/journal.pone.0003840.s006 (0.75 MB PDF)

Table S7 Blast search of the top 12 peptide exclusively

recognized in healthy, PPD-, Quantiferon-negative individuals.

Blast search of the top 12 peptides exclusively recognized in TB-

negative individuals. The peptide amino acid sequence and

peptide number as well as the protein ID and Rv numbers are

provided. The search allowed for at most two amino acids

variation from the query peptide except in some few cases

highlighted with a star (greater variation as compared with the

query peptide). If greater variation with the query peptides was

allowed concerning the peptide length, more matches with

peptides derived from non-mycobacterial species were obtained.

Amino acid differences are marked in red. A detailed blast search

covering all possible permutations of these peptides, followed by

targeted amino acid substitutions and subsequent serum recogni-

tion analysis will aid to define immunogenicity.

Found at: doi:10.1371/journal.pone.0003840.s007 (0.02 MB PDF)
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