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Abstract

Background: With the recent growth of information on sequence variations in the human genome, predictions regarding
the functional effects and relevance to disease phenotypes of coding sequence variations are becoming increasingly
important. The aims of this study were to catalog protein-coding sequence variations (CVs) occurring in genetic variation
databases and to use bioinformatic programs to analyze CVs. In addition, we aim to provide insight into the functionality of
the reference databases.

Methodology and Findings: To catalog CVs on a genome-wide scale with regard to protein function and disease, we
investigated three representative databases; the Human Gene Mutation Database (HGMD), the Single Nucleotide
Polymorphisms database (dbSNP), and the Haplotype Map (HapMap). Using these three databases, we analyzed CVs at the
protein function level with bioinformatic programs. We proposed a combinatorial approach using the Support Vector Machine
(SVM) to increase the performance of the prediction programs. By cataloging the coding sequence variations using these
databases, we found that 4.36% of CVs from HGMD are concurrently registered in dbSNP (8.11% of CVs from dbSNP are
concurrent in HGMD). The pattern of substitutions and functional consequences predicted by three bioinformatic programs was
significantly different among concurrent CVs, and CVs occurring solely in HGMD or in dbSNP. The experimental results showed
that the proposed SVM combination noticeably outperformed the individual prediction programs.

Conclusions: This is the first study to compare human sequence variations in HGMD, dbSNP and HapMap at the genome-
wide level. We found that a significant proportion of CVs in HGMD and dbSNP overlap, and we emphasize the need to use
caution when interpreting the phenotypic relevance of these concurrent CVs. Combining bioinformatic programs can be
helpful in predicting the functional consequences of CVs because it improved the performance of functional predictions.
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Introduction

Unprecedented advancements in molecular technology and

major initiatives such as the Human Genome Project and the

International Haplotype Map Project have created a need for

methods to interpret the myriad sequence variations in the human

genome, and to catalog disease-causing mutations. This has led to

the question of how to systematically collect and curate the

variation data [1]. In addition, progress in sequencing technology

has allowed mutational analysis of more than 10,000 genes in a

single individual and has accelerated research on disease-

associated allelic variations at the whole genome sequencing level

[2]. The human genome is estimated to have up to 200,000 amino

acid-substituting variations in the protein-coding sequences (CVs),

also called nonsynonymous single nucleotide polymorphisms

(nsSNPs) [3]. While substituting CVs may contribute to phenotype

differences among individuals such as hair color, skin color [4,5]

and disease susceptibility [6–9], certain CVs (generally missense

mutations) are known to cause highly-penetrant, Mendelian-

inherited pathological conditions. Missense mutations account for

approximately half of all allelic variants underlying inherited

human diseases [10,11]. As a result, it is vital that we correlate and

attribute specific phenotypes to certain CVs. Database searches

and bioinformatic analyses are the primary tools for this purpose.

The three most representative databases are Human Gene

Mutation Database (HGMD), Single Nucleotide Polymorphisms

database (dbSNP), and Haplotype Map (HapMap). Each database

has been developed with different features, for different purposes.

Several studies have investigated CVs with regard to human

disease phenotypes; however, they most commonly involved a

limited number of genes, such as those related to familial cancer

syndromes [12,13]. Since no studies have investigated genome-wide

CVs in different reference databases, we cataloged CVs that occur in

both HGMD and dbSNP, and characterized concurrent CVs using

bioinformatics to provide unique insight into the optimal uses of

those databases. We first prepared three different datasets of CVs
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extracted from HGMD, dbSNP, and HapMap (defined as CVM,

CVS, and CVH, respectively). We then analyzed how the three

datasets overlap, and characterized the CVs according to the

patterns of amino acid substitutions. In addition, we performed

functional predictions of CVs using selected in silico algorithms as well

as a combinatorial approach that we developed using the Support

Vector Machine (SVM). We found that combination improved the

prediction performance of individual algorithms.

Results

Coding Sequence Variations Concurrent in dbSNP and
HGMD

A total of 74,784 CVs from 9513 genes were retrieved from the

dbSNP database (CVS). A total of 26,037 CVs from 1477 genes

were retrieved from the HGMD database (CVM) (Table 1). The

average number of CVs per gene in dbSNP and HGMD was 7.9

and 17.6, respectively. The two datasets were then matched in a

gene-specific manner to find CVs concurrent in the two databases.

First, we obtained a list of 1069 genes that had sequence variation

information in both dbSNP and HGMD. These ‘matched genes’

totaled 12,399 CVS (group [S] in Figure 1) and 23,045 CVM

(group [M] in Figure 1). Among them, 1005 variations occurred

both in dbSNP and in HGMD (‘concurrent’ CVs, group [C] in

Figure 1; the complete list is in Table S1). In summary, 8.11%

(1005/12,399) of the CVs from dbSNP are registered as CVM in

HGMD, and 4.36% (1005/23,045) from HGMD were registered

as CVS in dbSNP. We also made a subset of polymorphisms from

a set of 12,399 CVS (group [S]) by a batch query to the HapMap

dataset. As a result, we obtained a subset of 4414 CVH (group

[H]), and a resultant subset of CVs that were concurrent in

HapMap and in HGMD (group [Ch] in Figure 1).

Detailed distributions of CVs in the matched genes were analyzed

and the resultant concurrent CVs sorted according to the type of

variation (Table 2). Among the 12,399 CVS, nsSNPs accounted for

the largest proportion (6809/12,399; 54.9%), followed by synony-

mous SNPs (snSNPs) (5416/12,399; 43.7%) and truncating SNPs

(trSNPs) (174/12,399; 1.40%). The distribution was similar in the

HapMap dataset (52.1%, 46.9%, and 1.02% for nsSNPs, snSNPs,

and trSNPs, respectively). Among the 23,045 CVM, missense

mutations accounted for the largest proportion (17,970/23,045;

78.0%), followed by nonsense mutations (5006/23,045; 21.7%). In a

very small proportion of CVM (69/23,045; 0.299%), a nucleotide

substitution was expected to retain the original amino acid, instead of

changing it to another amino acid or stop codon. Among the

concurrent CVs (group [C]), amino acid-substituting (AA1.AA2)

CVs were by far the most common (934/1005; 92.9%). Truncation

variations accounted for 4.08% (41/1005), followed by variations

expected to retain the original amino acid (30/1005; 2.99%). When

CVH were taken into consideration, the proportion of amino acid-

substituting CVs was almost unchanged (302/332; 91.0%). The

proportion of the AA1.AA1 group (20/332; 6.02%) was higher

than that of truncation variations (10/332; 3.01%). We observed

that variations in three different categories in the concurrent CVs

(group [C]) showed different distributions of SNP validation

scores calculated from frequency information, submitter’s validation

and availability in HapMap (Validation status code is available

at ftp://ftp.ncbi.nih.gov/snp/database/organism_shared_data/

SnpValidationCode.bcp.gz) (Figure S1). The average of trSNPs

validation scores was the lowest at 1.27, followed by the nsSNPs at

2.03. The snSNPs average was the highest at 6.40. Among the 41

trSNPs, validation scores of 33 variations (80.5%) were less than 3,

while among the 30 snSNPs, validation scores of 23 variations

(76.7%) were greater than or equal to 3. The percent of variations

of validation score greater than 9 was 7.32% (3/41) for the trSNPs

and 35.5% (11/31) for the snSNPs. These results indicate that most

trSNPs in dbSNP were relatively less validated when compared to

snSNPs in dbSNP.

Since the issue of distinction between neutral and damaging

variations is frequently addressed for cancer-predisposing genes,

we focused our analyses on 86 genes associated with well-known

hereditary cancer syndromes [14] among the 1069 matched genes.

We found that 29 genes (33.7%) had at least one concurrent CV

(Table S2). The total number of concurrent CVs encountered in

those 29 genes was 141, which accounted for 14.0% of the total

concurrent CVs (Table S3). The largest number of concurrent

CVs was observed in the VHL gene (von Hippel-Lindau syndrome,

MIM# 193300), followed by BRCA1/BRCA2 (hereditary breast

cancer syndrome, MIM# 113705, 600185). The number of

nsSNPs was greater than that of missense mutations in four genes

(FANCC, WRN, PMS2, and CDK4).

Pattern of Amino Acid Substitutions According to Amino
Acid Group

We analyzed the pattern of amino acid substitutions in three

disjointed groups of variations, [S-C], [M-C], and [C], according

Figure 1. Comparison of variations of three databases. From the
1069 genes that have information on allelic variations both in dbSNPs
and HGMD, a total of 12,399 CVS (group [S]) and 23,045 CVM (group
[M]) are shown. Variations found in both dbSNP and HGMD are labeled
‘concurrent’ (group [C]). Variations occurring only in dbSNP or HGMD
(mutually exclusive occurrence) are labeled [S-C] and [M-C], respective-
ly. nsSNPs found in the HapMap database are labeled [H], and the
concurrent group [C] is subdivided into [Ch] (in HGMD and in HapMap)
and [C-Ch] (in HGMD and in dbSNP but not in HapMap).
doi:10.1371/journal.pone.0003575.g001

Table 1. Results of matching the SNP and mutation datasets.

Statistics dbSNP HGMD

No. of total genes 9513 1477

No. of total single base
substitution variations

74,784 26,037

No. of matched genes 1069

No. of variations of matched
genes

12,399 23,045

No. of concurrent variations 1005

Proportion of concurrent
variations

8.11% (1005/12,399) 4.36% (1005/23,045)

doi:10.1371/journal.pone.0003575.t001

Coding Variations in Humans
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to five amino acid groups (G1, nonpolar, aliphatic R group; G2,

aromatic R group; G3, polar, uncharged R group; G4, positively

charged R group; and G5, negatively charged R group). The most

striking difference between groups [S-C] and [M-C] was observed

in amino acid substitutions from the aromatic R group (G2) to the

polar, uncharged R group (G3) (1.9% vs 4.1%; see Figure 2). In

addition, substitutions from the polar, uncharged R group (G3) to

the aromatic R group (G2) were observed more often in group [M-

C] than in group [S-C] (4.7% vs 2.0%). To measure the difference

between the two types of variations, we calculated the chi-squared

values with degrees of freedom = 1. A significant difference was

found (X2 = 143.8, P,3.9610233) between group [S-C] and group

[M-C] in the frequency of G2-G3 substitutions. This result

suggests the transition of amino acids between G2 and G3 could

potentially exert deleterious effects on protein function. Differenc-

es in the frequency of G2-G4 and G1-G4 substitutions were

notably high (X2 = 39.7, P,3.0610210 and X2 = 102.2,

P,5.2610224, respectively). In contrast, amino acid substitutions

between G3 and G5 occurred in group [S-C] slightly more often

than in group [M-C] (3.4% vs 2.3%). Remarkably, in all amino

acid groups, substitutions within the same amino acid group were

more frequently observed in group [S-C] than in group [M-C].

We have summarized these results in Table 3, based on two types

of amino acid substitutions—those within the same amino acid

group and those between different groups. The proportion of

amino acid substitutions within the same group in group [S-C] was

larger than in group [M-C] (38.0% vs 26.6%). For example, the

frequency of substitutions from valine to isoleucine in the

nonpolar, aliphatic R group was 2.4% in group [S-C], but 0.6%

in group [M-C]. Similarly, the frequency of substitutions from

isoleucine to valine in the nonpolar, aliphatic R group was 1.8% in

group [S-C], while it was 0.4% in group [M-C]. This finding

indicates that an amino acid substitution in an nsSNP may be less

likely to change the function of a protein. Substitutions within the

same amino acid group accounted for 30.8% of the concurrent

variants (group [C]), which falls between those in group [S-C] and

in group [M-C] (Table 3). The pattern of amino acid substitutions

in group [S-C] was significantly different from that in group [M-

C] (X2 = 417.3, P,9.5610293), which might reflect the different

underlying mutagenic mechanisms that create the variations in

these two groups. The pattern showed a significant difference

between group [C] and group [M-C] (X2 = 203.8, P,3.1610246),

than between group [C] and group [S-C] (X2 = 17.7,

P,2.661025).

Functional Prediction of Amino Acid-Substituting
Variations by Different In Silico Tools

Efforts have been made to develop algorithms for the prediction

of functional impact of a known or novel amino acid-substituting

variation without experimental characterization [15–22]. For the

functional prediction of amino acid-substituting CVs, which

accounted for the largest number of variations both in dbSNP

(nsSNPs) and in HGMD (missense mutations), as well as in the

group of concurrent variations (group [C] and [Ch]), we employed

three widely-used prediction programs—Sorting Intolerant From

Tolerant (SIFT) [18], Polymorphism Phenotyping (PolyPhen) [19]

and Protein Analysis Through Evolutionary Relationships (PAN-

THER) [21]. Two datasets were used, a set of 5875 nsSNPs in

group [S-C] (6809 minus 934) from dbSNP, and a set of 17,036

missense mutations in group [M-C] (17,970 minus 934) from

HGMD (Figure 1 and Table 2). We also used nsSNPs in HapMap

(group [H-Ch]), since HapMap is generally regarded to contain

neutral or less penetrant variations than dbSNP. SIFT and

PANTHER give results in two prediction categories—tolerated or

deleterious effects, while PolyPhen gives results in three catego-

ries—benign (probably lacking any phenotypic effect), possibly

damaging, and probably damaging (should affect protein function)

[19]. Prediction results are given as unknown when the reference

data are insufficient. We excluded variations with ambiguous

prediction results from the analyses.

From the HapMap dataset (group [H-Ch]), PANTHER and SIFT

predicted that 72.2% and 69.8% of the tested nsSNPs, respectively,

would be tolerated, and PolyPhen predicted 66.3% of the tested

nsSNPs to be benign (Table 4). The prediction results for nsSNPs

from dbSNP (group [S-C]) were slightly different from those for

nsSNPs from HapMap (group [H-Ch]). The proportion of nsSNPs

from dbSNP predicted to be deleterious was larger than that of

nsSNPs from HapMap (36.3% vs 30.2% for the SIFT prediction

results and 33.7% vs 27.8% for the PANTHER prediction results).

Likewise, the proportion of nsSNPs from dbSNP predicted to be

damaging by Polyphen was larger than that of nsSNPs from

HapMap (36.9% vs 33.7%). When we analyzed the damaging effects

predicted by PolyPhen, the proportion of variations predicted to be

‘possibly’ damaging was larger than that predicted to be ‘probably’

damaging in the HapMap dataset (19.1% vs 14.6%), while the

proportions were almost the same in the dbSNP dataset (18.0% vs

18.9%). In the HGMD dataset, the majority of missense mutations

were predicted to be deleterious by SIFT (65.2%) and PANTHER

(70.6%), and to be damaging by Polyphen (73.6%). In addition, the

Table 2. Single amino acid-substituting variations and distribution of concurrent variations in dbSNP/HapMap and HGMD by type
of variation.

Type of variation AA1.AA2a AA1.TRb AA1.AA1c Total Figure 1d

dbSNP (No./%) 6809 (54.9) 174 (1.40) 5416 (43.7) 12,399 (100) S

HapMap (No./%) 2299 (52.1) 45 (1.02) 2070 (46.9) 4414 (100) H

HGMD (No./%) 17,970 (78.0) 5006 (21.7) 69 (0.30) 23,045 (100) M

dbSNP>HGMDe (No./%) 934 (92.9) 41 (4.08) 30 (2.99) 1005 (100) C

dbSNP>HapMap>HGMDf (No./%) 302 (91.0) 10 (3.01) 20 (6.02) 332 (100) Ch

ansSNP or missense mutation: variation expected to replace one amino acid (AA1) with a different amino acid (AA2)
btrSNP or nonsense mutation: variation expected to replace one amino acid (AA1) with a termination codon (TR)
csnSNP: variation expected not to change the original amino acid (AA1)
dVariation groups represented in Figure 1 diagram
eVariations concurrent in dbSNP and HGMD
fVariations concurrent in dbSNP, HapMap, and HGMD
doi:10.1371/journal.pone.0003575.t002

Coding Variations in Humans
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proportion of missense mutations predicted to be probably

damaging was almost twice that predicted to be possibly damaging

(49.7% vs 23.8%).

Assuming that the HapMap dataset mainly comprises non-

pathogenic variations (negative samples) and the HGMD dataset

comprises pathogenic variations (positive samples), we compared the

prediction performances of SIFT, PolyPhen, and PANTHER using

several criteria including sensitivity, specificity, positive predictive

value (p.p.v.), the Pearson correlation coefficient, and true-positive

cost. PANTHER showed the best prediction performance among

the three prediction programs. PANTHER surpassed SIFT in all

criteria and PolyPhen in specificity, p.p.v., and true-positive cost

(Table 5). PolyPhen surpassed SIFT in all criteria except for

specificity. PolyPhen was particularly superior to SIFT in sensitivity

(73.6% vs 65.2%, or 8.4%), which indicates that PolyPhen predicts

damaging CVs more accurately than SIFT. The difference in

specificity between SIFT and PolyPhen was 3.5%.

Figure 2. Distribution of amino acid change frequencies according to amino acid group (G1, nonpolar, aliphatic R group; G2,
aromatic R group; G3, polar, uncharged R group; G4, positively charged R group; and G5, negatively charged R group). Black vertical
bars indicate group [S-C] in dbSNP and gray vertical bars indicate group [M-C] in HGMD.
doi:10.1371/journal.pone.0003575.g002

Table 3. Comparison of variations according to type of
amino acid substitution.

nsSNPs in
dbSNP

Missense
mutations
in HGMD

Concurrent
variations

Substitution within the same
amino acid group

2232 (38.0%) 4534 (26.6%) 288 (30.8%)

Substitution between two
different amino acid groups

3643 (62.0%) 12,502 (73.4%) 646 (69.2%)

doi:10.1371/journal.pone.0003575.t003

Coding Variations in Humans
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Combination of the Prediction Programs
Predictions of the functional consequences of amino acid

substitutions can be made more accurate by combining different

in silico methods [15]. Thus, we combined prediction programs,

and found that this could significantly increase prediction

performance. Before combining the programs, we determined

the differences in the predictions of each program, since the

combination would be of no significant use if individual programs

produced identical predictions. Figure 3 shows a scatter plot of the

predicted scores of SIFT, PolyPhen, and PANTHER. Since a

lower SIFT or PANTHER score and a higher PolyPhen score

indicate that the variation of interest would be more deleterious, a

close distribution of the variation near the left lower corner

demonstrates agreement between the three programs on the

prediction. Missense mutations in CVM tended toward the left

lower corner (deleterious), while nsSNPs in CVH tended to be in

the right upper corner (tolerated). Even though HapMap and

HGMD tended to go in opposite directions, no significant

dependencies were observed in the distribution of prediction

scores by the three programs. The independence between the

predictions suggests a possibility that the combination of the

programs could improve the prediction performance.

To evaluate the combination approach, we regarded all of the

CVH data as negative and the CVM data as positive. We used the

SVMs of three different kernel functions in combining the three

programs. To train SVM, we randomly chose 281 of 563 (50%)

CVH from HapMap and 562 of 6282 (8.9%) CVM from HGMD

as a training dataset. The three kernels used for SVM training

were a linear kernel, a polynomial kernel, and a radial basis

function kernel. We evaluated the prediction performance of the

three models with the testing dataset. As shown in Figure 4, the

SVM combination outperformed the individual prediction pro-

grams. SVMpolynomial showed a slightly better prediction perfor-

mance in the region of high specificity than the other two SVM

combinations. PANTHER was superior to PolyPhen and SIFT in

terms of sensitivity over all specificity regions. SVMpolynomial

generally gave accurate and stable predictions compared to the

other combination approaches and the individual programs,

indicating that the appropriate combination can noticeably

improve the prediction accuracy.

Table 4. Predicted phenotypic effects of amino acid substitutions from three datasets by SIFT, PolyPhen, and PANTHER.

Datasets Prediction of phenotypic effect of amino acid substitutions

SIFT PolyPhen PANTHER

Tolerated Deleterious Benign
Possibly
damaging

Probably
damaging Tolerated Deleterious

nsSNPs in HapMap ([H-Ch]) 69.8%
(1005/1439)

30.2%
(434/1439)

66.3%
(811/1223)

19.1%
(234/1223)

14.6%
(178/1223)

72.2%
(782/1083)

27.8%
(301/1083)

nsSNPs in dbSNP ([S-C]) 63.7%
(2793/4387)

36.3%
(1594/4387)

63.1%
(2560/4056)

18.0%
(730/4056)

18.9%
(766/4056)

66.3%
(2290/3453)

33.7%
(1163/3453)

Missense mutations in HGMD
([M-C])

34.8%
(4516/12,995)

65.2%
(8479/12,995)

26.4%
(2922/11,049)

23.8%
(2635/11,049)

49.7%
(5492/11,049)

29.4%
(2727/9265)

70.6%
(6538/9265)

doi:10.1371/journal.pone.0003575.t004

Table 5. Comparison of the prediction performance of SIFT,
PolyPhen, and PANTHER.

Performance measure
criterion SIFT PolyPhen PANTHER

Sensitivity (%)a 65.2 73.6 70.6

Specificity (%)b 69.8 66.3 72.2

p.p.v. (%)c 95.1 95.2 95.6

Correlation coefficientd 2.31 3.12 2.70

True-positive coste 0.0512 0.0507 0.0460

aSensitivity = true positive/(true positive+false negative)
bSpecificity = true negative/(true negative+false positive)
cPositive predictive value = true positive/(true positive+false positive)
dCorrelation coefficient = (true positive6true positive2false positive6false

negative)/((true positive+false positive) (true positive+false negative) (true
negative+false positive)(true negative+false negative))1/2

eTrue-positive cost = false positive/true positive
doi:10.1371/journal.pone.0003575.t005

Figure 3. Scatter plot of predicted scores of SIFT, PolyPhen,
and PANTHER. Red triangles and blue circle plots indicate missense
mutations and nsSNPs, respectively. The ranges of predicted scores of
the three programs were different from each other (0–1 for SIFT, 0–4.6
for PolyPhen, and -13.4–1.1 for PANTHER). Lower SIFT or PANTHER
scores, or higher PolyPhen scores indicate that the predicted variant is
more deleterious. A close distribution in the left lower corner represents
an agreement of the three programs on deleterious effect.
doi:10.1371/journal.pone.0003575.g003

Coding Variations in Humans
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Discussion

In this study, we performed a genome-wide analysis of

variations in the coding sequence of the human genome in

different reference databases. CVM data from HGMD mainly

include CVs that are causative or highly penetrant for a particular

inherited disorder [23], while CVS from dbSNP and CVH from

HapMap mainly include CVs that are neutral or of low

penetrance. Therefore, CVs from different databases should show

different characteristics in several aspects such as amino acid

substitutions, protein function changes, and allele frequencies.

This is confirmed by the results of this analysis.

We observed that up to 8.11% of CVS in dbSNP are registered

as CVM in HGMD, and 4.36% of the CVM in HGMD are

registered as CVS in dbSNP. Among these concurrent CVs, there

were 41 truncation variations, 10 of which were also found in the

HapMap database. Some of the truncation CVs with low

validation scores (Figure S1) were found to be disease-causing

mutations. Heterozygosity information was available for 7

variations out of the 41. When we examined these seven

concurrent CVs, two of them appeared to be nonsense mutations.

The mutant alleles occurred in normal controls at relatively high

frequencies due to founder effects, for example, rs17602729 or

Gln12Term in the AMPD1 gene causing adenosine monophos-

phate deaminase deficiency [24], rs12948217 or Tyr231Term in

the ASPA gene causing Canavan diseases [25], and rs11571833 or

Lys3326Term in the BRCA2 gene causing hereditary breast and

ovarian syndrome. The remaining CVs include apparently

deleterious mutations at the molecular level, but their phenotypic

effects, i.e., disease association, should be interpreted with caution.

This is particularly the case for truncation CVs in the

pharmacogenetics genes and human leukocyte antigens (HLA)

(rs4986893 or Trp212Term in the CYP2C19 gene [26] and

rs1131156 or Ser14Term in the HLA-B gene [27]). Thirty snSNPs

were concurrent in HGMD, and 20 of them were also found in the

HapMap database. When we reviewed the references linked to

these 20 variations at HGMD, we found that most of them were

snSNPs and were registered in the HGMD database since they

were found to be associated with susceptibility mainly to common

complex diseases such as diabetes (see reference links in Table S1).

These observations indicate that some SNPs in dbSNP are truly

phenotypically mutational, and the interpretation of their

functional consequences should be based on the context of carriers

in the general population (or specific populations in case of

founder mutations), or in the context of the phenotypic impact of

the mutant molecule (for example, drug metabolism). In addition,

some truncation CVs need to be considered in the same context as

copy number variations, which have been recently reported to be

more common in the human genome than previously recognized

[28]. Some mutations in HGMD may be disease susceptibility

SNPs with low penetrance or in linkage to other risk alleles.

Although we examined the individual variations for these two

types of concurrent variations only, that is, truncation mutations

and snSNPs, our observations may be valid for at least some of the

amino acid-substituting variations in the human genome that

accounted for more than 90% of concurrent CVs. One of the best

examples is the factor V Leiden mutation in the F5 gene (R506Q,

rs6020), which is a founder mutation in Caucasian populations

[29]. The factor V Leiden mutation results in activated protein C

resistance at the molecular level and predisposes mutation carriers

to develop thrombotic diseases. Other examples include ABO

blood group variations.

In a particular set of 29 genes related to major cancer

predisposition syndromes, we also observed 141 concurrent CVs.

Among the 14 truncation variations concurrent in dbSNP and

HGMD, 10 occurred in the VHL gene. Von Hippel Lindau

syndrome is an autosomal dominant disease and thus one mutant

allele can cause the disease phenotype. To investigate the

variations of VHL in the general population, we resequenced

192 control chromosomes of Korean ethnic origin but found no

variation. Although we did not examine control chromosomes of

other ethnic origins, we believe that the truncation variations in

dbSNP of VHL are nonsense mutations.

Some genes with leader peptide sequences that are removed in

mature proteins have codon numbers based on the mature protein

in HGMD, rather than having the first Met as +1 according to the

recommendations by the Human Genome Variation Society

(http://www.hgvs.org/mutnomen/), for example, the coagulation

factor proteins such as F5. For these genes, one should take into

account the leader peptide sequences when examining the current

mutation database. Indeed, we could not match dbSNP and

HGMD for these genes because of their different codon

numbering, which explains why we could not find the aforemen-

tioned factor V Leiden mutation in our catalog of concurrent CVs.

In the distribution of amino acid substitutions, the most

remarkable difference between groups [S-C] and [M-C] was

observed in amino acid substitutions between the aromatic R

group (G2) and the polar, uncharged R group (G3). The

substitutions between G2 and G3 occurred in 8.8% of total

variations in group [M-C] and 3.9% in group [S-C]. The

substitution frequency agrees well with the chemical distance (CD)

from Grantham’s chemical difference matrix [30] (Table S4).

Relatively frequent substitutions in group [M-C] tend to have long

distances between amino acids, whereas relatively frequent

substitutions in group [S-C] tend to have short distances between

two amino acids. The substitution from cysteine (G2) to

phenylalanine (G3) occurred four times more frequently in group

[M-C] than in group [S-C], and the CD between cysteine and

phenylalanine was 205. For reference, the CDs of all amino acid

Figure 4. Receiver Operating Characteristic (ROC) curves of the
combination and individual predictors. The ROC curves of SVM
combination predictors tend toward the upper left corner of the plot
more than the three individual prediction programs. This suggests that
SVM combinations outperform the individual prediction programs.
SVMpolynomial showed a specificity of 75.9% and a sensitivity of 80.7%
when the threshold of SVM combination score was 0.8 (see Table 5).
doi:10.1371/journal.pone.0003575.g004
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pairs range from 5 to 215. The cysteine (G2)-to-tyrosine (G3)

substitution occurred ,10 times more often in group [M-C] than

in group [S-C], and the CD between cysteine and tyrosine was

also high (CD = 194). The substitution between the most

chemically distant amino acid pair (cysteine [G2] and tryptophan

[G3]) occurred three times more often in group [M-C] than in

group [S-C]. Conversely, the substitution between isoleucine (G2)

and valine (G2) was observed three times more often in group [S-

C] than in group [M-C], and the CD between isoleucine and

valine is five. The threonine (G3)-to-serine (G3) substitution

occurred seven times more frequently in group [S-C] than in

group [M-C], and the CD between threonine and serine is 58.

Remarkablely, in all the amino acid groups, substitutions within

the same amino acid group were observed more frequently in

group [S-C] than in group [M-C] (38.0% vs 26.6%). Substitutions

within the same amino acid group accounted for 30.8% in the

concurrent CVs (group [C]), which fell between those in group [S-

C] and in group [M-C]. This observation suggests that the

concurrent CVs might be a mixture of SNPs and mutations,

supporting the hypothesis that some CVS in dbSNP are truly

phenotypic mutations, and some CVM in HGMD are disease-

susceptibility SNPs.

We used the SIFT, PolyPhen, and PANTHER programs to

predict the influence of thousands of amino acid-substituting CVs on

protein function. The three programs predicted 34–37% of the

nsSNPs in dbSNP and 28–34% of the nsSNPs in HapMap to be

deleterious or damaging. By other amino acid substitution programs,

approximately 25–30% of the putative nsSNPs cataloged in dbSNP

were predicted to negatively affect the protein function [15]. These

tend to be rare in the population. Among the nsSNPs in dbSNP

predicted to be deleterious, nsSNPs that are not in HapMap need to

be validated by experimental methods because they might be rare

variations that contribute to disease phenotypes.

A performance evaluation showed that PANTHER gave better

specificity, p.p.v., and true-positive cost than PolyPhen and SIFT,

while PolyPhen was better for sensitivity and correlation coefficient

than PANTHER and SIFT. In contrast, PANTHER produced

unpredicted results more often than the other two programs. The

non-prediction rate of PANTHER ranged from 41.2% to 45.8%,

the non-prediction rates of PolyPhen and SIFT ranged from

31.0% to 38.8% and 23.7% to 27.9%, respectively (PANTHER:

45.8% for group [H-Ch], 41.2% for group [S-C] and 45.6% for

group [M-C]; PolyPhen: 38.8% for group [H-Ch], 31.0% for

group [S-C] and 35.1% for group [M-C]; SIFT: 27.9% for group

[H-Ch], 25.3% for group [S-C] and 23.7% for group [M-C]). The

high non-prediction rate probably because PANTHER uses the

source of sequences and structures more strictly than PolyPhen

and SIFT and the reference data are not sufficient. The

insufficient prediction rate will be overcome as more information

is available [15]. It might be helpful to utilize a number of locus-

specific mutation databases for specific diseases or genes such as

the HbVar database [31] for human hemoglobin variations and

thalassemia mutations, and the IDR database [32] for immuno-

deficiency mutations.

Lastly, we could significantly increase the prediction power by

combining the programs, and we hypothesize that combining

more prediction programs may further improve the prediction

performance [16,17,20,22]. In the HGMD dataset, more missense

mutations were predicted to be deleterious by the SVMpolynomial

combination than nsSNPs from dbSNP. This result supports the

hypothesis that the functional prediction of CVs could distinguish

between missense mutations underlying Mendelian diseases and

functionally neutral nsSNPs [15]. In particular, the largest

proportion of CVs (326/461; 70.7%) in the concurrent group

[C] was predicted to be damaging (Table S5). This might include a

large fraction of medically detrimental mutations that are not

eliminated by purifying selection, possibly due to positive selection

or mutation-selection balance [33]. For variations in group [Ch],

the proportion of variations predicted to be damaging was high

(63/135; 46.7%), and the average allele frequency was relatively

low, compared to those predicted to be neutral (Figure S2). The T-

test result showed that the differences in allele frequencies between

the two variations for each population were significant (P,0.05).

We also found that some variations predicted to be damaging,

such as rs16941 and rs2020873, showed strong evidence for

positive selection (either an integrated haplotype score .2 or ,22

[34]) (Table S5). Evidence of positive selection may be helpful in

identifying genetic variations associated with complex disease [35].

These results suggest that some concurrent variations predicted to

be damaging could be nsSNPs that affect protein function less

severely than missense mutations. Some common complex

diseases may be caused by a multitude of rare variations that

continue to exist because of an evolutionary mechanism [33].

In summary, this is the first study to look into human sequence

variations genome-wide in three representative reference databas-

es HGMD, dbSNP and HapMap. We found that a significant

proportion of CVs in HGMD and dbSNP overlap, and particular

caution is required in assessing these concurrent CVs with regard

to their phenotypic relevance. Bioinformatic analyses that employ

a combination of different algorithms can be helpful in

determining genotype-phenotype correlations by providing im-

proved functional predictions.

Materials and Methods

Reference Databases
We used three representative human sequence variation data-

bases: HGMD (http://www.hgmd.cf.ac.uk/ac/index.php; public

version January 2006), dbSNP (http://www.ncbi.nlm.nih.gov/

projects/SNP/; build 126), and HapMap (www.hapmap.org; NCBI

build 35). In general, ‘‘damaging and deleterious variations’’ indicate

variations underlying highly penetrant diseases, and ‘‘neutral or

susceptibility variations’’ indicate variations known to be phenotyp-

ically silent or associated with increased risk of developing a disease

[36]. The HapMap database is a subset of the dbSNP database and

is less likely to include pathogenic variants, since the HapMap data

were generated from randomly selected individuals.

Tools for Predicting Phenotypic Effects of Amino Acid
Substitution

We applied three representative in silico programs, SIFT [18],

PolyPhen [19], and PANTHER [21], to predict the phenotypic

effect of a CV amino acid substitution. The three programs use

different algorithms and thus may give a different prediction for

the same CV. As reference protein database, we used SWISS-

PROT for SIFT, PQS for PolyPhen, and PANTHER 6.1 for

PANTHER. To set up SIFT and PANTHER locally, we

downloaded SIFT (Linux version 2.1) from http://blocks.fhcrc.

org/sift/SIFT.html, PANTHER SNP scoring tool (Linux version

1.0) from http://www.pantherdb.org/downloads and SWISS-

PROT from ftp://ftp.ncbi.nih.gov/blast/db/FASTA. We execut-

ed PolyPhen online (http://genetics.bwh.harvard.edu/pph)

through batch processing, and have summarized the results.

Combination Analysis using SVM
By estimating the discriminant function, SVM classifies the data

into two classes [37]. It builds up a hyperplane as the decision

surface in a way that maximizes the margin of separation between
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positive and negative examples. Given a labeled set of M training

samples (Xi, Yi), where XiMRN and Yi is the associated label,

YiM21, 1, the discriminant hyperplane is defined by:

f (X )~
XM

i~1

Yiaik(X ,Xi)zb ð1Þ

where k(?,?) is a kernel function and the sign of f(X) determines the

membership of X. In our problem, Xi is a three-dimensional vector

(xi1, xi2, xi3) where xi1 is the SIFT score, xi2 is the PolyPhen score

and xi3 is the PANTHER subPSEC score of the variant of

interest, and Yi indicates the variant is positive (damaging CV) or

negative (neutral CV). Because the original prediction scores of

each program are on different scales (0–1 for SIFT, 0–4.6 for

PolyPhen, and 213.4–1.1 for PANTHER), we used the following

equation to make the score fall within the 0–1 range:

s(x)~
x{min(x)

max(x){min(x)
ð2Þ

where s(x) is a scaled score of an original prediction score x, and

min(x) and max(x) are the minimum and maximum values of x,

respectively.

We defined the SIFT and PANTHER scores as 1 minus their

scaled prediction value because a prediction value close to 0 means

a deleterious variant and a value close to 1 means a tolerant

variant. We used the SVMlight software package [38], which is

available at http://svmlight.joachims.org.

Supporting Information

Figure S1 Validation scores of concurrent variations (group [C])

according to variation type. Validation scores were obtained from

dbSNP. Horizontal bold lines show the average validation score.

The average validation score of nsSNPs (AA1.AA2) was 2.03, the

average of trSNPs (AA1.TR) was 1.27, and the average of

snSNPs (AA1.AA1) was 6.40 (see Table S1).

Found at: doi:10.1371/journal.pone.0003575.s001 (6.19 MB TIF)

Figure S2 Distribution of the variant allele frequency observed

in the three populations (CEU: Caucasian; ASN: Asian; and YRI:

African) in HapMap for variants in group [Ch] (for details, see

Table S5). The horizontal bold line in each population shows the

average variant allele frequency. For 63 variants predicted to be

damaging by the SVM combination, the average variant allele

frequency is relatively low (CEU: 0.09; ASN: 0.07; and YRI: 0.06),

compared to 72 variants predicted to be neutral by the SVM

combination (CEU: 0.15; ASN: 0.15; and YRI: 0.17). The

difference between the two variant groups was significant based

on the result of the t-test.

Found at: doi:10.1371/journal.pone.0003575.s002 (6.43 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0003575.s003 (0.51 MB

XLS)

Table S2

Found at: doi:10.1371/journal.pone.0003575.s004 (0.04 MB

DOC)

Table S3

Found at: doi:10.1371/journal.pone.0003575.s005 (0.09 MB

XLS)

Table S4

Found at: doi:10.1371/journal.pone.0003575.s006 (0.03 MB

XLS)

Table S5

Found at: doi:10.1371/journal.pone.0003575.s007 (0.31 MB

XLS)
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