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Abstract

Background: von Hippel-Lindau disease is characterized by a spectrum of hypervascular tumors, including renal cell
carcinoma, hemangioblastoma, and pheochromocytoma, which occur with VHL genotype-specific differences in
penetrance. VHL loss causes a failure to regulate the hypoxia inducible factors (HIF-1a and HIF-2a), resulting in
accumulation of both factors to high levels. Although HIF dysregulation is critical to VHL disease-associated renal
tumorigenesis, increasing evidence points toward gradations of HIF dysregulation contributing to the degree of
predisposition to renal cell carcinoma and other manifestations of the disease.

Methodology/Principal Findings: This investigation examined the ability of disease-specific VHL missense mutations to
support the assembly of the VBC complex and to promote the ubiquitylation of HIF. Our interaction analysis supported
previous observations that VHL Type 2B mutations disrupt the interaction between pVHL and Elongin C but maintain partial
regulation of HIF. We additionally demonstrated that Type 2B mutant pVHL forms a remnant VBC complex containing the
active members ROC1 and Cullin-2 which retains the ability to ubiquitylate HIF-1a.

Conclusions: Our results suggest that subtypes of VHL mutations support an intermediate level of HIF regulation via a
remnant VBC complex. These findings provide a mechanism for the graded HIF dysregulation and genetic predisposition for
cancer development in VHL disease.
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Introduction

von Hippel-Lindau (VHL) disease is an autosomal dominant

familial cancer syndrome caused by germline mutation or loss of

the VHL tumor suppressor gene that affects approximately 1 in

36,000 individuals [1]. Individuals with VHL disease develop an

array of tumors, including clear cell renal cell carcinomas

(ccRCC), cerebellar and retinal hemangioblastomas, and pheo-

chromocytomas [1]. VHL disease is divided by genotype into

subtypes which predict the spectrum of risk for development of

VHL-associated lesions [2–4]. Type 1 VHL disease predisposes to

the development of ccRCC and hemangioblastoma. All patients

with Type 2 VHL disease are at risk for pheochromocytoma. Type

2A VHL disease is further characterized by high risk for

hemangioblastoma, and Type 2B VHL disease is associated with

high risk for both hemangioblastoma and RCC. Type 2C VHL

disease individuals exclusively develop pheochromocytoma [5].

Patients homozygous for the Arg200Trp (R200W) VHL mutation,

located in the extreme C-terminal domain of the 213 amino acid

VHL protein (pVHL), develop Chuvash Polycythemia [6,7].

Biallelic inactivation of pVHL has also been reported in upwards

of 90% of individuals with sporadic ccRCC [8]. Thus, a thorough

understanding of wild-type and disease-associated mutant pVHL

activities has potential to impact a broad spectrum of affected

patients [1,9,10].

The VHL protein acts as the substrate recognition subunit of an

E3 ubiquitin ligase complex analogous in structure to the SCF

complex. The SCF and SCF-like complexes typically contain four

subunits, including a RING finger protein (ROC1/Rbx1), a cullin

protein (CUL/Cul), and two adaptor proteins linking the cullin to

the substrate binding protein [11]. In the pVHL E3 complex

(VBC), pVHL acts as the substrate binding protein and is

responsible for the specificity of the complex-target interaction

[12]. Human pVHL directly interacts with Elongin C, while

Elongin B links pVHL-Elongin C to cullin 2 (CUL2)-ROC1 [13–

15]. The VBC complex serves as a platform through which the E2

ubiquitin-conjugating enzyme, bound by CUL2-ROC1, and the

pVHL-bound substrate are brought into proper positioning for

ubiquitin transfer [11]. In the VBC complex, ROC1 functions to

recruit the E2 enzyme and also promotes internal complex

stability [12,14].

The primary targets of the VBC complex are the hypoxia

inducible factors, HIF-1a and HIF-2a. The HIF factors direct the

transcriptional response to hypoxia by activating the expression of

genes involved in angiogenesis, cell proliferation, erythropoiesis,

energy metabolism, and apoptosis [16–21].
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Loss of the pVHL tumor suppressor, as occurs with Type 1 VHL

mutations, is believed to promote renal tumorigenesis primarily

through loss of pVHL-mediated HIF regulation [22]. Corre-

spondingly, Type 2C VHL missense mutations display fully intact

regulation of HIF factors, consistent with the lack of conveyed risk

for RCC development [23]. In the case of Type 2A and Type 2B

VHL missense mutations, titrated degrees of HIF regulation

appear to correlate with the subtype-specific risk of ccRCC

[21,24]. While the differing capabilities of VHL disease-associated

mutants to regulate HIF have been explored [20,21,23–25], the

mechanism of retained HIF regulation and the link between

differing levels of HIF regulation and the clinical spectrum

observed in VHL disease is not yet fully understood. In this study,

we re-examined the effect of VHL missense mutations to disrupt

the formation of the VBC complex, and demonstrate that

characteristic Type 2B VHL mutations form a low-abundance

VBC complex which retains the ability to ubiquitylate HIF-1a.

Materials and Methods

Cell Lines
Vhl-null embryonic stem (ES) cells or VHL-deficient 786-0 RCC

cells were transfected with vectors specifying human wild-type

VHL or representative VHL mutants Y112H (Type 2A), R167Q

(Type 2B), L188V (Type 2C), or R200W (Chuvash polycythemia)

using vectors and techniques as previously described [25]. 786-0

cells expressing the VHL mutant D121G (Type 2B), generated as

previously described [26], were generously provided by Dr.

William Kim, Chapel Hill, NC. Vhl-null murine ES cells and

transfected derivatives were maintained in culture media com-

prised of Dulbecco’s Modified Eagle Medium (DMEM, various

manufacturers), supplemented with 10% ES cell-certified fetal

bovine serum (Invitrogen, Carlsbad, CA), non-essential amino

acids, L-glutamine, 2-mercaptoethanol, and leukemia inhibitory

factor, and were grown on gelatin-coated plates in the absence of

feeder cells. Renal cell carcinoma 786-0 cells were acquired from

the American Type Culture Collection (Manassas, VA). 786-0 cells

and transfected derivatives were maintained in DMEM, supple-

mented with 10% FBS, non-essential amino acids, L-glutamine,

and 2-mercaptoethanol. All cultures were maintained at 37uC in

5% CO2. For hypoxia mimetic experiments, cells in log-phase

growth were placed in media supplemented with 100 mM cobalt

chloride (Sigma, St. Louis, MO) or fresh unsupplemented media.

Immunoblot Analysis
Cells were lysed in Mammalian Protein Extraction Reagent (M-

PER; Pierce Biotechnology, Rockford, IL) supplemented with

Complete Mini Protease Inhibitor Cocktail (Roche, Basel,

Switzerland). The Bradford Quantification Method (Amresco,

Solon, OH) was used to determine protein concentration. Cell

lysates were resolved by SDS-PAGE and subsequently transferred

to Hybond ECL nitrocellulose membrane (GE Healthcare, United

Kingdom). Immediately following transfer, membranes were

stained with Ponceau S to confirm even transfer, blocked in 5%

nonfat dry milk diluted in phosphate-buffered saline containing

0.1% Tween-20 (PBS-T), and then probed with the following

primary antibodies: rabbit polyclonal anti-HA tag (Abcam,

Cambridge, MA: ab9110, 1:1000), mouse monoclonal anti-pVHL

(Abcam, ab11189, 1:2000), rabbit polyclonal anti-cullin-2 (Abcam:

ab1870, 1:1000), rabbit polyclonal anti-ROC1 (Abcam: ab2977,

1:500), goat polyclonal anti-Elongin C (Santa Cruz, Santa Cruz,

CA: sc-1559, 1:200), rabbit polyclonal anti-Elongin B (Santa Cruz:

sc-11447, 1:200), mouse monoclonal anti-Myc tag (Cell Signaling,

Danvers, MA: 9B11, 1:1000), mouse monoclonal anti-HIF-2a

(GeneTex, San Antonio, TX: GTX30123, 1:1000), and rabbit

polyclonal anti-Ku80 (GeneTex: GTX70485, 1:2000). Secondary

antibodies used were anti-mouse, anti-rabbit, and anti-goat IgG

conjugated to horseradish peroxidase (various manufacturers) and

detected with the ECL Plus Western Blotting System (GE

Healthcare) using exposure to BlueLite autoradiography film

(ISC BioExpress, Kaysville, UT) and processing via a Kodak RP

X-OMAT Processor (Rochester, NY).

Immunoprecipitation Analysis
M-PER cell lysates were subjected to immunoprecipitation (IP)

using either the Profound Mammalian HA Tag IP/Co IP Kit or the

Profound Mammalian Myc Tag IP/Co IP Kit, as per manufacturer’s

specifications (Pierce Biotechnology). For the reverse co-IP analysis,

stably-transfected 786-0 cell lines were transiently transfected with a

plasmid encoding myc-tagged cullin-2, a generous gift from Dr. Y.

Xiong, Chapel Hill, NC, using Solution V of the Amaxa Tranfection

System (Amaxa, Gaithersberg, MD). Twenty hours post-transfection,

transfected cells were incubated in media supplemented with 5 mM

MG-132 (Calbiochem, Gibbstown, NJ) proteasome inhibitor or fresh

unsupplemented media for four hours, followed by protein extraction

with M-PER and IP analysis as above.

In vitro HIF-1a Ubiquitylation Assay
An in vitro ubiquitylation assay was adapted from the protocol

developed by Cockman et al. [18]. 786-0 cell lines incubated for four

hours in 5 mM MG-132 were washed and collected in PBS. The cells

were then washed twice in Ub Extraction Buffer (20 mM Tris,

pH 7.5, 5 mM Kcl, 1.5 mM MgCl2, 1 mM DTT) and disrupted

using a dounce homogenizer. The cell lysates were centrifuged at

10,0006g for 10 minutes at 4uC. Each reaction was set up in a total

volume of 40 mL, containing 23 mL cell extract, 5 mL HIF1a-myc

substrate, and 12 mL reaction solution. The ‘‘reaction solution’’ was

composed of ATP Regenerating System (20 mM Tris, pH 7.5,

10 mM ATP (GE Healthcare)), 10 mM magnesium acetate

(Promega Corporation, Madison, WI), 300 mM creatine phosphate,

0.5 mg/mL creatine phosphokinase (MP Biomedicals, LLC, Irvine,

California), 20 mg ubiquitin, and 150 uM ubiquitin aldehyde (Biomol

International, Plymouth Meeting, PA). When reactions excluded a

specific component, nuclease-free dH2O was substituted to maintain

the total reaction volume. Reactions were incubated at 30uC for

270 minutes and then subjected to immunoblot analysis. HIF1a-myc

substrate was produced through TNTH coupled Wheat Germ

Extract Systems (Promega, Madison, WI) from a plasmid encoding

full-length functional human HIF1a-myc protein, a generous gift

from Dr. M. C. Simon, Philadelphia, PA.

Results

Type 2B mutant pVHL proteins promote incomplete
normoxic HIF-2a stabilization

We have previously shown that human VHL mutations

representative of Types 2A and 2B VHL disease impart an

intermediate degree of HIF-2a regulation in a Vhl-null murine ES

cell expression system [25]. In order to evaluate this trend in

human RCC cells, 786-0 RCC-derived cells, known to lack pVHL

expression and over-express HIF-2a, were reconstituted with

expression vectors encoding wild-type or VHL disease-specific

mutant VHL cDNA. Individual clones expressing mutant pVHL

comparable to wild-type levels were selected for subsequent

experiments. Figure 1A depicts a representative immunoblot for

the expression of wild-type as well as RCC-associated Type 2A

(Y112H) and 2B (R167Q) mutant HA-tagged pVHL in 786-0

RCC clones.

Type 2B VHL E3 Ligase Complex
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To study the ability of RCC-associated mutant pVHL to

regulate HIF in 786-0 cells, the hypoxia mimetic cobalt chloride

(CoCl2) was used to simulate hypoxic conditions. Cells were placed

in either standard growth media or media supplemented with

100 mM CoCl2for 24 hours followed by analysis of HIF-2a
protein levels by immunoblot (Figure 1B). VHL-null vector-only

transfected cells (vector) failed to suppress HIF-2a under standard

conditions and lacked further induction under simulated hypoxic

conditions. Introduction of wild-type HA-pVHL restored nor-

moxic suppression and CoCl2 induction of HIF-2a. Type 2A VHL

mutant Y112H cells failed to completely suppress HIF-2a levels, as

expected due to the predicted disruption of the HIF interaction

domain [15]. Type 2B VHL mutant R167Q cells displayed partial

suppression of HIF-2a while retaining HIF-2a stabilization in

response to CoCl2. These observations were confirmed in multiple

independently-derived 786-0 clones (data not shown).

Type 2B mutant protein participates in a VBC complex
containing Cullin2

To determine the correspondence between the observed partial

retention of HIF-2a regulation and formation of a competent

VBC complex, we analyzed the interaction of wild-type and

disease-specific mutant HA-pVHL with known components of the

VBC complex by co-IP and reverse co-IP studies in transgenic

human 786-0 and murine ES cells. Based on prevailing models,

Type 2B mutant pVHL proteins, including R167Q, are predicted

to disrupt VBC complex formation by eliminating Elongin C

binding to pVHL [13,27–30]. We have previously observed the

inability of R167Q HA-pVHL to bind Elongin C in a transgenic

murine ES cell system [25].

VBC complex formation was assessed by co-IP analysis of

proteins interacting with HA-pVHL in Vhl-null murine ES cells

expressing wild-type pVHL (WT), mutants Y112H, R167Q,

L188V, and R200W, or no transgene (2/2). HA-pVHL pull-

down was confirmed in each IP by anti-HA immunoblot (HA,

Figure 2A). Each HA-pVHL-containing complex was then

individually tested for interaction with known members of the

VBC complex through protein-specific co-IP immunoblot

(Figure 2A). As expected based on both previous reports and the

localization of the respective mutations [20,25], the R167Q HA-

pVHL failed to substantially co-immunoprecipitate Elongin C,

whereas wild-type HA-pVHL and mutant HA-pVHL representing

Y112H, L188V, and R200W retained this interaction. Further-

more, wild-type HA-pVHL and mutant HA-pVHL representing

Y112H, L188V, and R200W demonstrated interaction with

complete VBC complex detecting the presence of murine Elongin

B, Cul2, and Rbx1. Elongin B, Cul2, and Rbx1 also clearly

associated with the R167Q HA-pVHL, suggesting that the VBC

complex is at least partially intact in cells expressing this

representative Type 2B VHL mutation.

In order to discern if the observed remnant VBC complex in

R167Q HA-pVHL-expressing murine ES cells was an artifact of

human-mouse interactions, we examined the same panel of VHL
Figure 1. VHL disease associated mutations demonstrate a
graded amount of HIF Regulation. A. Anti-HA immunoblot for
expression of HA-tagged human pVHL in transgenic 786-0 clones.
Whole-cell protein extracts were prepared from 786-0 clones deficient
for VHL expression (Vector) or modestly expressing wild-type (WT) or
missense (Y112H, R167Q) mutant HA-tagged human pVHL. B. Anti-HIF-
2a immunoblot for HIF stabilization in 786-0 clones. Whole-cell protein
extracts were prepared from VHL-deficient 786-0 cells or WT or mutant
HA-pVHL-rescued 786-0 cells incubated in the presence or absence of
the hypoxia mimetic CoCl2 for 24 hours. Ku80 immunoblot was used as
a control for equal loading.
doi:10.1371/journal.pone.0003801.g001

Figure 2. Co-immunoprecipitation of VBC complex proteins
with type 2B mutant pVHL. A. Anti-HA immunoprecipitation of HA-
pVHL and associated VBC complex members in transgenic ES cell
clones. Anti-HA IP products were probed for successful pull-down of WT
or mutant HA-pVHL and for co-IP of the indicated VBC complex
members in stably-transfected Vhl2/2 murine ES cells. B. and C. Anti-HA
immunoprecipitation of HA-pVHL from transgenic 786-0 clones. Anti-
HA IP products were probed for successful pull-down of WT or mutant
HA-pVHL by anti-pVHL (B) or anti-HA (C) immunoblot and for co-IP of
the indicated VBC complex members in stably-transfected 786-0 cells.
doi:10.1371/journal.pone.0003801.g002

Type 2B VHL E3 Ligase Complex

PLoS ONE | www.plosone.org 3 November 2008 | Volume 3 | Issue 11 | e3801



mutations for VBC complex formation in stably-transfected

human 786-0 RCC cells. A second representative Type 2B VHL

mutation D121G was included in this analysis to determine

whether the formation of a remnant complex is limited to the

specific Type 2B mutant R167Q HA-pVHL or is more broadly

relevant to Type 2B VHL disease. Again, pVHL-associated

proteins were co-immunoprecipitated, and pull-down of HA-

pVHL was confirmed for each IP by anti-VHL (Figure 2B) or anti-

HA (Figure 2C) immunoblot, followed by detection of known VBC

complex members by protein-specific co-IP immunoblot

(Figures 2B and 2C). Both R167Q and D121G mutant HA-

pVHL failed to demonstrate a strong interaction with Elongin C,

although robust association was detected for wild-type and the

other mutant HA-pVHL proteins. The remaining VBC complex

members were again associated with wild-type and all of the HA-

pVHL mutants tested, including the Type 2B mutants R167Q and

D121G. This experiment suggests that both of the Type 2B

mutant HA-pVHL proteins studied may retain at least partial

interaction with Elongin C and recruit a complex containing the

essential human VBC E3 ubiquitin ligase components CUL2 and

ROC1.

To confirm the observed interaction between R167Q HA-

pVHL and CUL2, a myc-tagged CUL2 protein was transiently

expressed in stable 786-0 cell lines expressing wild-type or RCC-

associated mutant HA-pVHL for reverse co-IP studies (Figure 3).

Cell extracts were subjected to anti-myc-agarose IP, and pull-

down of myc-CUL2 was confirmed by anti-CUL2 immunoblot.

Anti-HA co-IP immunoblot verified the results depicted in

Figure 2B–C, displaying myc-CUL2 interaction with wild-type,

Y112H, and R167Q HA-pVHL.

Type 2B mutant pVHL retains HIF-1a-ubiquitylating
activity

To determine if the remnant R167Q HA-pVHL–CUL2 complex

retained E3 ubiquitin ligase activity, wild-type and mutant HA-

pVHL were analyzed for competence to ubiquitinate HIF-1a using

a modified version of the in vitro assay developed by Cockman et al.

[18]. Exogenous HIF-1a was used as the ubiquitylation target in this

experiment as the 786-0 parental cell line lacks confounding

endogenous HIF-1a expression. The R167Q and a second Type 2B

mutation (Q195X) have been shown to retain interaction with HIF-

1a [20]. Retention of E3 ligase activity by the remnant R167Q

mutant pVHL-CUL2 VBC complex, therefore, should correspond

to preserved HIF-1a ubiquitylation in vitro.

In vitro-transcribed (TNT) myc-tagged full-length wild type

human HIF-1a (HIF-1a-myc) was subjected to a modified in vitro

ubiquitylation assay, using anti-myc immunoblot to visualize

ubiquitylation of the HIF-1a-myc substrate (Figure 4, components

of each analysis indicated above lane). The HIF-1a-myc protein

migration for each cell line is summarized by a shaded line to the

right of the immunoblot. TNT HIF-1a-myc substrate in the

absence of reaction solution or cell extract served as a negative

control for the unmodified electrophoretic mobility of the HIF-1a-

myc protein. For each cell line in our assay, further controls were

provided by excluding cell extract (first reaction) or TNT HIF-1a-

myc substrate (second reaction). The third reaction for each cell

line contained all three necessary components for the ubiquityla-

tion reaction. An upward shift in HIF1a-myc mobility, as

exemplified by the wild-type (WT) complete reaction, indicates

HIF-1a-myc poly-ubiquitylation. The HIF-1a-myc protein was

shifted only slightly upwards in the reaction utilizing extract from

control vector-only 786-0 cells, demonstrating the basal pVHL-

independent HIF-1a ubiquitylation present in this system. Type

2A Y112H mutant HA-pVHL failed to promote HIF-1a-myc

mobility shift beyond basal levels, confirming previous work by

Cockman et al. [18]. Notably, Type 2B R167Q mutant HA-pVHL

promoted HIF-1a-myc mobility shift similar to WT HA-pVHL,

demonstrating that the remnant R167Q HA-pVHL–Cullin-2

complex retains E3 ligase activity towards HIF-1a in vitro.

Discussion

In addition to the strong association of sporadic ccRCC with

biallelic VHL inactivation and of VHL disease-associated ccRCC

with subtype-specific germline VHL mutations, evidence from

xenograft models of tumor growth strongly supports the

requirement for pVHL-mediated HIF regulation in suppression

of renal tumorigenesis. However, several lines of evidence suggest

that dose-dependent effects on basal HIF levels influence VHL-

associated tumor development and behavior. Our prior investiga-

tion in eupoloid primary ES cell lines, utilized as a strategy to

avoid interference from transforming cancer cell events, demon-

strated a bias toward HIF-2a dysregulation for VHL Type 2B

mutation, and a graduated degree of HIF dysregulation across the

disease subtypes [25]. In vitro studies of RCC-predisposing Type

2A and Type 2B VHL missense mutations have revealed a

correlation between the degree of mutant pVHL-mediated HIF-a
dysregulation and risk of ccRCC [24]. In a recent study performed

in both 786-0 and a second RCC-derived cell line, RCC4,

representative Type 2A and Type 2B VHL mutations demonstrat-

ed intermediate levels of HIF stabilization [21]. Taken together,

these results suggest that Type 2A and Type 2B mutant pVHL

proteins retain an intermediate degree of HIF regulation, rather

than an ‘‘all-or-none’’ pattern of regulation, likely contributing to

the distinct phenotypes observed in these VHL disease subtypes.

In this study, we observed intermediate HIF regulatory activity

by Type 2A Y112H and Type 2B R167Q mutant HA-pVHL,

which could underlie the distinct genotype-phenotype correlations

and may provide insight into the biology of sporadic RCC as well.

In previous reports of VBC complex formation, the ability of

disease-specific mutant pVHL to bind Elongin C was used as a

proxy for ability to recruit the remainder of the VBC complex.

The absence of 2B mutant HA-pVHL interaction with Elongin C

in co-IP studies led to conclusions that a-domain mutations in

pVHL abolish VBC complex formation [13,27–30]. We report

here, however, that both R167Q and D121G Type 2B mutant

HA-pVHL participate in a complex with CUL2, ROC1, and

Elongin B, as well as potentially with Elongin C either transiently

or with greatly reduced abundance.

The co-immunoprecipitation of VBC complex members with

R167Q and D121G mutant HA-pVHL could be due to reduced

Figure 3. Reverse co-immunoprecipitation confirms CUL2-
pVHL protein interaction in R167Q mutation. Anti-myc immuno-
precipitation of myc-CUL2 and associated HA-pVHL in 786-0 clones.
Stable 786-0 clones expressing vector-only (ST) or WT or mutant HA-
pVHL were transiently transfected with wild-type myc-tagged CUL2 and
subjected to myc-IP. Upper panel, IP of Myc-tagged Cul2 detected by
anti-CUL2 immunoblot. Lower panel, co-IP of WT and mutant HA-pVHL
detected by anti-HA immunoblot.
doi:10.1371/journal.pone.0003801.g003
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or transient formation of a wild-type VBC complex and/or

formation of an alternate pVHL-Cullin-2 complex with ubiquitin

ligase activity. The low abundance of Elongins C and B in

association with both representative Type 2B mutant pVHL

proteins may represent a limited quantity of stable complete VBC

complex. Existing crystal structures depict the pVHL a-domain

interacting with the VBC complex only through Elongin C [15].

However, the relatively abundant CUL2 and ROC1 in the mutant

2B VBC complex could point to a direct interaction between

mutant HA-pVHL and CUL2 or the replacement of Elongins C

and B with alternate adaptors linking the mutant HA-pVHL to

CUL2–ROC1. Silver stain and proteomic analysis of our Type 2B

mutant HA-pVHL immunoprecipitates failed to detect additional

bands that could function as replacement adaptors in an alternate

HA-pVHL–CUL2 complex (data not shown).

The Type 2B mutation R167Q has been shown to permit

interaction between pVHL and HIF-a [20]. Therefore, if able to

recruit an active complete or alternate VBC complex, Type 2B

pVHL should be able to direct HIF-a ubiquitylation. Indeed, we

observed that R167Q mutant HA-pVHL existed in complex with

CUL 2 and ROC1 and mediated wild-type levels of HIF-1a poly-

ubiquitylation in vitro. Though the presence of ROC1 has been

shown to stabilize the VBC complex [12], our results cannot

discern whether endogenous levels of Type 2B mutant pVHL

expression support formation of a stable or transient complex with

CUL2. R167Q mutant pVHL has been shown to be relatively

unstable in vitro [24], and subtype-specific clinical manifestations of

VHL disease may derive from a combination of mutant pVHL

stability and the stability and activity of the mutant VBC complex.

In summary, we have demonstrated that disease-associated

mutant pVHL proteins retain endogenous HIF-2a regulation.

Two representative Type 2B mutant pVHL proteins partially

preserved interaction with VBC complex members despite

reduced binding to Elongin C, and the Type 2B mutant R167Q

pVHL retained wild-type levels of ubiquitin ligase activity towards

its target HIF-1a in vitro. Taken together, our results show that at

least a subset of Type 2B VHL missense mutations result in a

partial or unstable but active VBC complex which retains the

ability to regulate HIF-a levels. Furthermore, our results support

observations that VHL missense mutations generally confer lower

levels of HIF-a stabilization than null or truncating Type 1 VHL

mutations [21,25] and provide mechanistic insight into this

retained ubiquitin ligase activity.
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