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Abstract

Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic
etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read,
shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous
analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200
transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical,
sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls.
Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-
represented among differentially expressed genes. Twenty three genes with altered expression and involvement in
presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for
dysfunction in cerebellar cortex in SCZ.
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Introduction

Schizophrenia (SCZ [MIM #181500]) is a common, severe
psychiatric disorder with a strong genetic component and complex
inheritance [1-5]. Cytogenetic, linkage, positional cloning,
candidate gene association and genome-wide studies have
identified several credible SCZ risk genes. However, few have
yet been replicated or translated into causal alleles, @ wvitro
diagnostics or therapeutics [6-8]. In many studies of SCZ, genetic
analysis has been impeded by phenotypic definition based upon
multiple, subjectively ascertained, behavioral parameters that lack
reference to biological mechanism [9-12]. In addition, more than
20 whole-genome linkage scans have demonstrated heterogeneity
of linkage [13], suggesting the existence of genocopies (similar
phenotypes that are determined by distinct risk loci) [12].
Evidence exists that the genetic architecture of SCZ may be
further obscured by allelic heterogeneity (additive genetic variance
segregating in the population at causative loci), epistasis (different
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combinations of loci producing a phenotype in different
pedigrees), pleiotropy (loci that affect more than one phenotype)
and phenocopies (heterogeneous environmental factors that mimic
allelic effects) [14]. In addition, contributions of risk alleles to
complex traits may not fit basal multiplicative and/or threshold
models, and studies performed to date may not have had sufficient
power, or appropriate theory, to assess non-linear (i.e., epistatic
and genotype-by-environment) models. As a result, case-control
association studies have identified numerous significantly associ-
ated susceptibility loci, but lack of replication among studies is
widespread [3,4,8,15-18]. Furthermore, the most validated loci
were largely selected based on involvement in networks implicated
in SCZ (such as dopaminergic and glutamatergic neurotransmis-
sion), introducing bias and limiting identification of novel risk
factors.

Absence of a clear understanding of the molecular basis of SCZ
imposes significant challenges to timely diagnosis and prognostic
or therapeutic categorization [12,19]. Supplementation of diag-
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nostic criteria with biomarkers that are causally related to SCZ or
endophenotypes may allow definition of homogeneous subgroups
that are predictive of progression and therapeutic response in
individual patients [20] and would serve as a starting point for
development of therapeutics directed at causal variants. An
alternative approach for molecular dissection of SCZ is identifi-
cation of altered gene expression in affected tissues. Because gene
expression reflects both genetic and environmental influences, it
may be particularly useful for identifying risk factors for a complex
disorder such as SCZ, which is believed to have a multifactorial
etiology [21]. Two factors have hitherto limited the effectiveness of
gene expression analysis in SCZ: Firstly, mRNA analyses in post-
mortem brains in SCZ is challenging due to type I and type 11
errors resulting from variation in cause of death (affecting agonal
gene expression), postmortem interval (affecting RNA quality),
concurrent medication, substance abuse, age, sex, race and
duration of illness [22]. Secondly, in common with genome-wide
association studies, gene expression comparisons employing
available cohort sizes sail between the Scylla of many false-
positives due to multiple comparisons and the Charybdis of
msufficient power to detect true-positives following statistical
correction [23]. Recently, however, studies of mRNA expression
in post mortem brains in SCZ that account for these variables
have started to be reported [7,21,22].

An elegant, new approach to navigate Scylla and Charybdis
and, thereby, accomplish molecular definition of SCZ may be
genomic convergence analysis [24]. Predicated on an implication
of the central dogma of molecular biology, genomic convergence
analysis posits that clinically relevant nucleotide variation should
result in detectable c¢is- and trans-effects in messenger RNA
(mRNA) that amalgamate into functional changes in networks
and pathways. Importantly, genomic convergence analysis pro-
vides a strategy to collectively interpret and employ the massive,
disease-related data sets produced by unbiased (i.e. non-hypothesis
driven) linkage and expression studies. Indeed, integration of gene
expression and genetic linkage data has shown promise in several
neurologic disorders [24-27] and has started to be applied to SCZ
[7,28-30].

mRNA sequencing with shotgun, massively parallel sequencing
platforms has recently shown utility for measurement of transcript
abundance, splice isoforms and allelic influence on gene expression
[31-50]. mRNA abundance is determined by sequencing either 3’
end tags or random cDNA fragments (digital transcript expression,
DTE), followed by read alignment to reference databases and
calculation of aligned read frequencies. Potential advantages of
DTE in comparison to array hybridization include: single
molecule sensitivity (corresponding to approximately 1 mRNA
molecule per 30 cells; Hayashizake, personal communication);
absolute, rather than relative, measurement of transcript abun-
dance; sequence verification for each measurement; comprehen-
sive detection of both known and novel, unannotated transcripts
and isoforms; applicability to any eukaryotic species; very little
technical imprecision; absence of interference from abundant
transcripts (e.g. globin); and extensibility to concomitant measure-
ment of non-coding RNA and to detection of nucleotide and
structural variation.

As the first stage of a genomic convergence analysis of SCZ, we
describe shotgun mRNA sequencing of an affected tissue (post-
mortem cerebellar cortex) of patients and controls, together with a
rigorous and systematic approach to DTE. The approach
presented is conservative due to application of statistical and
bioinformatic methods that substantially reduce type I error rates
by using statistical significance criteria rather than fold-change
values and by incorporation of potential confounding variables,
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such as psychotropic medication and cause of death. It is also more
comprehensive than prior microarray studies of SCZ. The
stringency of this approach, in combination with genome-wide
genotypes from the same individuals, is anticipated to enable a
genomic convergence analysis that advances understanding of the
molecular basis of SCZ.

Results

Sequencing-by-synthesis of cerebellar mRNA

16.7 billion nucleotides of shotgun, full length cDNA sequence
data were generated using Illumina Genome Analyzer platforms
with sequencing-by-synthesis (SBS) chemistry from 20 mRNA
samples [39,42,43]. mRNA samples were isolated post-mortem
from the lateral hemispheres of the cerebellar cortices of 14
patients with SCZ and 6 control individuals [51,52] (Table 1).
Unrelated subjects were chosen to facilitate sampling of genetic
heterogeneity [53,54]. Cases and controls were approximately
matched for age (cases, 45.2+11.8 years; controls 41.3%9.2 years),
sex (all male), race, post-mortem interval (cases, 12.2%+5.0 hours;
controls 17.7%3.3 hours), cause of death, autopsy brain pH (cases,
6.54*0.19; controls 6.46*0.10) and RNA integrity number (cases,
8.06*0.53; controls, 7.87+0.41) (Table 1). 12.5-38.7 million, high
quality sequences of length 32-36 bp were generated per sample
(Table 2). Sequences were aligned to the human genome and
RefSeq transcript databases using the algorithm GMAP, which
allowed <2 (=6%) mismatches [55]. There was little intra-sample
variability in the number of sequences aligned to each locus from
run-to-run  or instrument-to-instrument (Fig. 1A; all source
coefficient of variation 3.4%). 43.5%6.7% of sequences aligned
to a transcript and 69.4*9.6% to the genome, evidence that
annotation of mRINA isoforms in Homo sapiens is incomplete [56]
(Table 2). 91% of alignments were unique (Table 2). Reads
aligning to more than one location contained repetitive,
paralogous, polymorphic or low complexity sequences and
primarily mapped to untranslated regions or highly polymorphic
gene families, such as major histocompatibility genes [48].
Unmapped sequences did not align to mitochondrial or 1879
viral genomes, offering negative evidence of chronic viral etiology
for SCZ in these patients.

In order to further investigate differences in proportions of
sequences aligning to different reference databases, an additional
2.2 billion nucleotides of shotgun, full length, paired cDNA
sequence data were generated from mRNA sample 3S using an
Ilumina Genome Analyzer II platform and aligned to three
reference databases (the human genome, RefSeq transcript and
UniGene transcript databases): 46.1% of reads aligned to all three
databases, representing known exons. 31.4% of reads aligned to
the genome alone, representing novel exons, splice isoforms [57]
or transcripts [56]. 5.5% mapped to RefSeq transcript alone, and
6.5% to UniGene transcript alone, representing sequences that
span known exon junctions [57]. 10.6% of reads did not align to
any of these reference sets, representing reads that span
boundaries of novel exons or splice isoforms, novel genomic
sequence, or poor quality sequence.

Coverage and Composition of cDNA Sequences

The number of transcripts detected in cerebellar cortex mRNA
differed little between samples (33,200%1,000; Table 2), corre-
sponding to 85%£3% of RefSeq transcript entries. While 12.5
million sequences per sample was sufficient to reach a plateau in
the number of transcripts detected, deeper sequence generation
resulted in linear increase in average depth of coverage (Fig. 1D).
As anticipated with hexamer-primed c¢DNA synthesis, the
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Table 1. Clinical Features of Patients and mRNA Samples.

Age Post Mortem
Sample Diagnosis (Years) Race Death Cause Treatment Interval Brain pH RIN’'
1 SCZD 62 African American ASCVD? Olanzapine 12 hours 6.56 74
11S SCZD 38 African American Pneumonia Chlorpromazine 5 hours 6.64 8.5
18 SCZD 45 Caucasian Suicide Olanzapine 6 hours 6.65 84
1S SCZD 53 Caucasian ASCVD Perphenazine 11 hours 6.69 7.9
2 SCZD 69 African American ASCVD Haloperidol 14 hours 6.71 8.2
31 SCZD 46 Caucasian ASCVD Olanzapine 20 hours 6.42 9.3
36 SCZD 59 Caucasian Embolism Haloperidol 13 hours 6.67 8.4
39 SCZD 31 African American ASCVD Clozapine 14 hours 6.74 83
3S SCZD 38 African American Asphyxia Prolixin 6 hours 6.22 7.8
41 SCZD 37 Caucasian Suicide Risperidone 14 hours 6.68 7.3
42 SCZD 33 African American Apendicitis Olanzapine 12 hours 6.21 74
5 SCZD 49 Caucasian Intoxication Thioridazine 16 hours 6.55 8.1
55 SCZD 42 African American Tuberculosis Trilafon 21 hours 6.25 7.8
7S SCZD 32 Caucasian Suicide Clozapine 7 hours 6.58 8.0
17 Control 48 Caucasian SAH . 19 hours 6.51 8.0
2S Control 50 Caucasian ASCVD . 22 hours 6.38 7.8
35 Control 33 African American Obesity . 14 hours 6.50 8.6
40 Control 43 Caucasian ASCVD . 20 hours 6.29 7.5
6S Control 47 Caucasian Arrhythmia . 17 hours 6.52 7.5
8S Control 27 African American Asthma . 14 hours 6.56 7.8

"RNA Integity Number; 2Arteriosclerotic Cardiovascular Disease.
doi:10.1371/journal.pone.0003625.t001

Table 2. cDNA Sequencing and Alignment Statistics.

Average Average Reads Unique Reads Unique Transcript Average
Year Read Read Number of  Aligning to Genome Algining to  Transcript Matches Transcript

Sample Sequenced Length Quality®  reads Genome? Alignments  Transcripts' Alignments (1000 s) Coverage
1 2007 32 20 23,241,938 78% 68% 50% 45% 333 9.4 x

118 2007 35 28 14,572,861 65% 54% 44% 37% 314 7.0x

18 2007 32 21 25,129,004 79% 69% 52% 46% 33.8 9.6 x

1S 2007 32 19 36,760,977 73% 64% 48% 43% 346 12.7x

2 2008 36 31 19,241,726 69% 60% 36% 32% 334 6.2

31 2008 36 33 19,867,823 71% 63% 40% 36% 329 6.8%

36 2007 32 21 20,111,871 77% 67% 46% 41% 33.0 7.0x

39 2007 33 29 23,055,778 72% 63% 44% 39% 348 8.3x

3S 2007 34 26 17,846,750 52% 46% 35% 31% 324 5.8x

41 2007 32 21 38,658,913 75% 66% 50% 45% 339 13.4x

42 2007 35 28 17,588,723 63% 56% 38% 34% 337 55x

5 2008 36 31 21,229,299 70% 61% 37% 33% 329 7.5x%

58 2007 32 21 28,944,566 77% 66% 42% 36% 34.0 10.0x

7S 2007 34 25 13,769,073 61% 54% 40% 36% 321 4.7 x

17 2008 36 22 12,890,252 52% 47% 35% 31% 315 4.0x

2S 2008 36 23 12,482,759 49% 44% 31% 28% 314 3.4x

35 2008 36 27 25,402,905 71% 63% 48% 44% 338 10.3x

40 2008 36 27 24,486,091 72% 64% 47% 42% 334 9.7x

6S 2008 32 23 24,347,196 80% 71% 54% 48% 334 9.4 x

8s 2008 32 22 24,016,465 81% 71% 52% 46% 335 9.4 x

TAlignments to RefSeq Human transcript database, Release 22; 2Alignments to NCBI Human genome sequence, Build 36.2; *Uncalibrated quality scores.
doi:10.1371/journal.pone.0003625.t002
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Figure 1. Characteristics of cDNA sequencing-by-synthesis with lllumina/Solexa instrument. (A) Run-to-run comparisons of the number
of reads aligned per reference transcript for 2 SBS runs of cerebellar cortex #41 (21.6 and 17.0 million reads, respectively). Runs used the same library
but were performed on different sequencing instruments on different days. Coefficient of variation was 3.4%. (B) Histogram showing coverage along
an “averaged” reference transcript for 1.2 Gb of cerebellar cortex #41 cDNA sequences. Coverage was calculated at 1% intervals along each
transcript to which reads aligned. At each interval coverage was averaged across all transcripts and plotted. “Short transcripts” are all transcripts of
=500 bp to which reads were aligned. “Long transcripts” are all transcripts =10 kb to which reads were aligned. Numbers in parentheses are the
number of transcripts represented by each category. (C) Histogram showing greater than exponential decline in frequency with increasing SBS
coverage on reference transcripts for cerebellar cortex #41 (1.2 Gb). Of 33,938 transcripts, 111 had more than 300x coverage. Maximum coverage
was 2323 x. Best fit power trendline is shown. (D) Histogram showing the number of reference transcripts covered as a function of the amount of
sequence generated. Different levels of minimum average coverage were examined: at least one read aligned (black circles), 1x average coverage
(red triangles), 2 x average coverage (green “+"), 4 x average coverage (dark blue “x"), and 8 x average coverage (light blue squares). Data are from
SBS of cerebellar cortex #41 (1.2 Gb).

doi:10.1371/journal.pone.0003625.g001

distribution of sequence alignments along transcripts appeared
random. Transcript coverage showed a moderate 3’ bias,
particularly among long transcripts, attributable to only very
slight levels of degradation in these samples together with two
rounds of poly-A* RNA selection (Fig. 1B). Decreased coverage
was observed at 5" and 3’ termini due to edge effects of random
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priming very close (<30 nts) to the ends of the mRNA. No
compositional bias was detected. The average depth of coverage
achieved was 8.0-fold (Table 2). The distribution of transcript
abundance in cerebellar cortex was interesting: 76-81% of
expressed transcripts had an abundance of at least 1 read per
million. However, as abundance increased, the number of
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transcripts declined greater than exponentially (Fig. 1C, r* = 0.97).
Thus, only 0.3-0.5% of expressed transcripts had an abundance of
=1000 reads per million.

Comparison of Digital Transcript Expression and Array
Hybridization

Gene expression was evaluated in mRNA samples from the 20
cerebellar cortices using both oligonucleotide array hybridization,
the current standard, and tag frequencies from the Illumina cDNA
sequencing assay (aligned reads per million). The dynamic range
of read frequencies was two orders of magnitude greater than
array hybridization (log)y dynamic range DTE-4.37; logq
dynamic range array hybridization—2.33; Fig. 2). While 41% of
arrayed oligonucleotide probes had hybridization intensities
greater than the conventional signal: noise threshold (Fig. 2),
85%3% transcripts had aligned reads. Array hybridization signals
are transformed and often normalized prior to evaluation of inter-
sample differences. For read frequencies, log transformation, but
not normalization, improved overlaid kernel density estimates,
univariate distribution results, and Mahalanobis distances (Fig. 3
and 4). Therefore, log transformed values were used in all
subsequent expression analyses. Aligned read frequencies, adjusted
for transcript length, correlated weakly with oligonucleotide array
hybridization signals (r? = 0.35; Fig. 2). Read frequencies exhibited
much higher correlation coefficients in pair wise sample
comparisons (r*=0.93-0.99) than array hybridization (r=0.83—
0.88; Fig. 5 and 6). FFurthermore, pair wise sample correlations of
genome- and transcript-aligned read frequencies had very similar
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Digital Gene Expression in SCZ

correlation coefficients (data not shown). SCZ patients could
readily be distinguished from controls by unsupervised principal
component analysis (by Pearson product-moment correlation,
Fig. 7B) or Ward hierarchical clustering of Pearson product-
moment correlations of read frequencies (data not shown). In
contrast, patients and controls could not be separated with these
methods on the basis of array hybridization signals (Fig. 7A and
data not shown). Log transformed genome- and transcript-aligned
read frequencies showed identical hierarchical clustering and
Pearson product-moment correlations of samples (data not shown).

Patient, sample, and experimental parameters were examined
to quantify sources of variability in read-frequency-based DTE.
Decomposition of principal components of variance showed that
DTE attributed a greater proportion of the total variance to
diagnosis (SCZ versus control, 45.3%) than array hybridization
(14.1%) (Fig 8). The largest sources of variability of array
hybridization results were mRNA quality metrics (Fig. 8A),
whereas DTE results were only marginally influenced by mRNA
quality. In contrast, large sources of variability in DTE results were
year of sequence generation, sequencing instrument-to-instrument
variation and cause of death (Fig. 8B). Variance component
categories were identical in genome- and transcript-aligned read
frequencies (data not shown).

Digital Transcript Expression Results

Differences between SCZ patients and controls in gene
expression in cerebellar cortex were identified with analysis of
variance with diagnosis as the discriminatory effect and the major

10000 o

Array Hybridization Signal

Fold Sequence Coverage of Transcripts

Figure 2. Comparison of gene expression levels measured by two methods. Comparison of gene expression levels detected by average
shotgun, mRNA SBS coverage per transcript (normalized for transcript length) versus Affymetrix oligonucleotide microarray hybridization for
cerebellar cortex sample #41 (38.7 million reads). Microarray images were scaled to an average hybridization intensity of 200, and the threshold for

expression was an average hybridization intensity of =50.
doi:10.1371/journal.pone.0003625.9002
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Figure 3. Comparison of Mahalanobis Distances of Gene Expression by Array Hybridization and Sequence Read Frequencies. 14 SCZ
samples are indicated by blue circles, and 6 control samples by red circles. The Y-axis shows Mahalanobis distances of log transformed gene
expression values. The dotted blue line indicates the cutoff value for outliers. Panel A: Log10 transformed Affymetrix array hybridization signals. Panel
B: Log10 transformed genome-aligned read frequencies. Panel C: Log10 transformed transcript-aligned read frequencies. Log10 transformed array
hybridization values (A) had a wider distribution of distances than Log10 transformed sequence read frequencies (B,C). Without log transformation,
distances were greater and several samples represented outliers (data not shown).

doi:10.1371/journal.pone.0003625.9003

non-diagnosis components of variance as fixed effects (brain pH,
post-mortem interval, RNA integrity number and RNA isolation
date for array hybridization, and cause of death, post-mortem
interval, sequencing instrument and year sequenced for read
frequencies). Following FDR correction, no differences were
identified between SCZ patients and controls by array hybridiza-
tion, due to the magnitude of non-diagnosis components of
variance. In contrast, 88 genes exhibited FDR-corrected differ-
ences in cerebellar expression between SCZ patients and controls

@ PLoS ONE | www.plosone.org

in genome-aligned read frequencies and 152 genes differed
significantly in transcript-aligned reads (Fig. 9; Table 3). Between
these two sets of genes, 25 were identified in common to both
genome- and transcript-aligned reads. 24 of these 25 genes showed
congruent direction of change in genome- and transcript-aligned
reads. 95% of genes exhibiting significant change in expression
with only one alignment had congruent but non-significant change
in the second alignment or were absent in one of the reference sets.
The correlation coeflicient of the case-control ratio of the 215
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Figure 4. Overlayed kernel density estimates of Gene Expression by Array Hybridization and Sequence Read Frequencies. 14 SCZ
samples are indicated by blue lines, and 6 control samples by red lines. The X-axis shows log transformed gene expression values while the Y-axis
shows kernel densities. Panel A: Log10 transformed Affymetrix array hybridization signals. Panel B: Log10 transformed genome-aligned read
frequencies. Panel C: Log10 transformed transcript-aligned read frequencies. Log10 transformed array hybridization values less than 1.69 (equivalent
to a calibrated hybridization signal of 50) are considered noise. Without log transformation, samples showed greater variability in kernel densities and
sequence read frequencies showed a near exponential decay (Fig. 1C, data not shown).

doi:10.1371/journal.pone.0003625.g004

differentially expressed genes between genome- and transcript-
aligned reads was 0.73 and between transcript-aligned reads and
array hybridization was 0.46 (data not shown). A majority of genes
with disparity in the magnitude of gene expression change
between alignments had greater read counts for genome- than
transcript-alignments, which, in some cases, appeared to be due to
unannotated exons and novel splice isoforms (see below).

Genes with the largest increase in expression in SCZ samples
were the ISL2 transcription factor, LIM/homeodomain, >800%
in genome and transcript alignments; AMME complex, gene 1,
580% in transcript alignments; 3-hydroxy-3-methylglutaryl-Coen-
zyme A synthase, 372% in transcript alignments; kelch domain
containing 1, 360% in transcript alignments; interphotoreceptor
matrix proteoglycan 2, 321% in transcript alignments; and NK2
transcription factor related, locus 3, 320% in genome alignments.
Genes with the largest decrease in expression in SCZ samples were

@ PLoS ONE | www.plosone.org

the solute carrier family 25 (ornithine transporter), member 2,
59% in transcript alignments and LOCI126170, similar to
peptidylprolyl isomerase A isoform 1, 73% in transcript align-
ments.

An SCZ candidate gene showing differential expression by both
measures was the gamma-aminobutyric acid (GABA)-mediated
neuroinhibitory receptor, GABRAI (increased expression in SCZ
by 52% [transcript alignment] and 46% [genome alignment],
Table 3). Eleven other genes involved in GABA neurotransmission
showed non-significant increases in expression: GABRA2 (59%),
GABRA4 (72%), GABRR1 (69%), GABRBI1 (168%), GABRG?2
(42%), GABRE (35%), GABRB2 (33%), GABBR2 (27%),
GABARAPL2 (35%), GABRAG (14%) and GABRB3 (8%). Four
GABAergic genes showed non-significant decreases in expression:
GABBRI1 (22%), GABRG3 (54%), GABRR2 (26%) and SLC6A1
(GAT-1; 16%).
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Figure 5. Pairwise sample correlations of log10-transformed, genome-aligned read frequencies, showing pairwise correlation

coefficients.
doi:10.1371/journal.pone.0003625.g005

GO annotation of genes with significantly altered expression
revealed over-representation of membrane associated genes (X
test, p<0.01), genes involved in Zinc binding or transport
(p<<0.02), regulation of transcription (p<e¢” °), Golgi apparatus
(p<e~®) and vesicle-mediated transport (p<<0.01). 13 of 20 genes
involved in vesicular transport or Golgi apparatus were up-
regulated.

Further annotation of these 20 genes revealed up-regulation of:

B Nine genes encoding proteins involved in transport from the
trans-Golgi network to the synaptic vesicle (golgi autoantigen,
subfamily a, member 1, GOLGAL, 28% in transcript
alignments, 14% in genome alignments; solute carrier family
35 (UDP-N-acetylglucosamine transporter), member A3,
SLC35A3, 69% in transcript alignments, 18% in genome
alignments; component of oligomeric golgi complex 6, COG®6,
30% in transcript alignments, 37% in genome alignments;
thyroid hormone receptor interactor 11, TRIP11, 48% in
transcript alignments, 23% in genome alignments; adaptor-
related protein complex 1, gamma 1 subunit, AP1G1, 6% in
transcript alignments,—13% in genome alignments; ADP-
ribosylation factor guanine nucleotide-exchange factor 2,
ARFGEF2, 2% in transcript alignments,7% in genome
alignments; vesicle docking protein pl15, USO1, 36% in
transcript alignments, 25% in genome alignments; Rho-

@ PLoS ONE | www.plosone.org

associated, coiled-coil containing protein kinase 1, ROCKI,
85% in transcript alignments, 60% in genome alignments;
RAB9B, 35% in transcript alignments, 23% in genome
alignments and vacuolar protein sorting 35 homolog,

B VPS35 (52% in transcript alignments, 31% in genome
alignments), which is involved in retrograde transport to the
Golgi apparatus,

B Early endosome antigen 1, 162 kD, EEA1 (88% in transcript
alignments, —1% in genome alignments), which is involved in
homotypic fusion of early endosomes,

B Synaptotagmin I, SYT1 (8% in transcript alignments, 15%
in genome alignments), which is involved with synaptic vesicle
exocytosis, and

B AP2 associated kinase 1, AAKI (64% in transcript
alignments, 34% in genome alignments), which is involved in
receptor-mediated endocytosis (Fig. 10, Table 3).

Down-regulated transcripts corresponded to:

B Two genes involved in transport from the trans-Golgi
network to the synaptic vesicle (syntaxin 10, STX10, —17% in
transcript alignments, —19% in genome alignments and ADP-
ribosylation factor related protein 1, ARFRP1, —10% in
transcript alignments, —12% in genome alignments),

November 2008 | Volume 3 | Issue 11 | e3625



Digital Gene Expression in SCZ

kg.
h
X
N

AR

NN

NN

RN
\
&

o
()

NN RO AR,
NAARK

(N

o)
w

b

VAL
LRAANARRA R

NN

(XA
(X

B i e

NNARNRAK

ANNARAY
LANNARAY

AR ARRAR AR KA

g
8

g
%

SRR A

NN

i
U RRTLRA R

IR A NSRS AN

b

¥
)

el
X

NS

AR

=0

b e e e

NP

N
Y-

AN
X

o

& {
CAC AT AT AT AT &

Lo e e B I e e e B e
41341 3-1131413413141341413191341

o
) WS

X
h

=]

i i

N ARRAR AR AR Y

w
w

IO AN RRARA R AR
PN R R Y

R e e

w
w
-
w
w
wi
w

Figure 6. Pairwise sample correlations of log10-transformed, array hybridization signals, showing pairwise correlation coefficients.
doi:10.1371/journal.pone.0003625.g006
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Figure 7. Unsupervised principal component analysis of log10 transformed array hybridization signals (A) and log10 transformed
read frequencies (B). Three dimensional plots of principal component analysis by Pearson product-moment correlation. 14 SCZ samples are
indicated by blue circles, and 6 control samples by red circles.

doi:10.1371/journal.pone.0003625.9007
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B Two genes involved in transport from the endoplasmic B Two genes involved with synaptic vesicle exocytosis (synaptic
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and synaptic glycoprotein 2, GPSN2, —8% in transcript —12% in transcript alignments, —17% in genome alignments),
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Figure 9. Volcano plot of analysis of variance of log10-transformed, transcript- (A) and genome-aligned read frequencies (B),
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Figure 10. Cartoon illustrating functions and/or synaptic locations of 23 proteins corresponding to genes with altered expression
in SCZ. 15 genes were upregulated (green), whereas 8 were downregulated (red). Underlined genes had >30% change in expression. Two genes
involved in transport from the endoplasmic reticulum to the Golgi (GOLM1 and GPSN2) were downregulated, ten involved in transport from the
trans-Golgi network to the synaptic vesicle were upregulated (GOLGA1, SLC35A3, COG6, TRIP11, AP1G1, ARFGEF2, USO1, ROCK1, RAB9B and VPS35)
and two were downregulated (STX10 and ARFRP1), two genes involved with synaptic vesicle exocytosis (EEAT and SYT1) were upregulated and two
were downregulated (SV2A and NCDN), one gene involved in receptor-mediated endocytosis was upregulated (AAK1) and one involved in retrograde
transport back to the Golgi apparatus was downregulated (SNX17). In addition, three post-synaptic membrane genes showed altered expression:
GABRA1 (upregulated), ZACN (downregulated) and CACNG2 (upregulated).

doi:10.1371/journal.pone.0003625.g010

B Sorting nexin 17, SNX17 (—13% in transcript alignments, Identification of Novel Splice Isoforms
—21% in genome alignments) which is involved in retrograde 10,022 genes exhibited =20% more reads aligned to genomic
transport back to the Golgi apparatus (Fig. 10, Table 3). loci than to the corresponding, annotated transcripts, evidence for
novel, unannotated exons. Putative use of alternative 5’ and 3’
In addition, three post-synaptic membrane genes showed terminal exons, novel internal exons and read-through of introns
altered expression: GABRAL (see above), ZACN (ligand-gated were all detected [57]. A SCZ susceptibility locus that exhibited
ion channel, zinc activated 1; down-regulated 21% in transcript intron-read-through in cerebellar mRNA samples was proline
alignments and 5% in genome alignments) and CACNG2 oxidase (PRODH, EC 1.5.99.8, SCZ4): 421 cerebellar cortex 41
(calcium channel, voltage-dependent, gamma subunit 2; up- reads aligned to the sole annotated PRODH transcript, while 838
regulated 169% in transcript alignments and 10% in genome aligned to the genomic locus. 33 of the latter mapped to intron 14
alignments) (Fig 10, Table 3). (nucleotides 17280876-17280950 on Chromosome 22), resulting

@ PLoS ONE | www.plosone.org 18 November 2008 | Volume 3 | Issue 11 | e3625



in insertion of 25 new, in-frame amino acids adjacent to the N-
terminus (Fig. 11). In addition to reads mapping within this intron,
reads showing splicing out of the intron were also observed
(Fig. 11). A further 112 reads aligned to 660 nucleotides of intron
13, generating an alternative N-terminus and premature stop
codon (Fig. 11). Presence of these intronic PRODH sequences was
observed in all cerebellum mRNA samples and is supported by

independently isolated Sanger EST sequences (Genbank accession
numbers CN362766, AA300535, AA322439, CD671570,
CN362770).

As noted above, the presence of unannotated exons and novel
splice isoforms appeared to explain disparity in the magnitude of
gene expression change between cases and controls when using
genome- and transcript-alignments. Dedicator of cytokinesis 3
(DOCK3), for example, was significantly up-regulated in SCZ

e

overview

Digital Gene Expression in SCZ

using genome alignments (225 reads/million in cases versus 200
reads per million in controls, —loglO(p-value)=3.82) but non-
significantly decreased using transcript alignments (138 reads/
million in cases versus 147 reads per million in controls).
Inspection of genomic read alignments revealed the existence of
several, putative, unannotated exons. For example 26 reads in
SCZ case 5S and 17 reads in SCZ case 5 aligned uniquely to
DOCKS3 intronic sequences corresponding to nucleotides
5,130,7158-51307328 on Chromosome 3 (data not shown).

Discussion

As the first stage of a genomic convergence analysis of SCZ, we
sought gene expression changes between post-mortem cerebellar
cortices of 14 patients and 6 controls using shotgun, clonal mRNA
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Figure 11. Novel alternative splicing of the PRODH locus. A. Exons (green boxes) and introns (yellow lines) of the PRODH locus are shown. A

100 bp shaded box covers part of intron 13, intron14 and exon 14 and part
Alignments of SBS reads to the introns and exons within the 1000 bp shaded
direction of their orientation relative to the genomic reference. Yellow arrows
genomic reference, and green arrows represent uniquely mapping reads. Tl
sequences are highlighted. Also highlighted are cDNA reads that map within i

of exon 15. Two sSNPs are illustrated by vertical blue hash marks. B.
box are shown. Sequence reads are shown as arrows pointing in the
represent sequence reads that map to more than one region on the
hree cDNA reads that omit intron 14 and contain exon 14 and 15
ntron 14. C. The sequence of the PRODH genomic region shown in B.

Green highlights represent exonic nucleotides with aligned sequence reads and yellow represent intronic nucleotides with aligned sequence reads.
Reads aligning uniquely to intron 14 (75 nts) indicate the existence of an alternative splice isoform that reads through this intron. Similarly, the 3’

region of intron 13 appears to be included in a novel splice isoform(s).
doi:10.1371/journal.pone.0003625.g011
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sequencing, together with a rigorous and systematic analysis
approach. Cerebellum was chosen for study since it has been
shown to be affected in SCZ: Patients exhibit impaired sensory-
motor integration, reduced cerebellar volume and grey matter,
increased cerebellar blood flow and glucose uptake, both at rest
and following cognitive challenge, greatest approximate condi-
tional likelihood score in cerebellar vermis, and gene expression
changes in the lateral hemispheres of the cerebellar cortex
consistent with decreased GABAergic and increased glutamatergic
neurotransmission [32,51,52,58-66]. In addition, the simple
organization and lack of perturbation by antipsychotic medication
of cerebellar cortical circuits relative to other brain regions affected
by SCZ was appealing for the current study. Specifically, granule
cells, which are important in processing sensory information, are
by far the most abundant cerebellar glutamatergic neuron,
comprising the majority of neurons in the brain [67].

Cases and controls were all male and were matched reasonably
well for age, race, cause of death and RNA quality metrics. Since
only cases had received psychotropic medication, this variable
could not be matched. There is currently considerable excitement
about stratification of patients with SCZ on the basis of clinical or
neuroimaging endophenotypes [20]. Unfortunately, that was not
possible in this series.

Approximately 22 million random, cDNA sequence tags were
generated from each of 20 samples, providing the deepest mRNA
coverage reported to date and providing an unparalleled assessment
of the transcriptional complexity of the human cerebellar cortex.
Sequences did not align to 1879 viral genomes, offering negative
evidence of chronic viral etiology for SCZ in these patients. 85% of
annotated transcripts were expressed (based on molecular counting,
Table 2), of which 63% were detected at a level of at least 1-fold
coverage (equivalent to 56 reads per million or 1.1 copies per million).
This pervasive transcription accords with other recent studies
[32,44,56,68]. In contrast to 3 end tag sequencing, random-primed
mRNA sequencing provided good coverage of coding domains
(Fig. 1B), allowing assessment of exon utilization in cerebellar cortex.
Alternative splicing is thought to generate more than 5 transcripts per
human locus, most of which have not yet been annotated [56]. 85%
of loci expressed at a level of at least 1-fold coverage showed evidence
for utilization of unannotated exons, based on excess genomic read
alignments. Proline oxidase, for example, is a very well studied gene
that appeared to utilize hitherto unannotated exons in human
cerebellum (Fig. 11). For this reason, sequences were aligned both to a
reference transcript database (for estimation of expression of well-
annotated transcripts) and to the human genome (for estimation of
total expression of all exons, whether annotated or not). With
additional improvements in library preparation and analysis software
it should be possible to measure digital gene expression on an exon-
by-exon basis in a strand-specific manner [31-50,69]. The number of
transcripts with aligned reads declined greater than exponentially as a
function of level of expression (Fig 1B). As a result, 29 million aligned
reads provided an impressive linear dynamic range (4.37 xlogl0,
Fig. 2). Despite lower read lengths and quality scores in this study
(Table 2) than currently obtained with the Illumina GA II instrument,
only 9% of reads mapped non-uniquely. Finally, technical impreci-
sion of DTE measurements was paltry (CV 3.4%). In summary, our
technical assessment indicated deep mRNA sequencing to be a
powerful tool for digital gene expression and empiric annotation of
transcribed elements in genomes, in accord with a rapidly growing
literature [31-50,69].

Gratifyingly, digital transcript expression values, expressed as
aligned read frequencies, were amenable to very similar data
transformation, quality control, pattern discovery, row-by-row
modeling and annotation analyses as array hybridization datasets.
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This enabled direct comparison of digital transcript expression and
array hybridization data metrics (Figs. 4-9). Like array hybridiza-
tion signals, aligned read frequencies benefited from log
transformation as evidenced by improved Mahalanobis distances,
overlaid kernel density estimates, univariate distribution results,
and unsupervised principal component analysis. Aligned read
frequencies had greater correlation coefficients in pair wise sample
comparisons than array hybridization, and much greater ability to
distinguish SCZ cases from controls, as evaluated by unsupervised
principal component analysis (PCA), Ward hierarchical clustering
of Pearson product-moment correlations of read frequencies, and
the magnitude of the component of variance attributable to
diagnosis. DTE was clearly better than array hybridization for
PCA-based segregation of cases and controls. Read frequencies
based upon alignment to a reference transcript database and to the
human genome were almost indistinguishable by these metrics.
Partitioning of variance components of clinical, sample and
experimental metadata revealed the largest components of array
hybridization variability to be metrics of mRNA quality, in accord
with recent studies of post-mortem brain tissue [70]. DTE was
much less influenced by RNA quality. Non-diagnosis DTE
variability included year of sequence generation, sequencing
mnstrument variation and cause of death (Fig. 8). This is not
surprising since substantial improvements occurred in sequencing
instrument specifications, reagents and base-calling software
during the project. Given continued, rapid evolution of generation
II sequencing technologies, it is important to keep instrument
specification, reagents and base-calling software relatively stable
during mRNA sequencing projects to minimize non-hypothesis-
related variability. Importantly, variance decomposition allowed
incorporation of large clinical, sample and experimental effects as
fixed effects in analyses of variance, minimizing detection of gene
expression changes associated with confounding variables. Incor-
poration of fixed effects in array hybridization, but not DTE,
analyses of variance resulted in no expression changes meeting
significance cutoffs. Coefficients of correlation between aligned
read frequencies, adjusted for transcript length, and array
hybridization signals were 0.35 for all values and 0.46 for fold-
change in genes with significant differences in expression. These
values are somewhat lower than similar comparisons between
array hybridization platforms and are probably reflective of the
exacting RNA source [71]. It should be noted that aligned read
frequencies correlate very well with quantitative PCR results
[57,72]. In conclusion, mRNA sequencing appears to be superior
to array hybridization for gene expression analysis and is
amenable to standard statistical procedures for quality assessment
and gene expression analysis.

Expression of 215 genes differed significantly between cases and
controls in post-mortem cerebellar cortex by analysis of variance
(Table 3). Of these, 88 were identified in genome-aligned reads
and 152 in transcript-aligned reads. Only 25 genes were common
to both alignments, but 96% of the 215 had congruent direction of
change and correlation between genome- and transcript-aligned
fold-change was 0.73. Major contributors to disparity between
alignments appeared to be detection of unannotated exons in
genome alignments and forced mis-alignments in incomplete
transcript datasets. The latter may largely be avoided by removal
of non-unique alignments from calculations. As RefSeq transcript
becomes more complete, this disparity should decrease. In the
interim, it is wise to align both to a well-annotated transcript
dataset and to the genome.

17 of the 215 genes with altered cerebellar expression have
previously shown changes in SCZ in the dorsolateral prefrontal
cortex or superior temporal gyrus (APBA2, BTGI1, CACNG2,

November 2008 | Volume 3 | Issue 11 | e3625



CAP2, DKFZP434A0131, GABRAI, GOLGAIl, HSPBPI,
KIAA0256, KPNAI, RPL3, SLC35A3, SLC39A7, SRRM2,
TCF4, ZNF148 and ZNF195). Despite substantial differences in
gene expression in cerebellar cortex and cerebral cortex [73], 13
genes were congruent with the direction of change reported
previously. Three genes involved in GABAergic neurotransmission
(GABRA6, GABRB3 and SLC6A1) showed changes in cerebellar
cortex in SCZ that agreed with a previous report [52]. In the context
of cerebellar cortical function in SCZ, alteration in expression of
genes may be causal, consequential, compensatory, or the result of
confounding factors. Because the substantial heritability of schizo-
phrenia appears to be polygenic [1-5], expression differences might
reflect SCZ-associated nucleotide variants that alter expression in cis
(e.g. eSNPs). Indeed, seven of these genes have previously shown
association with SCZ in genetic association studies (CACNG2,
GABRAI, GPSN2, HIRA, PSAP, RANBP5 and TCF4) [74].
Alternatively, expression differences may represent compensatory
changes in pathways and networks. GO annotation of genes with
altered expression revealed over-representation of membrane
association, Zinc binding or transport, regulation of transcription,
Golgi apparatus and vesicle-mediated transport.

Most striking were 23 genes involved in presynaptic vesicular
transport / Golgi apparatus or post-synaptic neurotransmission,
15 of which were up-regulated and 8 down-regulated. Up-
regulated genes included nine involved in transport from the trans-
Golgi network to the synaptic vesicle (golgi autoantigen Al, UDP-
N-acetylglucosamine transporter (SLC35A3), component of olig-
omeric golgi complex 6, thyroid hormone receptor interactor 11,
adaptor-related protein complex 1G1, ADP-ribosylation factor
guanine nucleotide-exchange factor 2, vesicle docking protein
pl15, Rho-associated, coiled-coil containing protein kinase 1
(ROCKI1) and RAB9B), one involved in synaptic vesicle exocytosis
(synaptotagmin I), one involved in clathrin-mediated endocytosis
(AP2 associated kinase 1 (AAKI)), one involved in homotypic
fusion of early endosomes (early endosome antigen 1 (EEAL), and
one involved in retrograde transport to the Golgl apparatus
(vacuolar protein sorting 35 (VPS35)). Down-regulated genes
included two involved in transport from the trans-Golgi network to
the synaptic vesicle (syntaxin 10 and ADP-ribosylation factor
related protein 1), two involved with synaptic vesicle exocytosis
(synaptic vesicle glycoprotein 2A and neurochondrin), two
involved in transport from the endoplasmic reticulum to the Golgi
(golgi phosphoprotein 2 and synaptic glycoprotein 2) and one
involved in retrograde transport to the Golgl apparatus (sorting
nexin 17) (Fig. 10, Table 3). Up-regulated post-synaptic membrane
genes included GABRAL (see above) and CACNG2 (calcium
channel, voltage-dependent, gamma subunit 2). Several other
genes involved in GABAergic neurotransmission showed non-
significant changes in expression in cerebellar cortex in SCZ, in
agreement with previous reports [52]. One down-regulated post-
synaptic membrane gene was ligand-gated ion channel, zinc
activated 1. Most of the up-regulated genes, but none of the down-
regulated genes in this set, had change in expression of greater
than 30%. The largest alterations were CACNG?2 (+169%), EEAI
(+88%), ROCKI1 (+85%), SLC35A3 (+69%), AAKI1 (64%) and
GABRALI and VPS35 (both +52%). Several previous studies have
shown decreased expression of genes involved in presynaptic
vesicular transport in the dorsolateral prefrontal cortex and
hippocampus in SCZ [75-78]. While the molecular determinants
of synaptic vesicular transport have been intensively studied, it is
not yet possible to integrate these transcriptional changes into a
single biological outcome. Isolated elevation of AAKI, for
example, should decrease neurotransmitter endocytosis [79], while
elevated EEA1 should increase early endosomal fusion [80].
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However, activity of most of these proteins is dependent either
upon post-translational modification or presence of interacting
proteins. Furthermore, there is likely to be heterogeneous
expression of these proteins among cerebellar cortical neurons.
Nevertheless, it appears clear that presynaptic vesicular transport,
Golgi function and GABAergic neurotransmission are perturbed
in cerebellar cortex in SCZ, in agreement with previous analyses
of gene expression in post-mortem brain in SCZ [28,52,75] and
genetic associations of nucleotide variants in synaptic vesicular
transport genes with SCZ (namely CACNG2, COG2, STXIA,
SNAP29, MUTED, NRG1, PLDN, NRG3, HOMER3, RTN4R,
NRG2, RTN4, CPLX2, BLOCISI, SYNJI, HOMERI,
CLINT1, SYP, BLOC1S2, SYN3, SYT11, SYNGR1, SNAPAP,
STX7, BLOCI1S3, DISC1, SNAP25, DLG4, CPLXI1, CNO,
SYN2, DTNBP1 and DAOA) [74]. Replication of alterations in
presynaptic vesicular transport and Golgi function, particularly as
affecting GABAergic neurotransmission, in additional cases or
other brain regions—such as prefrontal cortex-would substantiate
novel molecular mechanisms underpinning SCZ and establish
novel targets for therapeutic intervention.

The current study reports the first phase of a genomic
convergence analysis of SCZ, which is intended to integrate
linkage and expression studies. In a subsequent manuscript, we
will present results of expressed nucleotide variants that differ in
allele frequency between cases and controls, and integrate
nucleotide variant and expression analyses. In addition, a recent
study has shown substantial variation in alternative splice isoform
expression and alternative polyadenylation in cerebellar cortex
between normal individuals [57], and it will be interesting to
ascertain whether specific examples of alternative isoform
expression show association with SCZ. Confirmation of causal
components of the molecular basis of SCZ is anticipated to have
significant impact on clinical practice, particularly with respect to
timely diagnosis and prognostic or therapeutic categorization
[12,19].

Materials and Methods

Sample preparation

was as previously described [51]. Anonymized cerebellar
samples were provided from the Maryland Brain Collection with
permission from the Maryland Brain Collection Steering Com-
mittee. Permission for the study of brain tissues was provided by
families post-mortem in accordance with the guidelines of the
Uniform Anatomical Gift Act. Fourteen samples were from
patients with a diagnosis of SCZ according to DSM-IV criteria
and six were controls. Cortical areas corresponding to crus I/VIIa
of cerebellar hemispheres were dissected at —20°C and frozen at
—80°C, as described [52]. The average pH of the samples was
6.6%0.17. Cerebellum specimens were obtained according to NIH
guidelines for confidentially and privacy. Genomic DNA and total
RNA were isolated from samples using standard techniques
(Qiagen, Valencia, CA).

Sequencing-by-synthesis

Cerebellum samples were sequenced using Illumina Genome
Analyzers with modifications for mRNA samples [39,42,43,52,57]:
Following quality assessment using a Bioanalyzer 2100 (Agilent
Inc., Santa Clara, CA; Table 1), poly A+ RNA was isolated from
5-10 ug total RNA by two rounds of oligo-dT selection
(Invitrogen Inc., Santa Clara, CA). mRNA was annealed to high
concentrations of random hexamers and reverse transcribed.
Following second strand synthesis, end repair, and A-tailing,
adapters complementary to sequencing primers were ligated to
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cDNA fragment ends. Resultant cDNA libraries were size
fractionated on agarose gels, 200 bp fragments excised, and
amplified by 15 cycles of polymerase chain reaction. Following
quality assessment using a Bioanalyzer 2100, single-stranded
cDNA-adapter fragments were randomly annealed to the surface
of a flow cell in a cluster station (Illumina Inc., San Diego, CA) via
primers complementary to the adapters and incubated under
conditions fostering annealing of the ends of cDNA-adapter
fragments to adjacent complementary primers. Primers with
annealed cDNA-adapter fragments were extended with DNA
polymerase and unlabelled dNTPs in a solid-phase “bridge
amplification”. Resultant double-stranded products were dena-
tured, yielding 2 single stranded fragments. The latter steps were
repeated for 35 cycles, generating ~40 million clusters of clonal
amplicons. Subsequently, 32-36 cycles of sequencing-by-synthesis
chemistry were performed in Illumina Genome Analyzer instru-
ments with 4 dNTPs featuring cleavable dyes and reversible
terminators. Following each base extension, 4 images (one for each
nucleotide) are taken upon laser excitation. Incorporation of the
next base occurred after removal of the blocked 3’ terminus and
fluorescent tag of the previously incorporated nucleotide. Se-
quences were retained if of high quality (defined as those passing
the default quality filtering parameters used in the Illumina GA
Pipeline GERALD stage, i.e. clusters with intensities greater than
0.6-times the average of the highest and the sum of the two highest
intensities for the first 12 cycles). Furthermore, sequencing runs
with poor average nucleotide quality score graphs (associated with
a minority of reads passing the default quality filtering parameters)
were discarded.

Read Alignment-based gene expression profiling

High-quality reads were aligned to the human genome, Build
36.2, RefSeq transcript database, Release 22 [81], Unigene Hs,
build 215 [82] using the algorithm GMAP [55] and the software
system Alpheus® [48], with adjustments for short SBS reads
(oligomer overlap interval =3 nt, identities =34/36 or 94%). A
read was denoted ‘aligned’ to a locus if its sequence alignment to
the genomic reference sequence (NCBI build 36.2) fell within the
boundaries of the locus coordinates on the chromosome. Locus
boundaries on the genome were defined by NCBI annotations, as
reported through the Nucleotide database. Annotation data was
downloaded on 2/2/2007 using the Batch Entrez query tools
(http://www.ncbi.nlm.nih.gov/sites/batchentrez?db = Nucleotide).
Only the highest scoring alignment(s) was retained. Reads with a
single best alignment or with equally good alignments to alternative
transcripts of the same locus were considered uniquely aligned.
Aligned read frequencies (per million aligned reads) were calculated
for each sample and locus using Alpheus® [48].

Array-based gene expression profiling was performed using
Affymetrix Human Genome U133 Plus 2.0 oligonucleotide arrays
and standard procedures (Affymetrix, Santa Clara, CA). Array-
based gene expression profiling of cerebellar cortex of unaffected
individuals was performed using Affymetrix Human U95A
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