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Abstract

Positive selection for protein function can lead to multiple mutations within a small stretch of DNA, i.e., to a cluster of
mutations. Recently, Wagner proposed a method to detect such mutation clusters. His method, however, did not take into
account that residues with high solvent accessibility are inherently more variable than residues with low solvent
accessibility. Here, we propose a new algorithm to detect clustered evolution. Our algorithm controls for different
substitution probabilities at buried and exposed sites in the tertiary protein structure, and uses random permutations to
calculate accurate P values for inferred clusters. We apply the algorithm to genomes of bacteria, fly, and mammals, and find
several clusters of mutations in functionally important regions of proteins. Surprisingly, clustered evolution is a relatively
rare phenomenon. Only between 2% and 10% of the genes we analyze contain a statistically significant mutation cluster.
We also find that not controlling for solvent accessibility leads to an excess of clusters in terminal and solvent-exposed
regions of proteins. Our algorithm provides a novel method to identify functionally relevant divergence between groups of
species. Moreover, it could also be useful to detect artifacts in automatically assembled genomes.
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Introduction

Numerous methods have been proposed to identify positive

selection in coding sequences [1–10]. These methods differ in their

underlying assumptions, the data required to complete the

analysis, and the type of conclusion that can be drawn. The most

popular of these methods have in common that they are based in

some form on the comparison of nonsynonymous to synonymous

substitution frequencies, usually in the form of the ratio dN/dS.

Their central premise is that synonymous substitutions are neutral

and thus provide a baseline substitution rate to compare

nonsynonymous substitutions against. Yet evidence is accumulat-

ing that synonymous substitutions often are not neutral. In

particular, selection for translationally optimal codons operates

from bacteria to mammals [11–17]. Other selective pressures on

synonymous sites can arise from selection acting on mRNA

secondary structure [18] or on exonic splicing enhancers [19]. For

these and other reasons, dN/dS-based methods have been

increasingly criticized [17,20–22]; in particular, a recent study

showed that sites known to be under positive selection for function

are often not identified by dN/dS methods and vice versa [23].

Methods to detect positive selection that do not rely on

synonymous substitution rates, such as Fu’s W [24] or Tajima’s

D [25], are generally based on allele frequencies and thus are

sensitive to demographic events, e.g., recent population bottle-

necks [26–28].

Wagner has recently proposed a new method to detect positive

selection that uses neither synonymous substitution rates nor allele

frequencies [10]. Wagner suggested that strong positive selection

will lead to multiple substitutions in close proximity, that is, it will

lead to a clustering of nonsynonymous mutations in sequence

space. He developed a statistical method to identify such clusters of

mutations, and identified several cases of strong clustering of

mutations in a comparison of human and chimpanzee genes.

Wagner’s method constitutes an innovative and novel approach

to a longstanding problem. Unfortunately, it suffers from three

limitations. First, the P value Wagner assigns to a mutation cluster

generally underestimates the probability that the cluster would

arise by chance if the null hypothesis were true. Second, by design,

Wagner’s method can detect at most one variation cluster per

gene. Third, and most importantly, Wagner’s method does not

control for inhomogeneous substitution rates caused by protein

structure. The solvent accessibility of a site influences its

evolutionary conservation, with more exposed residues generally

being less conserved [29–34], and a method that does not consider

this difference in baseline selective constraints in its null

distribution will tend to find spurious mutation clusters in

solvent-exposed regions of proteins.

In this study, we propose a novel method to detect mutation

clusters that alleviates all three drawbacks. We use this method to

locate mutation clusters in three groups of species: bacteria

(Escherichia coli vs. Salmonella enterica), fly (Drosophila melanogaster vs.

Drosophila obscura), and mammals (primates vs. rodents). We

analyze the properties of the clusters we find and discuss how

some of these clusters may affect protein function.

Results

A novel algorithm to detect mutation clusters
We begin by briefly reviewing Wagner’s approach [10]. Wagner

based his method on the probability p(di,k) that, under the null

hypothesis that all sites are equally likely to be mutated, k

mutations arise within di,k or fewer residues, starting at the position

of mutation i. The probability p(di,k) can be calculated from the
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gamma distribution. For a given gene, Wagner calculated p(di,k) for

all possible contiguous sets of mutations in that gene, found the set

with the minimum p(di,k), and referred to this set as the gene’s

mutation cluster. He used the p(di,k) value of this cluster, that is,

PP = mini,k p(di,k), as the cluster’s P value.

Wagner’s approach has two (arguably minor) statistical

problems. First, because of the minimization procedure, PP is

not the probability that the associated cluster would arise if the null

hypothesis were true. The probability p(di,k) measures the

likelihood that, under the null hypothesis, a randomly chosen

contiguous set of k mutations falls within at most di,k residues.

Consequently, PP underestimates the probability that the most-

clustered set of mutations (i.e., the cluster corresponding to mini,k

p(di,k)) falls within at most di,k residues by chance alone. We can

make this reasoning more intuitive by considering the general

situation of a set of multiple events that occur according to some

probability distribution. The most extreme of these events has a

higher probability of being extreme than each event has

individually. Second, by focusing on the cluster with the minimum

p(di,k), Wagner can never detect more than one cluster per gene,

even if a second, highly significant cluster is present.

It would be straightforward to fix these two statistical problems

with a minor modification to Wagner’s approach. But we are here

primarily interested in a third, more fundamental limitation. We

believe that the null hypothesis of a single, homogeneous mutation

probability throughout the protein does not reflect biological

reality and will lead to spurious mutation clusters. It is well known

that amino-acid substitution rates correlate with solvent accessi-

bility [29–33,35]. Substitutions at buried sites are more likely to be

disruptive than substitutions at exposed sites, and are therefore

more strongly selected against. If we don’t control for this effect

when searching for mutation clusters, we are likely to identify

clusters in highly variable and relatively unimportant loop regions.

It is unlikely that such clusters represent positive selection; they

simply represent regions of weak selective constraint.

We now describe a method to detect mutation clusters that

controls for solvent accessibility and that does not suffer from the

two statistical problems outlined above. Instead of building our

algorithm on the probability that, under the null hypothesis, k

mutations arise within n or fewer residues, we consider instead the

probability that k or more mutations fall within exactly n residues.

This probability is binomial. (See Methods for details. Note that

we use n instead of Wagner’s d throughout the remainder of this

paper.) By keeping the number (and location) of the residues fixed,

we can easily generalize our algorithm to situations where different

sites have different mutation probabilities. In the present work, we

distinguish only between buried and exposed sites, but more

complicated models would be feasible.

Our algorithm assumes that we are given two pieces of

information for each gene to be analyzed: the location of all

amino-acid mutations in the gene, and the solvent accessibility

(measured as either buried or exposed) of each residue in the

translated and folded protein. We then calculate the fraction of

mutations for buried and exposed sites, fb and fe, and use these

values to parameterize our binomial model. Thus we calculate the

probability q(k; ne, nb, fe, fb) to observe at least k mutations within a

given stretch of n residues composed of nb buried and ne exposed

residues (Eq. 3 in Methods). We calculate q(k; ne, nb, fe, fb) for all

possible contiguous sets of mutations (i.e., possible clusters) in the

gene, and for each mutation, record the minimum-q(k; ne, nb, fe, fb)

value of all possible clusters starting with this mutation. We refer to

the minimum-q(k; ne, nb, fe, fb) value as Q, and to the total set of Q

values as Q-landscape (Fig. 1). Local minima in the Q-landscape

correspond to potential mutation clusters. We then discard all

potential clusters that overlap with any other potential cluster with

lower Q (Fig. 1).

We now have a set of potential clusters for the gene, and the

next step is to calculate a P value for each cluster. For a given

cluster for which we want to calculate P, we use the Q value

defined above as test statistic, and denote it as Qs. We then

randomly reshuffle the mutations in the gene, repeat our analysis

of finding non-overlapping clusters at minima in the Q-landscape,

and record the frequency with which Qs,Q. This frequency is the

cluster’s P value.

Because we are finding many potential clusters (we may find

multiple clusters per gene, and we are analyzing hundreds of

genes), we use the false-discovery-rate correction [36] to correct

for multiple testing. We refer to the corrected P value as PM, and to

the uncorrected P value as PU. Throughout this work, we consider

potential clusters with PM,0.05 as significant.

Mutation clusters in bacteria, fly, and mammals
In principle, we can apply our method to any pair of

orthologous sequences, such as a human sequence and the

corresponding ortholog in macaque. But when we carried out

genome-wide scans for clusters of mutations between pairs of

species, we found numerous clusters that, upon closer inspection,

appeared to be artifacts in one of the species. In particular, we

found numerous clusters in the macaque genome that seemed to

stem from errors in the assembly of the draft genome rather than

representing true sequence differences (data not shown). There-

fore, we decided to compare pairs of species and considered only

those mutations that were conserved within each pair but differed

among pairs.

We carried out scans for mutation clusters in bacteria (two

species of E. coli compared to two species of S. enterica), fly (two

species of the group D. obscura compared to two species of the

group D. melanogaster), and mammals (two species of primates

compared to two species of rodents). See Fig. 2 for details. To

obtain the solvent accessibility data required for our analysis, we

mapped all sequences to homologous sequences with known

Figure 1. Q-landscape of the E. coli gene frdA (fumarate
reductase flavoprotein subunit). Q has four local minima. Thus
we have four potential clusters, starting at mutation numbers 4, 7, 10,
and 23. The horizontal lines show the range of each potential cluster.
The second cluster (dotted line) overlaps with the third cluster, which
has lower Q. Therefore, we exclude the second cluster and obtain three
potential mutation clusters (dashed lines). After correction for multiple
testing, only one significant cluster remains, the one starting at position
10.
doi:10.1371/journal.pone.0003765.g001
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structure in the PDB, and discarded genes for which we could not

find any reliable structure information. The final data sets

contained 356, 99, and 246 genes for bacteria, fly, and mammals,

respectively.

Controlling for differences in evolutionary rate at buried and

exposed sites as described above, we found a total of 1255, 246,

and 868 potential mutation clusters in bacteria, fly, and mammals.

Of these, in bacteria there were 31 significant clusters after

correction for multiple testing. There were 181 clusters for which

the uncorrected PU was less than 5%. In fly, there were 6

significant clusters (48 with PU,0.05). In mammals, there were 5

significant clusters (87 clusters with PU,0.05).

Statistical properties of mutation clusters
We next analyzed whether the mutation clusters differed in

some aspect from the protein regions that did not display clustered

mutations. First, we considered solvent accessibility. We calculated

the fraction of mutations at buried sites within and outside of

mutation clusters, and carried out a paired t-test to determine

whether clustered mutations were more or less buried than non-

clustered mutations. We jointly considered all mutation clusters for

all species groups, as long as there was at least one mutation in the

gene outside the cluster, and found a mean difference in the

fraction of buried sites in clustered and non-clustered mutations of

0.061 (P = 0.077, n = 41). Thus, after controlling for solvent

accessibility, mutation clusters are roughly equally likely to appear

in buried or in exposed regions of the protein.

Second, we tested whether mutation clusters were associated

predominantly with specific secondary structure motifs. We

computed the fraction of sites with secondary structure of the

types helix, sheet, turn, and coil, both inside and outside of

mutation clusters, and found no significant differences (paired t-

test P = 0.855 for helix, P = 0.392 for sheet, P = 0.882 for turn, and

P = 0.454 for coil, n = 42). Therefore, secondary structure

composition does not seem to affect the location of mutation

clusters.

Finally, we considered physicochemical distance for clustered

and non-clustered mutations. Some authors have proposed that

positive selection leads to physicochemically radical amino acid

replacements [37,38] (but see [39–41]). Here, we considered five

amino acid properties that have been found to correlate with rates

of amino acid replacement [42,43]: composition of the side chain,

polarity, and molecular volume [44], as well as hydropathy [45]

and isoelectric point [46]. For each of these properties, we

calculated for each gene the mean distance for mutations within a

cluster and mutations outside of the cluster, and then tested for a

non-zero mean distance using a paired t-test. We found one

marginally significant result: mutations within clusters tend to have

a more radical molecular-volume change than mutations outside

of clusters (P = 0.024, n = 41), but the magnitude of the effect was

small. The mean difference in the absolute volume change for

mutations inside and outside of clusters was 3.78. The molecular-

volume scale ranges from 3 (glycine) to 170 (tryptophan), with the

majority of amino acids falling between 30 and 130 [44]. For the

other four properties, differences were not significant (side chain

composition, P = 0.816; polarity, P = 0.157; hydropathy,

P = 0.134; isoelectric point, P = 0.167).

The effect of solvent accessibility on cluster location
Buried residues experience more purifying selection than

exposed residues [29–33]. Therefore, an algorithm that doesn’t

control for solvent accessibility should find mutation clusters

predominantly in exposed areas of the protein.

To determine the effect of solvent accessibility on the mutation

clusters, we repeated our analysis but ignored protein structure, by

artificially assigning to all residues the ‘‘buried’’ status in our

cluster detection program. (We could have chosen the ‘‘exposed’’

status with identical results. What matters is that all sites have the

same status.) In this case, we found 47 significant clusters in

bacteria, 12 in fly, and 6 in mammals. We then calculated the

fraction of buried sites within each significant cluster, and

compared this fraction for clusters determined with and without

controlling for solvent accessibility. We found that clusters

determined without controlling for solvent accessibility tend to

have fewer buried sites, i.e., are more exposed (two-sample t-test

on pooled data from all three species groups, P,0.001, see also

Fig. 3).

For bacteria, we also used our algorithm to calculate mutation

clusters for all ORFs, regardless of whether we had protein

structures for them or not, again artificially treating all residues as

buried. We found 1070 significant clusters out of 13642 potential

clusters. We then determined where within each coding sequence

the mutation clusters were located, and found that the distribution

of cluster locations along the coding sequence was not uniform (x2-

test, P,10210). Clusters appeared more frequently on the termini

(within 10% of total sequence length), as shown in Fig. 4. This

result agrees with our hypothesis that solvent exposure can lead to

spurious mutation clusters. Terminal regions of proteins (i.e., the

N- and C-termini) are predominantly located on the protein

surface and are exposed to the solvent [47–49]. By contrast, when

controlling for solvent accessibility, we found only 2 out of 20

significant clusters within 10% (in terms of total sequence length)

Figure 2. Species considered in this work. For each set of four species, we only considered mutations that were conserved within the upper and
lower branch but differed between these two branches, and searched for clustered occurrences of these mutations. Branch lengths are not to scale.
doi:10.1371/journal.pone.0003765.g002
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of the C-terminus, and none out of 12 significant clusters within

10% of the N-terminus. For this analysis, we considered only those

proteins for which the terminal region of interest was not

truncated in the PDB structure. Therefore, we had only 20

clusters whose location we could determine relative to the C-

terminus, and 12 relative to the N-terminus.

Example mutation clusters
Supplementary Tables S1, S2, and S3 list the significant

mutation clusters in the three species groups. The mutation

clusters span on average 9.2%, 7.3%, and 3.8% (numbers are for

bacteria, fly, and mammals) of the coding regions in which they

appear. Supplementary Figures S1.1–S1.39 show how each cluster

maps onto the corresponding protein structure. The figures also

show each cluster in the context of a multi-species sequence

alignment. Supplementary Text S1 provides an overview over all

supplementary materials.

We now discuss two examples of mutation clusters. The first

example is the human enzyme carbonyl reductase 3 (CBR3,

ENSG00000159231), which catalyzes the NADPH-dependent

reduction of a variety of xenobiotic ketones and quinones

[50,51]. The mutation cluster in CBR3 runs from position 239

to position 244. It is fully conserved within primates and within

rodents, but differs at all amino acid positions between these two

groups (Fig. 5). The same region is also highly variable in other

species; the sequences of other vertebrates share little similarity

with either the primate or the rodent sequence in the cluster region

(Fig. 5).

The tertiary structure of CBR3 is shown in Fig. 6. In this

protein, it is known that the peptide region in the C-terminal half

constitutes the outer walls of the substrate-binding cleft of the

active site, which provides specific interactions that are critical to

the selectivity of substrates and to the mechanism of molecular

recognition by the enzyme [52]. The mutation cluster detected by

our method is located in the substrate entry-loop between b-sheet

F (bF) and a-helix G (aG), which tightens on the substrate upon its

entry into the active site providing additional substrate-specific

interactions [52–55]. It is also reported that this entry-loop is

tighter in human CBR3 in comparison with porcine testicular

carbonyl reductase (PTCR), which shares about 70% sequence

identity with CBR3 [56]. Conceivably, the mutation cluster

influences the docking and/or release of the cofactor during

enzymatic catalysis [56].

The second example is the b subunit of nitrate reductase A

(NarH, b1225) in E. coli. The mutation cluster runs from position

133 to position 164, and is completely conserved within both E. coli

and S. enterica (Fig. 7). Among the two groups, the cluster region

has 66% sequence similarity, while the entire gene has 93%

sequence similarity. Shigella sequences in the cluster region are

identical to the E. coli sequences (Fig. 7), in agreement with the

notion that Shigella strains are clones of E. coli [57].

E. coli can use nitrate as an electron acceptor for anaerobic

growth [58,59]. This oxidoreduction is catalyzed by nitrate

reductase A (NarGHI), which is a membrane-bound complex of

three subunits coded by three genes, NarG, NarH, and NarJ.

NarH is an [Fe-S]-cluster-containing electron transfer subunit

[59,60]. The mutation cluster found in NarH is located in the

motif which is thought to have an important function in defining

subunit-subunit interactions within the overall structure of

NarGHI and to provide additional shielding of [Fe-S] clusters

from the aqueous milieu [60] (Fig. 8).

Other clusters that were readily determined to be in locations

important to the structure and/or function of the protein are as

follows. The cluster in the E. coli gene pepN lies in the substrate-

recognition domain of the protein [61]. The cluster in the fly gene

CkIIb2 partly overlaps with an acidic loop that is important for

modulating autophosphorylation and the overall activity of the

protein [62]. The cluster in the mammalian gene NEDD8 is

completely conserved in all vertebrates but rodents. Non-rodent

vertebrates have a lysine at position four which forms a salt bridge

with the glutamic acid at position 12 [63]. In rodents, the lysine is

Figure 4. Distribution of cluster positions, for E. coli clusters
found without controlling for solvent accessibility. The relative
cluster position was calculated by dividing the cluster’s central
coordinate by the total sequence length. The cluster positions are not
uniformly distributed, and clusters are most frequent in terminal
regions of proteins.
doi:10.1371/journal.pone.0003765.g004

Figure 3. Fraction of buried sites in significant clusters
obtained by either controlling or not controlling for solvent
accessibility (SA). If solvent accessibility is not controlled for, many of
the resulting clusters are located in exposed regions of the protein.
doi:10.1371/journal.pone.0003765.g003
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replaced by another glutamic acid, which disrupts the salt bridge

and likely alters the protein structure.

Comparison with dN/dS-based methods
As discussed in the introduction, the most commonly used

methods to detect positive selection rely on high dN/dS values.

Therefore, for genes for which we found clusters, we also carried

out dN/dS-based analyses.

First, for the mammalian clusters, we determined whether our

mutation clusters coincided with sites predicted to have elevated

dN/dS according to Bayes Empirical Bayes Inference [9], as

published in the Human PAML Browser [64] (http://mendel.

gene.cwru.edu/adamslab/pbrowser.py). Of the five genes for

which we identified mutation clusters, the PAML Browser

contained results for only three (Ensembl IDs ENSG00000105220,

ENSG00000129559, ENSG00000198951). For neither of these

did we find that mutation clusters overlapped with sites predicted

to have dN/dS.

Second, we compared our results to results obtained by a 3D

sliding window method [7,65,66]. We carried out this analysis

using the SWAKK web server [66] (http://oxytricha.princeton.

edu/SWAKK/), using a 3D window size of 10Å. Because this

method can only work on pairs of sequences, we compared E. coli

K12 with S. enterica CT18 for bacteria, D. melanogaster with D.

persimilis for fly, and human with mouse for mammals. As with

Bayes Empirical Bayes Inference, the mammalian clusters did not

overlap with regions predicted to have dN/dS.1. In contrast, eight

of the bacterial clusters and one fly cluster coincided with regions

with dN/dS.1 (Fig. 9).

Figure 5. Multiple sequence alignment of the human protein CBR3 and its orthologs in chimpanzee, macaque, mouse, rat, cow, cat,
chicken, zebrafish and Xenopus tropicalis. The mutation cluster spans from position 239 to position 244 and is marked by the symbol X.
doi:10.1371/journal.pone.0003765.g005

Figure 6. The tertiary structure of CBR3. The mutation cluster is
shown in red, b-sheet F is shown in blue, and a-helix G is shown in cyan,
while the remainder of the protein is shown in green. Coenzyme
NADPH is shown in yellow.
doi:10.1371/journal.pone.0003765.g006
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Discussion

We have presented a new method to discover clustered

evolution in protein-coding sequences. Our method takes into

account the increased variability of exposed residues relative to

buried residues and finds clusters of mutations that are unlikely to

have arisen by chance given their composition of buried and

exposed residues. The method can find multiple clusters in a single

gene, and uses permutation tests to assign accurate P-values to

each cluster.

We have used this method to search for mutation clusters in

bacteria, fly, and mammals. By and large, we have found that

mutation clusters are not particularly common. We found a total

of 31 clusters in 356 bacterial genes, 6 clusters in 99 fly genes, and

5 clusters in 246 mammalian genes. However, some of the clusters

we found were striking. For example, in the E. coli fumarate

reductase flavoprotein subunit (FrdA, b4154), nearly half of the

sequence differences relative to the S. enterica ortholog fall into the

mutation cluster, which nonetheless spans only 5% of the entire

protein. Several of the clusters we have identified seem to be

located in or adjacent to active sites or otherwise functionally

relevant regions of the protein. We therefore expect that a good

fraction of the clusters we found reflect functional divergence

between the species groups we compared. Unfortunately, we did

not find a single example where the corresponding protein had

been experimentally characterized in both species. Therefore, at

this point we can only speculate about the meaning of the clusters.

By controlling for solvent accessibility, we avoid detecting

spurious clusters that only reflect inherent variability differences

along the protein sequence. Yet controlling for solvent accessibility

does not preclude the possibility that clusters arise more frequently

in either buried or exposed regions. For example, if mutations in

exposed regions tended to be distributed uniformly along the

protein sequence whereas mutations in buried regions tended to be

clustered together, we would find an excess of mutation clusters in

buried regions even after controlling for solvent accessibility. We

therefore tested whether mutation clusters were particularly likely

to appear in either buried or exposed regions, and found no such

signal. Neither did we find a propensity of clusters to appear in

specific secondary structure elements.

We also tested whether mutations in clusters were more

physicochemically radical. We found a weak signal for molecular

volume, but no signal for side-chain composition, polarity,

hydropathy, or isoelectric point. This result seems to support the

notion that adaptive evolution does not coincide with more radical

amino-acid replacements [39–41]. Because we had a relatively

small data set of only 42 significant mutation clusters, we had

limited statistical power to detect differences between mutations

inside and outside of clusters. Therefore, our results do not imply

that clustered mutations are completely indistinguishable from

non-clustered mutations. However, they do imply that any

difference between these two types of mutations must be minor.

We have found that controlling for solvent accessibility is crucial

to avoid detecting clusters that simply reflect highly variable loop

Figure 7. Multiple sequence alignment of the E. coli protein NarH and its orthologs in S. enterica, Shigella boydii and Shigella
dysenteriae. The mutation cluster spans positions 133 to 164 and is marked by the symbol X.
doi:10.1371/journal.pone.0003765.g007

Figure 8. The tertiary structure of NarH. The mutation cluster is
shown in red, while the remainder of the protein is shown in green. [Fe-
S] clusters are shown in orange.
doi:10.1371/journal.pone.0003765.g008
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regions or other highly variable exposed regions of the protein. If

we do not control for solvent accessibility, we find an excess of

mutation clusters in highly variable terminal regions of the

proteins, and we find clusters that are predominantly comprised of

solvent-exposed residues.

One issue we encountered repeatedly when we initiated this work

was the emergence of spurious clusters in two-species comparisons.

The most extreme case arose in a comparison of human to macaque

genes, where we found multiple putative clusters that could be

traced to problems with the macaque draft genome sequence. To

avoid such problems, we decided to base our analysis on a

comparison of pairs of species, and considered as mutated only

those sites that were conserved within each pair but differed among

pairs. Conversely, our method might be useful for quality control in

the automated assembly of newly sequenced species. Any cluster

that shows up in a pairwise comparison of a newly sequenced species

and a closely related species should be considered suspicious. These

clusters could then be double-checked manually for accuracy.

Our method has several limitations. First, we require solved

protein structures for every gene we analyze. This requirement

severely limits the size of the data sets we can analyze. One

possibility to alleviate this limitation would be to use computa-

tionally predicted solvent accessibilities for those genes or parts of

genes for which no solved protein structure is available. The

drawback of this approach is that these computational predictions

are typically only 70%–80% accurate [67–71], and it is not clear

how incorrectly predicted solvent accessibility would affect the

clusters found by our algorithm.

Second, and more importantly, our method finds clusters in the

protein’s primary structure (i.e., its sequence). Mutation clusters in

Figure 9. dN/dS in 3D window versus the residue number at the center of the 3D window. The red coloration indicates residues which we
identified as being part of a mutation cluster. The dashed line indicates dN/dS = 1. We show 3D-window analyses for all cases in which a mutation
cluster we identified coincided with a dN/dS-value above 1. There are eight such cases for bacteria (b0158–b4239), one in fly (FBgn0026136), and
none in mammals.
doi:10.1371/journal.pone.0003765.g009
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the primary structure will generally map to clusters in the tertiary

structure [10], but the converse is not necessarily true. A cluster in

tertiary structure can conceivably consist of mutations that are

distant in primary structure. Such clusters would be missed by our

method. It would, however, be straightforward to modify our

method so that it does apply to 3D space. Instead of searching for

clusters in consecutive stretches of the amino-acid sequence, we

would have to consider spheres with varying radii centered around

the mutations in the protein. Eq. 3 would still apply if we

interpreted nb and ne as the total number of buried and exposed

amino acids in the sphere, and fb and fe as the fraction of mutations

at buried and exposed sites in the protein. All other aspects of our

method would transfer to the 3D case without change.

Third, separating all residues into groups of either buried or

exposed residues may be too coarse. Sequence conservation varies

continuously with solvent accessibility [31], and hence there may

still be significant variation in the mutation probabilities within all

residues we considered exposed or buried. Moreover, we considered

only the solvent accessibility in a protein’s tertiary structure.

However, residues that are solvent-exposed in tertiary structure but

buried in quaternary structure tend to be more conserved than

residues that remain always exposed [35,72,73]. In principle, all

these drawbacks can be alleviated by introducing additional classes

of residues, say partially exposed residues, or exposed residues in

contact with other proteins. The problem with such an approach is

that with any additional residue class that we introduce, it becomes

harder to reliably estimate the mutation frequency within that class.

One possibility would be to combine our approach with

evolutionary trace methods [74]. Evolutionary trace methods aim

to identify functional sites in proteins by locating regions of high

sequence conservation in large multiple sequence alignments,

whereas our approach does the opposite. It finds regions with

unusually high sequence variability. It would be possible to use a

method similar to the evolutionary trace to calculate a background

variability of each site, and then use a method similar to ours to

search for clusters of mutations that are particularly unlikely to arise

under this background level of variation.

When comparing mutation clusters to results from dN/dS-based

methods, we found that approximately 20% of the clusters we

identified coincided with regions with dN/dS.1, while the

remainder did not. What should we have expected for this

comparison? One significant difference between mutation clusters

and the dN/dS-based methods is that the latter use an absolute

standard, i.e., they search for sites or regions with dN/dS.1,

whereas our method finds regions in which dN is elevated

compared to the rest of the gene. For example, if a gene has

dN/dS = 0.01 throughout, apart from a small region with dN/

dS = 0.8, and assuming that the difference in dN/dS is caused by a

change in dN and not dS, the region with dN/dS = 0.8 would likely

be identified as a mutation cluster by our method but would not

register in screens for dN/dS.1. On the other hand, because we

identify mutation clusters purely based on nonsynonymous

mutations, post-hoc testing for elevated dN/dS in cluster regions

suffers from ascertainment bias. In other words, we expect to find

cases with dN/dS.1 simply because of the way in which we carried

out our analysis, and we would obtain this result even in simulated

data sets generated with completely homogeneous substitution

rates and without any positive selection.

Do the clusters we identify actually represent positive selection,

or might they just reflect relaxed selective pressures? We concede

that the latter is a realistic possibility. Even though we certainly

removed some regions of relaxed selection by considering

separately the more and less variable regions in each protein, we

have no guarantee that the remaining clusters are not caused by

relaxed selection. In fact, positive and relaxed selection can lead to

very similar patterns of evolution. For instance, significant

divergence in the active site of a protein could indicate adaptation

to a new enzymatic function, but it could also indicate loss of

function. An example of the latter case would be a protein whose

main importance has become structural, as has happened with

crystallins [75]. As recent work on the dN/dS method has shown

[23], reliable identification of positive selection by purely statistical

methods is extremely difficult. For these reasons, we believe that

the main purpose of our method is to identify unusual patterns of

sequence divergence. The mechanisms by which these patterns

arose will have to be determined separately, most likely by direct

biochemical experimentation.

Materials and Methods

Genomic and structural data
For bacteria, we obtained orthologs between E. coli K12, E. coli

CFT073, S. enterica CT18, and S. enterica Ty2 from TIGR’s

Comprehensive Microbial Resource’s multi-genome homology

comparison tool (http://cmr.tigr.org/). For fly, we obtained

orthologs between D. melanogaster, D. sechellia, D. persimilis, and D.

pseudoobscura from the Drosophila 12-genome project AAAWiki at

http://rana.lbl.gov/drosophila/. For mammals, we obtained

orthologs between H. sapiens, P. troglodytes, M. musculus, and R.

norvegicus from Biomart through the Ensembl Homology track

(http://www.ensembl.org/). For each group of orthologs, we

obtained aligned nucleotide sequences based on the alignment of

the peptide sequences, which we generated with MUSCLE [76].

We excluded from our data set those ortholog pairs for which less

than 80% of either sequence could be aligned to the other

sequence. Then we determined from the alignments the number

and coordinates of all amino acid changes that had occurred

between the species pairs of each group (bacteria, fly, and

mammals). In other words, we considered only mutations shared

by the species pairs. We excluded from this count all sites at which

at least one sequence had an indel (alignment gap). For genes with

multiple transcripts, we based our analysis on the longest transcript

that could be aligned to a PDB structure (see next paragraph).

Moreover, to be conservative, we considered only those sites as

mutated for which no transcript in one species pair agreed with

any transcript in the other species pair.

We matched sequences to protein structures using the GTOP

(Genomes TO Protein structures and functions) database [77]. For

a given match in the GTOP database, if the region of similarity

was longer than 80% of the protein length and the sequence

identity was larger than 40% of the sequence in the Protein Data

Bank (PDB), the match was saved for further calculation. This

process yielded 777, 795, and 860 matches in E. coli, D.

melanogaster, and H. sapiens, respectively.

For each protein with a match, the corresponding 3D structural

information was obtained from the PDB. We aligned the orthologs

plus the sequence of the corresponding PDB structure with

MUSCLE, and then calculated the percent solvent-accessible

surface area for each orthologous residue position using the DSSP

(Dictionary of Protein Secondary Structure) program [78]. We

normalized these results by the reference surface areas of an

extended Gly-X-Gly peptide [79]. We considered residues with

less than 25% relative solvent accessibility as buried. We also

calculated the secondary structure for each aligned residue

position using the DSSP program [78]. We simplified our data

set by keeping track of only four types of secondary structure

elements: helix (DSSP class H), sheet (DSSP class E), turn (DSSP

classes S and T), and coil (DSSP classes B, G, I, and ‘.’).

Detecting Clusters of Mutation

PLoS ONE | www.plosone.org 8 November 2008 | Volume 3 | Issue 11 | e3765



We excluded from our analysis those alignments in which there

was at least one site without known solvent accessibility. Our final

datasets contained 356, 99, and 246 orthologs for bacteria, fly, and

mammals, respectively.

Computational method for cluster detection
Under neutrality, all sites in a protein of length l with m amino

acid mutations are equally likely to have been mutated. Therefore,

the m mutations should be evenly distributed over the entire

protein. In this case, the probability of getting exactly k mutations

in n successive residues is given by the binomial distribution,

p k; n,fð Þ~
n

k

� �
f k 1{fð Þn{k

, ð1Þ

where
n

k

� �
is the binomial coefficient, and we define f = m/l. The

probability q(k; n, f) that the number of mutations in n successive

residues is no less than k is equal to

q k; n,fð Þ~1{
Xk{1

i~0

p i; n,fð Þ~1{I1{f n{kz1,kð Þ, ð2Þ

where I12f (n2k+1, k) is the regularized incomplete beta function

[80].

Now assume that the protein is subdivided into buried and

exposed residues, and that the mutation probability differs among

these two classes of residues. We denote the number of exposed

residues by le and the number of buried residues by lb, with le+lb = l.

Assume that there are me mutations at exposed sites and mb

mutations at buried sites, with me+mb = m. Then, for a stretch of n

residues with ne exposed residues and nb buried residues (n = ne+nb),

the probability that these n residues contain at least k mutations,

given that mutations are equally likely at all exposed and all buried

sites, becomes

q k; ne,nb,fe,fbð Þ

~1{
Xk{1

i~0

p i; ne,feð Þ
Xk{1{i

j~0

p j; nb,fbð Þ
" #

~1{
Xk{1

i~0

ne

i

 !
f i
e 1{feð Þne{i

I1{fb
nb{kz1zi,k{ið Þ

" #
;

ð3Þ

where fe = me/le and fb = mb/lb.

Using Eq. 3, we calculate q(k; ne, nb, fe, fb) for all possible

contiguous sets of mutations. Assume that the m mutations are

located at positions x1, x2, …, xm in the gene. We first consider all

possible clusters starting with the first mutation at position x1. The

corresponding sets of mutations are {x1, x2}, {x1, x2, x3}, …, {x1,

…, xm}. The set with the minimum q(k; ne, nb, fe, fb) is recorded as

C1, and the corresponding q(k; ne, nb, fe, fb) as Q1. We then repeat

this procedure for sets starting at position x2, x3, and so on. This

procedure yields mutation sets C2, C3, …, Cm21 with associated

minimum-q(k; ne, nb, fe, fb) values Q2, Q3, …, Qm21. The Q-

landscape plots the Qi values (i = 1, 2, …, m21) against the

corresponding mutation index i (see Fig. 1). Local minima in this

landscape represent possible mutation clusters, and we discard all

sets of mutations that overlap with other sets having lower Q

values.

Q values are probabilities, but they do not correspond to the

probability that a given cluster arises by chance in the context of

the other mutations present in the gene. In other words, we cannot

equate a cluster’s Q value with the cluster’s P value. We calculate P

values by interpreting Q as our test statistic. (In this context, we

add the subscript s to Q.) For a given cluster with test statistic Qs in

a given gene, we carry out at least 104 independent, random

reshufflings of the mutations, keeping the number of mutations at

buried and exposed sites constant. For each reshuffled set of

mutations, we repeat our procedure of identifying non-overlapping

sets of mutations starting at local minima in the Q-landscape, and

record whether Qs,Q for these sets. The total fraction of times

that Qs,Q is the cluster’s P value. We refer to this value as PU,

because it has not been corrected for multiple testing. We then

carry out a false-discovery-rate correction [36] on the PU values for

all potential clusters in a given species, and record the corrected

values as PM. Clusters with PM,0.05 are significant and are

unlikely to have arisen by chance.

We implemented this algorithm as a C program called

‘‘ClusterExplorer’’. The program’s source code is available as

part of the online supplementary materials for this paper.
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