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Abstract

Background: Optic flow is an important cue for object detection. Humans are able to perceive objects in a scene using only
kinetic boundaries, and can perform the task even when other shape cues are not provided. These kinetic boundaries are
characterized by the presence of motion discontinuities in a local neighbourhood. In addition, temporal occlusions appear
along the boundaries as the object in front covers the background and the objects that are spatially behind it.

Methodology/Principal Findings: From a technical point of view, the detection of motion boundaries for segmentation
based on optic flow is a difficult task. This is due to the problem that flow detected along such boundaries is generally not
reliable. We propose a model derived from mechanisms found in visual areas V1, MT, and MSTl of human and primate cortex
that achieves robust detection along motion boundaries. It includes two separate mechanisms for both the detection of
motion discontinuities and of occlusion regions based on how neurons respond to spatial and temporal contrast,
respectively. The mechanisms are embedded in a biologically inspired architecture that integrates information of different
model components of the visual processing due to feedback connections. In particular, mutual interactions between the
detection of motion discontinuities and temporal occlusions allow a considerable improvement of the kinetic boundary
detection.

Conclusions/Significance: A new model is proposed that uses optic flow cues to detect motion discontinuities and object
occlusion. We suggest that by combining these results for motion discontinuities and object occlusion, object segmentation
within the model can be improved. This idea could also be applied in other models for object segmentation. In addition, we
discuss how this model is related to neurophysiological findings. The model was successfully tested both with artificial and
real sequences including self and object motion.
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Introduction

Humans can easily segment objects that are moving in a scene.

Whether a pedestrian is walking on a crowded sidewalk, or a

driver wants to pass another vehicle, other moving objects can be

detected without any effort. However, from a technical point of

view the segmentation of moving objects is difficult to handle.

Without knowledge of the background positions, the background

motion cannot be computed, while without knowing the

background flow we cannot determine which positions belong to

the background region. For this reason, in the literature this issue

is often referred to as a chicken-and-egg-problem. There are

several approaches for how to deal with the problem of scene

segmentation based on motion, such as the global parametric

motion models [1–3]. Other models tend to find regions

containing locally smooth motion that are surrounded by motion

discontinuities [4–6].

Many models use the principle of ‘‘optic flow’’, this being the

2D projection of the flow vectors onto the image plane relative

to the observer, instead of the detection of the 3D motion in

space (see Fig. 1). Different techniques exist to detect the flow

vectors. Common approaches are the use of spatio-temporal

derivatives or correlation-based algorithms that try to find

similar patterns of the image in subsequent frames. Flow is

basically generated by two different kinds of motion. First, self

motion is due to movement of the observer, which results in

global flow fields. Second, parts of the visual field can move

independently leading to a locally different flow. These regions

are referred to as independently moving objects. For a

segmentation of the scene based on optic flow, the parts of

the image moving in different ways have to be identified and

grouped together. Motion boundaries (‘‘kinetic boundaries’’) that

are at locations where different motion cues meet, are an

important source of information to achieve segmentation.

Unfortunately, the detection of optic flow is complicated at

these positions as spatial integration of local flow may mix the

different motion cues and thus lead to erroneous detection. Even

for correct optic flow detection, segmentation simply based on

the similarity of the optic flow will not be successful for all

scenes. Depending on the kind of motion pattern in the

sequence, regions of coherent optic flow contain different optic

flow vectors, e.g., for an expansional movement. This can be
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solved by detecting the changes in the local flow field, called the

motion discontinuities, rather than the smooth regions.

Occlusions play a particular role in the task of detecting motion

boundaries. They appear when an object in front is moving in a

different way than its surround. This can either be caused by a

static background and a moving object, by a moving background

and a static object, or by movement of both background and

object. As a consequence, parts of the background–either other

objects or background texture–are temporally covered by this

particular object (‘‘occlusion regions’’). When the object moves

further on, these regions are disoccluded again, but other regions

will be covered. At first sight, occlusions only seem to complicate

the detection of motion boundaries in an optic flow based

approach. In occlusion regions no local matches for motion

detection can be found and the intensity is not constant in space-

time. This facilitates the effect of ‘‘motion bleeding’’, when salient

motion of adjacent regions is propagated into regions with few

reliable detections. However, the explicit detection of occlusion

regions generated by moving objects (‘‘kinetic occlusions’’) can also

support the segmentation as occlusion regions are a clear hint for

an object moving in a different way than its background. The

detection of these regions can be achieved by looking for positions

where no optic flow has been found [2] or by evaluation of the

spatio-temporal structure [6]. Detecting occlusion and disocclusion

regions is also interesting for further interpretation of the scene, as

it allows the assignment of a relative local depth order [2,4,7].

The analysis of optic flow can be described as an estimation

problem. Such an estimation process is defined by different

components and the results are influenced by different parameters.

At first, the detection of motion consists of a decision about

whether movement is present at a location or not. Second, the

measurement of specific attributes of the motion is defined by the

velocity, which is composed of speed and direction. Finally, a

confidence value of the measurement defines the reliability of the

measurement, or estimation, process. In our approach presented

here, the activities of model neurons reflect a confidence value or a

likelihood for the velocity for which they are tuned. This is due to

the correlation-based approach used here, as the process of detecting

the optic flow is invariant to luminance contrast. In other words,

the activity of a neuron representing a particular motion only

depends on the movement itself and is not confound by possibly

varying local luminance under changing scene illumination.

We propose a biologically inspired model for object segmenta-

tion that includes processing components for motion detection,

and in contrast with previous approaches, makes use of both

motion discontinuity and occlusion detection. The motion

detection itself can handle the problems that complicate flow

detection at occlusions due to the representation of more than one

motion locally and a mechanism to get reliable motion detection

also in occlusion regions. The computation of motion discontinu-

ities and occlusions is effected in different components using two

different mechanisms, based on spatial and temporal contrast

detection, respectively. The crucial functionality within this model

consists of the feedback connections between its components

which enable the transfer of information. Our results show that the

segmentation of moving objects can be considerably improved if

occlusion and motion discontinuity detection mutually interact.

Temporal integration of information is applied in these model

components to make the results more stable. Furthermore, the

model results for occlusion and disocclusion regions, as well as the

segmentation that was achieved, is further processed for an

interpretation of the scene. Both ordinal depth order (spatial order

of objects in a scene) and the local differences between object and

background movement are computed. This represents an

important step towards the goal of reliable segmentation of

independently moving objects in a scene.

Methods

Motion processing in the brain
From extensive research of the visual processing in the human

brain it is known that the spatio-temporal stimuli impinging the

retina are processed subcortically, and are then projected to the

primary visual cortex. From here two major pathways realize the

further processing that is thought to compute specific stimulus

properties [8]. Early and mid-level motion analysis in visual cortex

is primarily associated with the dorsal pathway that generates the

main input to the ‘‘Where system’’ [9], including the primary

visual cortex (V1), the medial temporal (MT), and the medial

superior temporal area (MST). Form information is mainly

Figure 1. 3D scenario with two objects. This figure depicts a typical scenario for a person moving in a room. A static object (green) and a moving
object (blue) are located in the room in front of the background. On the left, static occlusion regions with respect to the observer perspective are
marked with gray overlay. Due to the spatial configuration the green object is partly covering the blue one, both objects are occluding the
background texture. When the observer is moving forward, an expansional flow field is generated that is partly superimposed by the translational
movement of the blue object. The optic flow, i.e. the projection of the 3D flow is shown on the projection plane. The alignment of the objects in the
2D projection is shown on the right. Here, also the kinetic occlusions generated by the movement of the blue object are depicted. On its left side,
background texture is uncovered (disocclusion), on the right side it is temporarily covered (occlusion). Note, that the expansional flow leads to further
kinetic occlusion regions along the outline of both objects, for simplicity this is not included in the sketch.
doi:10.1371/journal.pone.0003807.g001
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processed in the ventral pathway that generates the main input to

the ‘‘What system’’, including areas V1, and visual areas V2, and

V4. There is also an exchange of information between the two

pathways via many connections between different areas.

Motion processing starts at the early stage of primary visual area

V1. Stimuli there are analyzed in parallel for movement direction

[10]. Primary visual cortex projects to MT in a feedforward

fashion and receives feedback connections from MT. In MT,

neurons exist to build a more detailed representation of two-

dimensional image velocity, namely direction and speed [11]. The

output of the optic flow computation in MT provides input to the

MST subdivision of the motion sensitive complex, MSTl and

MSTd, respectively. Area MSTl is primarily concerned with

object motion, i.e. the detection of spatial motion contrast through

center-surround processing of motion fields, with different

directions and their spatial segregation being based on disparity

information [12].

Concerning the form processing, neurons have been found in

V1 that respond to oriented contrast. The input is passed to area

V2 where long-range filters perform a grouping of elongated

contours [13].

Overview of model components
In our model we make use of different processing stages that are

mainly inspired by the findings summarized in the previous

subsection. Most of them can be grossly associated with

mechanisms found in these cortical areas, for this reason they

are named after the corresponding area. At the current state, some

of the mechanisms included in the model can not be attributed to

particular areas, therefore they are denoted according to their

functionality.

Preprocessing in V1Model is accomplished by detecting initial

motion as well as local contrast. The detected motion information

is fed forward to MTModel, MSTlModel, and the component for the

detection of temporal occlusion, TOModel. In these three

components, motion integration, motion contrast, and occlusion

detection is accomplished in a network of mutually interacting sub-

populations of model neurons.

The form information detected in V1 is fed forward to V2Model,

where extended boundaries are extracted by mechanisms of long-

range integration. In addition, the model includes a higher-level

processing component (HLPModel) that integrates the output

generated at the lower stages of processing. In HLPModel

information generated by MTModel and MSTlModel, as well as

available boundary information represented in V2Model, are

integrated to obtain a segmentation based on optical flow and

relative depth order of scenic objects. Note that HLPModel and

TOModel are not linked to a specific cortical area. Figure 2 shows

an overview of the model components and their connections. In

the following subsections, the different parts of the model will be

introduced in more detail.

Feature detection and integration: Motion analysis in
V1Model/MTModel and form processing in V2Model

In our model, the interplay of V1Model and MTModel is one

crucial aspect to achieve robust detection of optic flow, e.g., to

solve the aperture problem. Our model parts for optic flow

detection, V1Model Motion and MTModel Motion, are based on the

approach of Bayerl & Neumann [14]. They developed a fast

algorithmic version of their previously proposed neural model of

motion perception [15], in which a sparse representation of

stimulus motion (local velocities) is used and further refined.

Initial motion detection. The input stage to V1Model

consists of an initial motion detection that is a correspondence

based approach measuring the frame-to-frame similiarity of the

local image structure. Such a description can be achieved using a

variation of the Census Transform [16] or a combination of

different derivative filter responses. In both cases, at each position

a bit string (‘‘feature value’’) is computed that describes the local

image structure. To detect the motion for two frames t1 and t2, the

feature values are computed for each position. If two positions p1

in t1 and p2 in t2 have the same feature value, movement from p1

Figure 2. Sketch of the biologically inspired model. V1Model Motion and MTModel Motion represent the basic modules for optic flow estimation.
In TOModel regions that have been occluded or disoccluded are estimated. In MSTlModel motion discontinuities are computed based on MTModel input
due to spatial on-center-off-surround receptive fields. The information of areas MSTlModel, TOModel, and V2Model is combined in a higher level
processing area (HLPModel). Feedforward connections are depicted with dark blue arrows, feedback connections with light blue arrows. The
interactions between MSTlModel and TOModel are depicted with green arrows.
doi:10.1371/journal.pone.0003807.g002
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to p2 can be assumed, because the local image structure is the

same. The search for these correspondences can be realized

algorithmically in an efficient way using sorted tables of the feature

values of both input frames. The motion vectors that are found

during this process are then saved as ‘‘hypotheses’’, i.e., a structure

consisting of a position, a velocity, and a weight. To achieve a

sparse representation, hypotheses are only created for feature

values that appear at only few image positions (we use hmax = 5). If

the same feature value can be found at many image positions, the

motion estimate is very ambiguous as many corresponding

matches can be found, leading to a huge number of hypotheses

that are hardly reliable. Therefore, we only use the feature values

that are salient because they appear at few positions. One

exception for this procedure is in the case of feedback. If feedback

from MTModel predicts a certain movement, we will generate a

new hypothesis even if the feature value can be found often, with

an upper limit of HMAX (hmax%HMAX). The hypotheses generated

in this first step are then used as input to the processing hierarchy.

Optic flow detection. In the processing hierarchy of the

model, V1Model is representing raw and rather noisy estimates of

the optic flow with a very high spatial resolution that are

integrated in MTModel leading to more reliable estimates, but

reduced spatial accuracy. The integrative fashion of the forward

processing path is indicated by increasingly larger receptive field

size (neurons that provide input), with a ratio of approximately 1:5

for V1Model:MTModel [17]. Both components communicate using a

bidirectional flow of information, i.e. the feedforward stream is

augmented by a reverse signal flow via feedback. Such feedback is

mainly modulatory in its effect such that existing input activity is

enhanced while feedback alone cannot generate new activity

[18,19]. In our simulation, feedback connections are incorporated

using the ‘‘linking principle’’ proposed by Eckhorn et al. [20].

The simulation of neural processing within the components

follows a general principle of a three-level-processing cascade that

has been successfully applied for other models in visual processing,

e.g., texture boundary processing [21] and contour integration

[22]. In particular, each of the model components is defined by

linear and non-linear computational stages:

1. Feedforward integration via linear or non-linear filtering of

input feature activations. This processing acts as a driver

feeding the system with sensory signals.

2. Feedback to neurons in an earlier component is modulatory

such that neural activations from higher model components

amplify activities in an earlier component (gain control). The

enhancement of activities by more global context information

leads to a bias giving the corresponding features a competitive

advantage in the subsequent center-surround processing.

3. Lateral shunting inhibition based on divisive on-center-off-

surround competition to normalize activities in a pool of

neurons and to enhance salient signals. The mutual interplay

between excitatory feedback and mutual inhibition leads to

increased responsiveness to target object detection and a

decrease in background response [23].

The dynamics of the individual stages was defined formally by

using first-order ordinary differential equations, utilizing single-

compartment neuron models at the individual processing stages.

In particular, we have

Ltn
1ð Þ~{n 1ð ÞzsFF � L x, spaceð Þ

s1 �Y w, velocityð Þ
s2 ð1Þ

Ltn
2ð Þ~{n 2ð Þz n 1ð Þ

� �2
: 1zC:zFB
� �

ð2Þ

Ltn
3ð Þ~{An 3ð Þzn 2ð Þ{ Ezn 3ð Þ

� �
:
X

w
n 2ð Þ ð3Þ

Eq. 1 describes the initial filtering stage to generate the input of the

particular model component. In Eq. 2 the linking mechanism of

the modulatory feedback is implemented. The activation of the

previous stage serves as input that is transformed by a non-linear

signal function (we use squaring non-linearity). The activity zFB

denotes the feedback signal from higher level stages of the

processing hierarchy that is amplified by a constant C. The term

(n(1)2?(1+C?zFB) ensures that the input activation (driving signal) is

enhanced by the feedback signal. If no feedback signal is provided

the driving input is passed forward unchanged. However, if no

feedforward signal is generated, feedback alone cannot generate

any new activity. The final stage is denoted by Eq. 3 implementing

an on-center-off-surround mechanism in velocity space. Here, an

individual activity in space-feature domain, e.g., velocity, competes

against the sum of activations for all velocities at the particular

location. The term (E+n(3)) denotes a multiplicative term that

shunts the inhibitory input. The effect can be identified by the

steady-state solution of Eq. 3, namely n(3)
inf = (n(2)2E Swn(2))/

(A+Swn(2)).We observe that the constant E weights the component

of linear subtractive inhibition in the numerator, while the self-

inhibition by n(3) leads to a net divisive effect (denominator). The

constant A is the rate of decay of the activity.

Boundary processing. In addition to components for

motion processing, we also simulated components to include

form information in the model. This information can be used to

achieve object boundaries defined by a strong luminance contrast

at high spatial resolution and thus to complement motion

boundaries extracted in MTModel/MSTlModel as explained in the

next subsection. Also, form information is helpful for the grouping

of motion boundaries. When two objects overlap, they typically

form a ‘‘T-junction’’. These T-junctions can be detected using

form information. Grouping should then be restricted at these

positions to avoid two objects being integrated into one.

The form information is computed by our model in two

recurrently connected components V1Model Form and V2Model

Form. In V1Model Form, the local luminance contrast is computed

for eight different orientations, in V2Model Form, V1Model

responses are used as input to bipole filters composed by two

anisotropic Gaussian filters that are combined in an additive way.

This kind of filters extracts salient elongated contours of the input

image. Object contours can be found using the two model

components. In both components the same processing cascade as

presented in the previous subsection is applied. To achieve a

robust estimation of the contour, some iterations including

feedforward and feedback connections between V1Model and

V2Model are necessary. A measure of local junctions is computed

by evaluating the presence of orientation responses at each spatial

location. High responses for orientations arranged like a ‘‘T’’

indicate the presence of an object occluding another.

Detection of motion boundaries in MSTlModel

Detection of motion discontinuities. In our model,

MSTlModel is primarily concerned with object motion, i.e. the

detection of spatial motion contrast through center-surround

processing of motion fields with different directions (Fig. 3).

These neurons receive input from MTModel. They are highly

activated if the movement presented in the central part is

different from the movement in the surround and are thus tuned

to motion discontinuities, i.e. positions where two or more

movements meet.

Motion Based Segmentation
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For the integration of this mechanism in the architecture, we

modelled MSTlModel neurons that obey an on-center-off-surround

characteristic generated by input integration from model MTModel

neurons. To reduce the computational complexity the mean

velocity estimated at each position is used by taking the sum over

all velocities (vx, vy) at one MTModel location where each discrete

measure is weighted by its respective activity ux
MT. In computa-

tional terms the mean flow vector v̄x at position x is determined by

nx~
X

all neurons at x

uMT
x
:nx,

X
all neurons at x

uMT
x
:ny

 !T

ð4Þ

In MSTlModel, the on-center receives input from one neuron,

whereas the off-surround comprises a larger spatial neighbour-

hood (565 positions in our simulations). If the mean velocity at a

surround position is similar to the mean velocity in the center, this

will contribute to the inhibition of the overall activity of the

neuron. For this purpose, the activity at the surround position is

weighted with a spatial Gaussian function. Spatial contrast

responses wxDv
MSTl are computed by the following equation

Ltw
MSTl
xn ~{AwMSTl

xn zB: uMT
xn {

X
x’n’

uMT
x’n’
:Ls

xx’

� �
ð5Þ

In the simulations we set A = 1, B = 1, Ls is a Gaussian kernel to

weight the activity in the spatial surround. Temporal integration

can be used to stabilize the results of MSTlModel. For this purpose,

the motion discontinuities of the last time steps are shifted to the

current position (based on the object velocity of the object they

belong to), and then added to the current motion discontinuity

value. The influence of current and past frames is determined by a

weight function that decreases with temporal distance. A moving

average is used for an efficient computation of the temporal

integration:

actt~l:actt{1z 1{lð Þ:actt ð6Þ

After the computation of the motion discontinuities, further steps

are necessary to obtain an explicit segmentation of the scene. As

these mechanisms are currently not in the focus of our biologically

inspired approach, we use a simple grouping and filling-in

mechanism to derive a segmentation of the scene based on the

motion discontinuities. Employing the results of the segmentation,

a mean velocity for all detected objects can be computed by

summing up the mean velocities for all positions belonging to an

object. As we do not assume a simple translational movement over

all the background, a global motion estimation derived by

summing up the single flow components of the background

positions would not provide a reasonable approximation.

Occlusion detection. The generation of reliable motion

detection at motion boundaries is a difficult task, for in the

occlusion regions the detection of corresponding local image

structure is not possible for frame t21 and t0. The lack of local

estimates has the consequence that in these regions motion

bleeding can appear. This means that salient estimates of the

neighbourhood, like of the object generating the occlusion,

propagate into the occlusion regions. The propagation can be

limited if the motion estimates within the occluded region are

strong. For this purpose, we extended the model for motion

detection by a mechanism of temporal integration [24]. The

underlying idea is that motion estimates within t21/t0 (‘‘past frame

pair’’) will fail to calculate the correct optic flow for the image

regions containing occlusions. The past frame t21 contains

occlusion regions where parts of the background are covered,

while they are visible in frame t0 (see Fig. 4). This problem can be

solved by using motion cues of one additional future frame to

compute the correspondences between t0 and t1 (‘‘future frame

pair’’), where the occlusion regions are visible in both frames

(assuming coherent motion for the object). The estimates of the

two frame pairs are then used as parallel input to V1Model. The

occlusion regions are so mainly filled with estimates from the

future frame pair as the past frame pair will not contribute a large

number of motion estimates at these positions. For the disocclusion

regions, mainly the input from the past frame pair is important.

Using this specific property of occlusions we are able to compute

reliable estimates for occlusion regions without using an explicit

detection of these regions. This mechanism offers therewith a good

basis for ongoing higher evaluation relying on dense and stable

optic flow, like in MSTlModel. On the other hand, the activity

provided from the different frame pairs can now be further

processed by appending neurons for the detection of occlusion and

disocclusion regions. The model is extended by a temporal on-

center-off-surround mechanism that responds strongly if at the

local position a change in motion energy appears. A change of

local motion energy is a strong cue for occlusions as the non-

matchable points in an occlusion region entrain low motion energy

locally. Temporal motion contrast neurons that respond strongly

for changes from low motion energy to high motion energy

indicate disocclusion regions, temporal motion contrast neurons

that detect changes from high to low motion energy indicate

occlusions (Fig. 5). The motion energy at each position is

computed by summing up the number of hypotheses generated

in a small spatial surround. The following equation describes how

the activity in TOModel is computed at time t0:

actx
MTTempOccl

~
Max
x NH x

actV1
x’,toP

x’ in NH x

actV1
x’,to

{
Max

x’ in NH x
actV1

x’,t{1P
x’ in NH x

actV1
x’,t{1

2
64

3
75 ð7Þ

Figure 3. Optic flow estimation at occlusions. Occlusions lead to problems for motion estimation algorithms based on the correlation between
only two frames: Parts of the image are only visible in one of the frames, thus no corresponding image positions can be found at these locations. This
problem can be solved using only one additional temporally forward-looking step (future step).
doi:10.1371/journal.pone.0003807.g003
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This processing step is accomplished after feedback from MTModel

supported the creation of motion hypotheses. The computation is

very cheap as the main extra effort is the computation of the

difference of motion energies (see Eq. 7).

Note, that due to the way the occlusion and disocclusion regions

are computed, these regions will both appear spatially outside the

occluding object, i.e. in the background. Using this detector at

each image position, we can assign an occlusion activity for each

position. To allow further analysis of the image, like finding the

object that caused the occlusion region, we employed a simple

grouping mechanism to get a common label for each occlusion

and disocclusion region. For this purpose, adjacent occlusion and

disocclusion positions (occlusion activity bigger than a threshold)

were pooled to groups of occlusions and disocclusions, respective-

ly, and then provided with a label.

To stabilize the results of the occlusion detection, we use a

temporal integration for the occlusion regions. When the

integration is computed, the change of spatial position during

time has to be considered, leading to a spatial shift of the occlusion

regions computed in the last time step by the motion of the

corresponding object. Like for the MSTlModel neurons detecting

motion discontinuities, a moving average is used to compute the

temporal integration in an efficient way.

Interactions of occlusions and motion discontinuities. In

the previous subsections, mechanisms to reliably detect motion

discontinuities and occlusion regions were presented. Both

motion discontinuities and occlusions are computed using on-

center-off-surround neurons. The detection of motion

discontinuities is represented by local motion changes, whereas

the detection of occlusion is based on temporal changes of

motion energy. Nevertheless, there is an important connection

between the two features in the context of object detection:

motion discontinuities usually entail occlusion regions. In other

words, a motion discontinuity is generated by an object that

moves in a different way than its neighbourhood. For this

reason, it inherently produces occlusions. This means, that we

can use the detection of motion discontinuities to support the

position where occlusion regions are found and vice versa. We

included this link in the model via mutual excitatory

multiplicative feedback connections between MSTlModel and

TOModel. The feedback plays an inhibitory role. Motion

discontinuities that are not overlapping partly with occlusion

regions are eliminated as they are probably an erroneous

estimate. If this mechanism is used, factor B in Eq. 5 will depend

on the activity of TOModel neurons. Responses in TOModel are

modulated by MSTlModel feedback, activity at positions that do

not get support from MSTlModel is strongly reduced (right side of

Eq. 7 multiplied with a factor C = 0.01+FBMSTl).

Higher-level processing
To achieve an interpretation of the scene, the information of the

different processing stages has to be combined in an integrative

way. We aim at the segmentation of the images based on the

information from V1Model/MTModel and MSTlModel and the

derivation of an ordinal depth order. For this purpose, depending

on the largest overlap of each occlusion region and the object at

this position, the occlusion regions can be related to their

corresponding object. Then, the object that caused the occlusion

can be identified by checking the object labels along the motion

discontinuities that are close to the occlusion region (see Fig. 6).

Figure 4. Detection of motion discontinuities. Some examples for motion discontinuities are given on the left bottom. We use a motion
discontinuity detector built of an on-center-off-surround RF that will respond very strongly if center and surround motion differ. If a homogeneous
flow field is presented, only a weak response is produced.
doi:10.1371/journal.pone.0003807.g004

Figure 5. Detection of occlusion regions. To detect occlusions and disocclusions in the motion sequence, we compare the motion energy at
each spatial position that was estimated using the past frame pair t21/t0 and using the future frame pair t0/t1. A high difference typically occurs at
occlusion and disocclusion positions due to regions that are only visible in t21 or t1 and thus entail very ambiguous motion estimates.
doi:10.1371/journal.pone.0003807.g005
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For objects where a clear object outline can be detected due to

salient local luminance contrast in the form channel using V1Model

and V2Model Form, the motion boundaries can be sharpened. As

these contours are computed at high spatial resolution, they help

to find the exact local position of the boundary for an object

detected by MSTlModel center-surround neurons for motion

discontinuity detection. If no contours can be found, e.g., for a

movement of dot patterns, we can simply rely on the motion

discontinuities leading to a coarser localization as the spatial

resolution of MSTlModel is less accurate than in V1Model/V2Model

due to larger integration steps in the feedforward processing from

V1Model to MTModel and MTModel to MSTlModel, respectively.

Results

In this section we present the results of our model for both

artificial and real image sequences. In the focus of our work is the

detection of motion discontinuities and occlusions for reliable optic

flow segmentation that is further improved by interaction between

the two features. To demonstrate that the approach is working

independently of the scenario we will show results of experiments

with different kinds of global and local movement. Based on the

segmentation and the detected occlusions, the ordinal depth order

in the sequence is determined. The size of the input images used was

approximately 320 by 240 pixels (depending on the scene), the

mean computing time for one iteration was between 3.5 and

5 seconds using a standard CPU (Athlon 2000 GHz, 1 GB RAM).

The current implementation (C++) is not optimized for real-time

processing. We claim that the same results can be achieved in real-

time/close to real-time, if GPU routines and speed optimized

algorithms are used. The results shown in this section were

computed using one ‘‘in place’’ processing step with the same input

frames as before (i.e., t21, t0, t1) to further stabilize the results,

followed by an iteration including a new frame (i.e., t0, t1, t2).

In the following subsection, we will a) show the results for

motion discontinuity and occlusion detection, b) provide examples

for object segmentation and estimation of the ordinal depth order,

and c) demonstrate the effects of interactions between MSTlModel

and TOModel. If interactions between these two components were

used, it is explicitly mentioned in the text or in figure captions.

Figure 6. Overview of mechanisms for scene interpretation. Top row: The optic flow of the input image is computed in V1Model and MTModel,
spatial contrast neurons in MSTlModel compute the motion discontinuities. Based on the detected motion boundaries a simple filling-in mechanism
provides a scene segmentation. Bottom row: In TOModel input from V1Model neurons is used for a temporal on-center-off-surround processing step to
detect occlusion and disocclusion regions. In HLPModel these regions are restricted to the motion discontinuities or luminance contours provided from
V2Model to find the corresponding object that is adjacent to the occlusion region, namely the occluder. The results of the object segmentation are
used to find the label of the corresponding object (indicated by the arrow from the top row, third column). Based on these data, the corresponding
depth order can be computed. Interactions between MSTlModel and TOModel are not depicted in this figure.
doi:10.1371/journal.pone.0003807.g006

Figure 7. Experiment 1: Flowergarden sequence. A) Input image. B) Optic flow estimated in area MTModel, direction is indicated by a color code,
speed by the corresponding saturation. C) Motion discontinuities appear due to the faster optic flow on the tree and along the regions where no
movement is indicated as for the sky. D) TOModel responds strongly along the contours of the tree trunk as during the translational self-motion the
trunk occludes parts of the background (white color indicates disocclusion areas, black color occlusion areas). The results shown here include
feedback from MSTlModel neurons.
doi:10.1371/journal.pone.0003807.g007
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Detection of motion discontinuities and occlusion
regions

In the first experiment the flowergarden sequence (obtained

from www.bcs.mit.edu/people/jyawang/demos/garden-layer/

layer-demo.html, [25]) is used as input to the model (see Fig. 7A).

The sequence shows a tree in front of houses and a garden passing

to the left (at different distances) as the observer is making a

translational movement to the right. The motion parallax leads to

slower motions for objects further away from the observer.

Therefore, the faster movement of the tree in front leads to

occlusion regions in particular along the tree trunk. In Fig. 7C and

D the detected motion discontinuities and occlusion/disocclusion

regions are shown. Model neurons in TOModel correctly indicate

disocclusions on the right side of the tree and occlusions on the left

side. In the treetop only few occlusions are found as the

background there is basically homogeneous, this makes the

detection very difficult. In contrast, motion discontinuities are

detected all along the outline of the tree. There are some outliers

on the left due to the transition from the white region of the sky

(not motion estimates found) to the garden. Both motion

discontinuities and occlusions were detected in a stable way

during the whole sequence. The results show the successful

occlusion and motion discontinuity detection of a real sequence

with translational self motion and objects at different distances.

Object segmentation and ordinal depth order
In a second experiment we investigated the question whether

the model is able to segment objects moving in front of an

independently moving background and whether ordinal depth

order can be assigned correctly. We created an artificial sequence

with several rectangles moving in different directions while the

background is moving as well. To make the scene more complex,

one of the objects is not only occluding the background, but also

another object. The results for this sequence are shown in Fig. 8.

All model components have accurate estimates, both motion

discontinuities and occlusion regions are detected correctly. In

Fig. 8F the segmentation based on the motion discontinuities is

depicted. At the positions where one object is overlapping another,

this is a more difficult task than for the other objects. The motion

discontinuities of the two objects are mutually connected, a simple

grouping approach would thus group the two objects together. To

avoid this, we included information of the form channel. The

grouping of the motion discontinuities is stopped at T-junctions as

these indicate the junction of two objects. This means that the top

of the ‘‘T’’ will not be grouped together with the stem of the ‘‘T’’.

In Fig. 8H the automatically derived ordinal depth order is

indicated. For this artificial scenario the local object boundaries

along the occlusion regions are all correctly estimated, also the

occlusion regions are correctly assigned to the local background,

even in the case of the two overlapping rectangles leading to the

correct interpretation of relative depth order. A coarse classifica-

tion of the object movement with respect to the background is

depicted in 8G. For this task, we use the sum of the local motion

contrast all along the detected boundary (square root of difference

of optic flow). For an object moving with a similar velocity as the

surround, this will result in a very small value (dark outline). If an

object is moving in another direction than the background, the

Figure 8. Experiment 2: Moving boxes. Results for an input sequence with 5 boxes and the background all moving in different directions. A)
Input image with arrows indicating the movement of the objects. The background is slowly moving to the left. B) Mean optic flow estimations in area
MTModel marked with a color code that is superimposed on the input image. In C) the detected occlusion (black) and disocclusion (white) regions are
shown. Note that depending on the direction of the object movement these regions appear all along the object boundaries or just on two sides (for a
movement in vertical or horizontal direction). D) Contours of the objects as provided by V2Model Form. This activity is used to achieve a clear
localization of the occlusion boundary to the corresponding occluder. E) A clear segmentation of the object boundaries is achieved using the motion
discontinuities detected with MSTlModel on-center-off-surround neurons. F) After the detected boundaries have been grouped and filled, the image is
segmented in different regions representing the objects of the scene. G) Classification of object movement. The difference of object and background
motion is computed as explained in the Methods section. Light object boundaries indicate a strong difference, darker outlines represent a movement
similar to the background. Note, that object 5 and 2 have a strong motion contrast to the background despite the similar movement direction due to
a much higher speed than the background. H) The results of the relative depth order derived automatically from the scene. A confidence value is
applied to get a probability for the correctness of the depth order (indicated in percent). This is derived from the number of positions belonging to
the object that indicate that the object is in front (#posfront) and the number of positions that indicate that the object is in the background (#posbg)
(conf = max(#posfront, #posbg)/(#posfront+#posbg).
doi:10.1371/journal.pone.0003807.g008
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value will be much higher (light outline). For example, object 4

(compare numeration in 8F) has a similar movement compared to

the background as indicated by the darker outline. Object 3 has a

different direction, but a similar speed compared to the

background, also resulting in a darker outline due to the measure

of difference used (see Methods section). Our model can also

detect the motion boundaries of objects that are simply defined by

kinetic boundaries, i.e. objects that are not visible without

movement. For example, the segmentation of the moving boxes

as presented in Fig. 8 has basically the same results if the image

texture is a random pattern in which the rectangles are moving.

This is possible as the motion estimation itself can still find the

local motion in V1Model and MTModel, form information is only

supplemental in MSTlModel to find the motion boundary.

In experiment 3 we simulated an observer moving forward

generating a global expansional flow field in which one object is

moving independently. This allows us to test whether the same

mechanisms work if not only planar motion is contained in the

scene. Based on the motion discontinuities, a first segmentation of

the image is achieved. In contrast to approaches relying on

segmentation via a similarity measure based on the optic flow

itself, we can handle continuous changes of optic flow within an

object without problems. This is important to correctly segment

moving objects in 3D scenes while a strong expansional

component occurs due to forward or backward movement of the

observer. Figure 9 shows the estimated occlusion regions, motion

discontinuities, and the object segmentation. Both occlusion

mechanisms and MSTlModel neurons correctly detect the corre-

sponding regions, also in this scenario the moving object can be

segmented and the ordinal depth order correctly indicates that the

box is in front of the background region (not shown).

In experiment 4 the sequence contains a background that is seen

through an aperture. This means that the aperture is now the

occluding object which inverts the ordinal depth order if compared

to the former experiments. The results depicted in Fig. 10 show the

motion discontinuities along the aperture as well as occlusions on the

left and disocclusions on the right side. This reflects the effects

produced by the movement of the background from right to left. For

each detected occlusion region we automatically assigned the object

that produced the occlusion or disocclusion, to find the correspond-

ing occluder. The results are shown in Fig. 10F, most of the occlusion

regions are correctly assigned to the aperture, there are few

exceptions that indicate the background. From these results, the

ordinal depth order can be derived indicating the correct inverse

order (object 0 in front of object 1).

Interaction of MSTlModel and TOModel

In the subsection above we presented correct results for object

segmentation based on motion discontinuities. However, for some

input sequences motion discontinuities have the problem that they

tend to oversegment the image, i.e. objects that do not exist are

erroneously indicated. In particular for noisy input images,

occlusions will not only be detected at the correct positions. In

experiment 5 we investigated a sequence with a bar that is rotating

around its center in front of a stationary background. Due to the

fixed center point where zero motion is provided, the continuous

transition to subpixel movement is hard to detect with optic flow

algorithms like the one we use. This leads to an erroneous motion

discontinuity around the central part as shown in Fig. 11D. When

we now add a multiplicative factor from the detected occlusions as

feedback to the MSTlModel contrast neurons, this motion

discontinuity can be eliminated. The erroneous motion disconti-

nuity is in a region of the image where no continuous occlusions

can be found, the interaction correctly deletes the generated

segmented object. In Fig. 11E the object outline after interaction

with occlusion neurons is shown. The effect of multiplicative

feedback from motion discontinuities to occlusion regions is

indicated in Fig. 11C and F. Without feedback many very small

wrong occlusions are found in the image (11C), when the

information is used as feedback, mainly the correct occlusion

regions remain (11F).

As the task of high quality optic flow estimation is more difficult

in real image sequences than in generated scenes due to noise,

shaking of the camera, etc., we used another real sequence in

experiment 6 to test robust object segmentation. The camera in

this scene is moving upwards, a book and a small box of cookies

are moving from right to left and left to right, respectively. In

Fig. 12 the results for this scenario are shown. Occlusion regions

are correctly detected, the book generates occlusions at its left and

the lower contour, the box generates occlusions in front and

slightly along the lower contour. The results are noisier than in the

scenes before, but still the correct detections prevail. The

advantage of temporal integration for the motion discontinuity

estimation is shown in Fig. 12F. Here, motion discontinuities with

and without temporal integration are depicted for selected image

regions (indicated by the colored boxes in 12D). To avoid long

Figure 9. Experiment 3: Independently moving object in a scene with a moving observer. A) Input image of the sequence (generated in
the XVR environment, download at www.vrmedia.it), the gray arrow indicates the movement of the independently moving object. B) The optic flow
in area MTModel is depicted, the object movement is correctly indicating a translation to the right. C) Occlusions and disocclusions are correctly
detected on the right and left side of the object, respectively. The result shown here include feedback from MSTlModel. D) Motion discontinuities as
computed by MSTlModel on-center-off-surround neurons show the object boundary, E) after the grouping and filling-in step the object can be
segmented.
doi:10.1371/journal.pone.0003807.g009
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Figure 11. Experiment 5: Rotating rectangle. A bar is rotating around its center in front of a stationary background. A) Input image of the
sequence. B) The motion estimates of area MTModel, C) Discclusion regions appear on the upper left and the lower right, in contrast occlusions are
found at the lower left and the upper right, this diagonal appearance is due to the rotational movement of the object. The result indicated here is
without feedback from motion discontinuities. D) The motion boundary is correctly detected using the motion discontinuities, however, also in the
object center MSTlModel neurons respond strongly when the movement switches from zero movement to the smallest movement that can be
detected with the model. E) When including the interaction between occlusion and motion discontinuity detection, the erroneously detected central
part is erased. F) Occlusion regions are correctly restricted due to feedback from motion discontinuity neurons as shown in D. The feedback is slightly
blurred as occlusion regions may be significantly bigger than motion discontinuities.
doi:10.1371/journal.pone.0003807.g011

Figure 10. Experiment 4: City view through a window. Artificially generated scene with a background moving to the left while the aperture is
fixed. A) One image of the input sequence. B) The mean optic flow as detected in MTModel. C) The movement generates occlusions on the left (black
positions) and disocclusions on the right side (white positions). D) The motion discontinuities show the complete object boundary. E) After
segmentation two objects are detected depicted in different colors, the aperture (gray) and the region within the window (white). F) The
corresponding occluder to the occlusion positions with respect to the objects segmented like shown in E), the colors indicate the assignment. Most
positions correctly indicate the aperture as the object causing the occlusion.
doi:10.1371/journal.pone.0003807.g010
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reaction times when the movement of one object is changing, the

temporal integration should only include few subsequent frames

(here two past frames are used).

When the boundaries of the objects become slightly straighter,

small gaps in the outline can be closed. While temporal integration

(l= 0.3) can improve the shape of motion discontinuities and also

slightly weaken temporary outliers, it cannot eliminate them. For

this reason, motion discontinuities as shown in Fig. 12D still

contain some wrong estimates, in particular in the upper left and

the lower right part of the image. The important role of the

occlusions for segmentation based on the motion discontinuities is

indicated by the results shown in Fig. 12E. Here, the segmentation

after the interaction between motion discontinuity detection and

occlusion detection is shown. As in experiment 5, erroneous

estimates can successfully be eliminated. Thus, the interaction

between the two mechanisms leads to a correct segmentation of

the scene.

Discussion

We presented a biologically inspired model for motion

estimation, the detection of motion discontinuities as well as the

detection of occlusion regions. This work is based on a former

model proposed by Bayerl & Neumann [14] for motion detection

and integration of spatio-temporal changes and object movements.

Aiming at an explicit segmentation and first interpretation of the

scene we extended the model by incorporating new mechanisms of

spatial and temporal contrast detection of local optic flow.

New contributions
We propose a model for the detection of both motion

discontinuities and occlusion regions using different mechanisms

at distinct processing stages. The whole architecture is biologically

inspired, and provides a common processing principle within all

model components, namely a three level processing cascade (Eq.

1–3). The modulatory feedback connections, that exist between

different model components and allow the transfer of information

via a ‘‘soft gating’’ mechanism, are crucial for the functionality of

the model. This mechanism is used to stabilize the occlusion and

the motion discontinuity regions. We suggest that mutual

interaction between their representations makes the detected

regions more reliable. Furthermore, we show that the idea of

temporal integration for these regions is–again both for the

occlusion and the motion discontinuity detection - a mechanism to

get more robust results. Form information is used as an additional

cue to improve the results. Nevertheless, as they are used as

modulatory input, also stimuli without luminance contours can be

processed successfully. By evaluating the motion discontinuities

and occlusion regions, we derive ordinal depth order and get a

coarse classification of the objects detected in the scene, whether

they are static or moving independently within their local

environment.

Related work
There exist several other approaches for the detection of

occlusions and for segmentation based on optic flow estimates.

Ogale et al. proposed a geometric approach [2] for motion

segmentation using occlusion regions. According to their method,

optic flow estimates need to be computed for image pair t21 and t0
in both forward and backward direction (t0/t21 and t21/t0).

Regions without motion estimates are classified as occlusion

regions. The occlusion regions are then filled using the already

segmented results of the last and the next time step for occlusion

and disocclusion regions, respectively. In an iterative processing,

Figure 12. Experiment 6: Detection of moving objects in a real sequence. A) Input image of the sequence representing two objects moving
in opposite directions and a translational camera movement upwards. B) Mean optic flow estimated in area MTModel, the direction of movement is
depicted with the color code shown in the top right corner. C) In movement direction of the objects the dark region represents the occlusions
detected, behind the objects white positions indicate the disoccluded region. Due to higher object speed the regions here are bigger than in the
other experiments. According to the noise included in the scene, the estimates also get noisier, but still the overall response reflects the correct
occlusion and disocclusion regions. D) The motion discontinuities including temporal integration (three frames used) clearly indicate the object
boundary, E) after grouping the scene is segmented into background (black) and the two objects (gray and white). The motion discontinuities in D) in
the upper left and the lower right part are not according to the results of the detected kinetic occlusion. The results in E) after the interaction with
TOModel thus correctly indicate only 2 objects. F) Comparison of motion discontinuity results without (left column) and with (right column) temporal
integration. Without temporal integration the quality of the motion discontinuities is reduced: For expample, the gap in the smaller object at the
lower left corner can only be closed using the temporal integration (first row, position indicated in light blue in D). Also the outline of the other object
becomes straighter (second row, position indicated in red in D).
doi:10.1371/journal.pone.0003807.g012
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the segmentation of the optic flow is achieved by computing the

‘‘motion valleys’’ with a 3D motion estimation technique. First of

all, by chosing the flow vectors of a subset of the image positions

the mean background flow is estimated. At positions where the

local flow is different from this mean flow, objects are segmented.

Ordinal depth information is computed in a similar way as we

have explained in the Methods section. We are basically following

the general idea they use. The region that contains the occlusion is

in the background, the adjacent region is the occluding object.

Using the depth relations, objects with occlusions that were not

segmented when comparing optic flow (because their flow is

similar to the background flow) can now be detected. However,

the approach is not able to detect objects without occlusion regions

(i.e., they are in front) that are moving in similar directions like the

objects behind without additional information, e.g., via a disparity

estimation. In contrast, our approach for segmentation is relying

on other cues. Motion discontinuities and not the flow estimates

itself are used to find the regions that belong together. In other

words, we suggest a boundary oriented mechanism while Ogale et

al. propose to utilize the results of prototyped region segmentation

to derive the ordinal depth order and object segmentation.

Recently, Ogale & Aloimonos [26] presented a compositional

approach aiming at correspondence finding for stereo and optic

flow estimation that includes the detection of occlusions and

correct segmentation also for complex shapes. They claim that

early visual modules are mutually connected to provide a means

for linking different processing mechanisms to solve, for example,

the chicken-and-egg problem of motion detection and segmenta-

tion. In their geometric approach they use phase-differences of

local gabor filters applied for the local image structure as a

matching criteria. Flow estimation, occlusion detection, and

segmentation are then obtained in an iterative process of finding

the largest connected regions in the image wherein a particular

shift has provided the region with very high matching values.

Positions that are not included in these regions, because no match

is found, are labeled as occlusion positions. The segmentation can

be directly derived from the regions that have the largest

connected component size. The algorithm is basically contrast-

invariant as the phase-difference of gabor filters is used. Only small

filters are necessary as they are not used to compute the

correspondence directly, but simply as a local description measure.

This allows a very high spatial resolution.

The general idea of a compositional approach is also picked up

in our model, but realized in a different way. While Ogale &

Aloimonos use a geometric approach to find the corresponding

regions, we base our model on biologically inspired processing

stages that work in parallel, but share some of their information

due to modulatory connections. Unlike their approach we suggest

boundary processing as key for object segmentation. Mutual

interactions between motion discontinuities and occlusion/dis-

occlusion detection based on temporal center-surround competi-

tion can be applied to stabilize boundary detection. Furthermore,

in their model no explicit segmentation of moving objects is

computed, but only regions that share the same or similar flow.

Niyogi [4] proposed an approach for kinetic occlusion detection

that is based on spatio-temporal junction analysis. Here, a

biolgocially inspired distributed representation of motion is used.

The changes of direction of motion in these representations are

detected using an extension of an ‘‘end-stopping’’ mechanism

applied in 2D image junction analysis. In contrast to our model,

their image segmentation approach is entirely based on occlusion

detection. This means that motion boundaries cannot be detected

at positions where no occlusions are produced, for the movement

is parallel to the object outline. In contrast, our approach detects

the whole object outline in a stable way. Furthermore, the filters

applied for the spatio-temporal junction analysis need several

frames from both past and future time steps, which brings about a

delay in processing. We avoid a long processing delay by requiring

only one future and one past frame.

Recently, Feldman & Weinshall [6] also presented a model for

motion segmentation and depth ordering that is based on the

detection of kinetic occlusions. The mechanism uses a spatio-

temporal structure tensor. Computing the eigenvalues of this

tensor, the smallest eigenvalue lmin is a measure whether a

junction in the XYT-space is present. Furthermore, when

considering the values of lmin in the local neighbourhood, the

position of the local maximum relative to the object boundaries is

an indicator for the local depth order. Their algorithm computes

the occlusion regions and depth order based on only two frames,

with further stabilization if an additional third frame is available.

Like the approach of Niyogi, the segmentation of this algorithm is

completely relying on occlusion regions. As mentioned before, this

restricts a correct segmentation to scenes including objects where

the whole outline produces occlusions. Furthermore, when relying

on the smallest eigenvalue, occlusion regions can only be detected

for strong 2D contrasts (as a junction both in space and time is

necessary to lead to values .0 for all three eigenvalues). Along 1D

contrasts, the occlusion detector will not respond and thus miss

possible occlusions.

In our approach, also at positions where the aperture problem

occurs, the problem of motion detection and optic flow based

segmentation can be solved. The V1Model and MTModel Motion

interaction can propagate salient movement from the 2D salient

positions along edges, independently of object texture. Then,

MSTlModel neurons can detect the motion discontinuity between

object and background.

Another problem that has to be taken into account in the

approach of Feldman & Weinshall is that the value of the

eigenvalues is contrast dependent. For very low contrast, the

response will also be very low, so that occlusion regions at the

transition of two low-contrast textures might be missed. Our

model has an initial motion detection that will respond to very

small luminance contrasts. The dependency to local contrast is

very small, as the structure but not the contrast itself are the

features that we use to find matches.

Mechanisms for improved object segmentation
We propose new mechanisms to make the segmentation of

moving objects in the presence of self-motion more reliable. For

this purpose, we use the computation of two scenic properties that

are obtained independently, but with both representing a moving

object at this position.

First, an object that is moving in front of a background will

generate occlusion regions along parts of its boundaries. For the

detection of the occlusion regions we propose a detector that is

based on a motion energy comparison of two succeeding frame

pairs, as explained in the Methods section. This approach has the

advantage that it relies on the local image structure, which makes

it less sensitive to contrast changes than approaches based on the

detection of junctions in the spatio-temporal activity space.

However, successful detection of occlusion regions is not sufficient

to determine the boundary of a moving object. No occlusion will

appear along the contour of an object that is moving parallel to the

orientation of its outline. For that reason, approaches for object

detection that are simply using occlusion detectors will not be able

to gain the full object outline. As a consequence, compensation is

needed.
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Second, a moving object stands out due to the transition that is

generated at the motion boundary; a motion boundary appears as

the object motion abuts on the background motion. We use

MSTlModel on-center-off-surround neurons to detect the motion

discontinuities based on the flow of MTModel.

This kind of motion boundary estimation tends to generated

false estimates. If some of the MTModel Motion neurons are

erroneously active, strong responses in MSTlModel neurons are

generated. The occlusion regions provide help to deal with this

problem. As explained before, a moving object will, apart from few

exceptions, always lead to an occlusion region. Hence, no

occlusion region can be found that is adjacent to a detected and

grouped motion discontinuity, this is a strong hint for a false

detection. In our approach, we included an interaction mechanism

that combines the responses of the grouped motion discontinuity

with the grouped occlusion regions. The motion discontinuity will

be kept only if they partly abut (compare experiment 5 and 6). At

the same time, the motion discontinuities also improve the results

for the occlusion regions, as shown in experiment 5. The responses

get more localized and many outliers are eliminated. The two

interactions between the spatial and the temporal contrast

detection for the estimated optic flow can so mutually improve

their results.

Besides the interactions between the detection of occlusions and

of motion discontinuities, we improve the results using temporal

integration for the activity represented there (see experiment 6).

Such an integration can be used for the different features

computed in the neural model. First, it can be applied at the

level of motion estimation to achieve subpixel movement detection

as proposed in [24]. Second, the response of the motion

discontinuities computed in MSTlModel can be temporally

integrated. Third, the response of the TOModel neurons can use

temporal integration to stabilize their responses. Altogether, the

results for the features can be improved by the integration because

noise appearing in just one frame has less influence on the results.

In the case of motion discontinuities, boundaries can be closed and

the contour gets straighter.

Based on these improved results, ordinal depth information

for the scene can successfully be derived in an automatic way.

Furthermore, we apply a simple classification approach to

decide on the nature of the object. Is the object moving

independently, or is it a static object for which the translational

movement of the observer is generating movement of the image

boundaries? For example, in the context of a navigation task this

knowledge is very useful. In particular, objects that have a

movement strongly differing from the background will be

potentially dangerous for the observer. This is either caused

by their independent movement or by a static object that is very

close to the observer, while the background is still far away. To

get a more detailed classification, further mechanisms could be

added. Global flow estimation would help to decide on the self-

motion component in the sequence, and perhaps the estimation

could be improved by excluding segmented objects. Further-

more, stereo input would provide depth information that

allowed the inference of the expected flow for an object

(assuming that its movement is only caused by self movement).

This could help to determine whether an object is an

independently moving object.

Relations of the model with primate visual system
In this subsection, we explain how some of the mechanisms used

in the model that are not derived by existing biological data, are

nonetheless plausible possibilities for processing in the brain or are

related to confirmed neural mechanisms. We dwell on the

occlusion detection using motion energies, the question of border

ownership and the computation of depth structure.

The role that the detection of occlusion regions might play for

motion processing is not yet clear. However, there is evidence

that non-matchable regions improve the estimation of depth,

contour, and surface perception in stereo images, as experiments

by Nakayama & Shimojo [27] demonstrate. In our approach,

we use this idea also for motion detection. The occlusion regions

interact with the detected motion discontinuities to achieve more

robust segmentation. For the detection of motion discontinuities,

neurons with on-center-off-surround receptive field characteris-

tics are a possible explanation. These kind of neurons were

found in area MSTl of primates [12,28], an area that succeeds

MT in the cortical hierarchy and is responsible for small object

detection and tracking. Neurons in this area respond strongly if

the motion in the center region is different compared to the

motion in the surround. This leads to large activity at motion

boundaries. As shown in the Result section, motion discontinu-

ities are well detected within this model component. Currently,

we only use feedforward connections between MTModel and

MSTlModel. Feedback connections could help to strengthen

the motion estimates at boundaries and further improve the

results.

The detection of occlusions and motion boundaries is also

related to the topic of border ownership, the question to which

object a boundary between two objects belongs. Qui et al. [29]

investigated the underlying neural correlates in neurophysiolog-

ical experiments with macaques for static input images. They

found V2 neurons whose responses were stronlgy modulated by

the direction of the border ownership. Models trying to explain

these mechanisms were relying on local contrasts and occlusion

cues derived from spatial junctions (see [30] for an overview).

We suggest that for dynamic scenes with moving objects the

detection of occlusions and motion discontinuities as presented

in our model are mechanisms that together solve the question of

border ownership. The position of the occlusions and disocclu-

sions is a direct indication for the ownership of the object

boundary, the complete outline is provided by the motion

discontinuities. Furthermore, an interaction with V2 Form

would be possible to include the available form information or

to transfer the information from the motion to the form

pathway.

A first interpretation of the scene concerning the depth structure

of the input sequence is achieved combining the inputs of MSTl

neurons, detected temporal occlusions, and form information. A

possible area to compute this feature could be KO, a small area

located next to MT. Tyler et al. showed [31] that area KO is in

particular responding to stimuli including depth structure,

perceived either from disparity or motion cues. Neurons in this

area might be tuned to depth occlusions, depth edge structure, or

depth segmentation.

Conclusion
We presented a biologically inspired model for improved

object segmentation based on optic flow. Key mechanisms are a)

the robust optic flow estimation based on three frames that

computes continuous optic flow also along motion boundaries. b)

The detection of motion discontinuities relying on these

estimates effected by spatial on-center-off-suround RFs, that

respond all along the object boundaries. c) The detection of

occlusion regions relying on temporal contrast neurons. d) The

interaction between the two mechanisms to erase erroneous

estimates for object segmentation. e) Temporal integration

within the different model components to stabilize the results

Motion Based Segmentation
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in particular in noisy input sequences. Using these mechanisms

in a unified architecture we achieve object segmentation in both

artificial and real sequences, allowing a further interpretation of

the scene properties such as coarse classification of object

movement and ordinal depth order.
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