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Abstract

In mammals, the circadian clock relies on interlocked feedback loops involving clock genes and their protein products. Post-
translational modifications control intracellular trafficking, functionality and degradation of clock proteins and are keys to
the functioning of the clock as recently exemplified for the F-Box protein Fbxl3. The SCFFbxl3 complex directs degradation of
CRY1/2 proteins and Fbxl3 murine mutants have a slower clock. To assess whether the role of Fbxl3 is phylogenetically
conserved, we investigated its function in the sheep, a diurnal ungulate. Our data show that Fbxl3 function is conserved and
further reveal that its closest homologue, the F-Box protein Fbxl21, also binds to CRY1 which impairs its repressive action
towards the transcriptional activators CLOCK/BMAL1. However, while Fbxl3 appears to be ubiquitously expressed, Fbxl21
expression is tissue-specific. Furthermore, and in sharp contrast with Fbxl3, Fbxl21 is highly expressed within the
suprachiasmatic nuclei, site of the master clock, where it displays marked circadian oscillations apparently driven by
members of the PAR-bZIP family. Finally, for both Fbxl3 and Fbxl21 we identified and functionally characterized novel splice-
variants, which might reduce CRY1 proteasomal degradation dependent on cell context. Altogether, these data establish
Fbxl21 as a novel circadian clock-controlled gene that plays a specific role within the mammalian circadian pacemaker.
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Introduction

Endogenous circadian clocks generate rhythms of physiology

and behaviour, and are synchronised to the environment through

rhythmical stimuli, principally the light/dark cycle. These clocks

allow organisms to anticipate and adapt to cyclical changes in

environmental favourability.

In mammals, the circadian clock relies on interlocked feedback

loops in which a heterodimer of transcription factors, CLOCK/

BMAL1 (CLK/BM1), drives transcription of Period1-3 (Per1-3) and

Cryptochrome1-2 (Cry1-2) genes through E-Box cis-elements. The

PER1-3 and CRY1-2 proteins then act as transcriptional

inhibitors of CLK/BM1. Apart from Per1-3 and Cry1-2, the

CLK/BM1 heterodimer acts on other genes, some of which are

themselves clock components, such as the orphan nuclear

receptors Rev-erb a or Ror a, while others are outputs from the

clock, resulting in the regulation of cell- and tissue-specific

processes [1–3]. The orphan nuclear receptors of the ROR and

REV-ERB families act on DNA motifs known as ROREs to

control rhythmic transcription of the Bmal1 gene, with activating

and repressive action, respectively [4–7]. Other ancillary inter-

locked feedback loops, such as that through which REV-ERBs and

RORs impinge on the transcriptional control of Rev-erb alpha [8–

10] or that closed by the clock-controlled PAR-bZIP proteins

through D-Boxes [11–13] add to the robustness of the clock

mechanism [14].

Patterns of rhythmical transcription depend heavily on post-

translational mechanisms operating within the circadian clock

[3,15–17]. Post-translational modifications of clock proteins include

phosphorylation [16], SUMOylation [18] or acetylation [19], most

of which are induced upon formation of heterodimers or larger

protein complexes. These processes control intracellular trafficking

of clock proteins, their functionality and ultimately their degradation.

A timely orchestrated degradation of clock proteins is

indispensable to the proper functioning of the clock as illustrated

by the recently uncovered role for the F-Box protein Fbxl3. In

mammals, the F-Box protein family comprises about 40 members,

which direct ubiquitination and proteasome-mediated degradation

of specific proteins through SCF (Spk/Cullin/F-Box protein) E3

ubiquitin ligase complex [20–22]. Accordingly, the SCFFbxl3

complex was recently shown to direct degradation of CRY1 and

CRY2 proteins, with mutations in Fbxl13 leading to a slowed

circadian clock in mice [23–25].

We sought to test whether the regulating effect of Fbxl3 was

conserved in the diurnal sheep and investigate whether its closest

homologue, Fbxl21 [26], is also involved in circadian function.

Results and Discussion

Ovine orthologues of Fbxl3 and Fbxl21
Cloning of ovine Fbxl3 generated a full-length (oFbxl3fl,

GenBank EF643523) coding sequence (cds) of 1290 nucleotides
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(nt), giving a protein of 429 amino acids (Fig 1A/B). Overall

sequence homologies to bovine, murine and human Fbxl3 were all

.95%, with 100% amino acid conservation in the region 332–

385, which encodes a CRY binding domain (CBD, Fig 1G).

Additionally, we isolated a truncated in-frame splice-variant

(oFbxl3sv, GenBank EF643524), in which nt 209 to 354 are

deleted (Fig 1A). Alternative splicing (AS) describes the process of

splicing exons of pre-mRNAs in different arrangements and

drastically expands the potential repertoire of protein variants [27–

30]. Since there is an evolutionary trend towards increased AS in

complex organisms, this mechanism may resolve the paradoxical

lack of increasing number of expressed genes in increasingly

complex eukaryotic organisms [27–28]. It appears that AS is

widespread since recent large-scale analyses indicate that as much

as 70–80% of genes in mammals are subject to AS [29,31]. In the

case of oFbxl3sv, AS spares the open reading frame but leads to a

truncation of the F-box motif in the protein (Fig 1B, Pfam score

diminished by 2.104-fold compared to oFbxl3fl), while the CBD is

left intact. Such a protein is therefore predicted to have intact

CRY binding while coupling with the proteasome degradation

pathway may be impaired. We designed primers to encompass the

predicted AS region (Fig 1A, O47C/O48C), or to select for the

splice-variant (oFbxl3sv) (Fig 1A, O51C/O52C, see M&M for

oligos sequences and details), and screened for Fbxl3 expression in

ovine tissues (Fig 1C). This clearly demonstrates that both

oFbxl3fl and oFbxl3sv are ubiquitously expressed.

Sequence phylogeny analysis shows that Fbxl21 is the closest

relative of Fbxl3 [26]. We therefore cloned a full-length cds for

ovine Fbxl21 (oFbxl21fl, GenBank EU239380). This yielded a

1305 nt sequence giving a protein of 434 amino acids with a

greater degree of inter-species divergence than was the case for

Fbxl3 (94, 84 and 82% homology with bovine, mouse and human

Fbxl21 respectively, Fig 1D). Fbxl21 appears to be a paralogue of

Fbxl3 that arose through gene duplication relatively recently;

indeed, unlike Fbxl3, no clear orthologue of Fbxl21 could be

identified in fish genomes (Ensembl database). Within the region

corresponding to the CBD of Fbxl3, amino acid identity to

mFbxl21 was only 79% although most substitutions were either

conservative or semi-consevative (Fig 1D/E and G). Here too, a

splice-variant (oFbxl21sv, GenBank EU239381) was isolated. This

splice-variant lacks 70 nt, is therefore out of frame (Fig 1D/E; fs:

frame-shift) and presents an early stop-codon (TGA). This

Figure 1. Cloning and mRNA distribution of ovine Fbxl3 and Fbxl21. A/D. Schematics depicting the cds of mRNA of Fbxl3 and Fbxl21,
respectively. Primers used for RT-PCR are indicated. Note that Fbxl3sv is an in-frame splice-variant while Fbxl21sv is an out-of-frame splice-variant (fs
for frame-shift) with an early stop-codon (TGA, nt 489). B/E. Schematics depicting the proteins encoded by the Fbxl3 and Fbxl21 transcripts,
respectively. Note that part of F-Box motif of Fbxl21sv is disrupted due to the splicing event while the CBD is spared. Note also that Fbxl21sv is a short
protein product of 171 amino acids with the last 8 amino acids (indicated in green) differing from Fbxl21fl due to the AS event. The F-Box motif is left
intact but Fbxl21sv does not have a CBD. C. RT-PCR for Fbxl3 on central and peripheral tissues sampled at ZT4. Co-amplification of a CKId fragment
was used as an internal positive control (oCKId, GenBank EF643522), absence of cDNA in the PCR mix as a negative control. Upper panel: screening
with O47C/O48C primers. Lower panel: screening with O51C/O52C primers clarifies the tissue distribution of Fbxl3sv. F. RT-PCR for Fbxl21 on central
and peripheral tissues sampled at ZT4. G. Sheep - mouse amino acid conservation within the CBD of Fbxl3 and Fbxl21. Residues associated with the
Afterhours (Afh) and Overtime (Ovtm) Fbxl3 mutants are highlighted in red. Blue shading indicates residues that differ in at least one of the four
sequences. Star, two dots and one dot indicate identical, conservative and semi-conservative substitutions, respectively. Pfam scores for F-box motifs:
Fbxl3fl 3.9e209, Fbxl3sv 2.1e205, Fbxl21fl and Fbxl2sv 6.5e211.
doi:10.1371/journal.pone.0003530.g001
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transcript yields a predicted protein of only 171 amino acids,

leaving the F-box motif intact but lacking the CBD (Fig 1D/E).

Such a protein is therefore unlikely to bind CRY proteins while

coupling with the proteasome degradation pathway would be

retained. As for oFbxl3, we designed primers (O49C/O50C) to

determine the tissue distribution of oFbxl21fl and oFbxl21sv. This

revealed that Fbxl21 exhibited much more varied levels of

expression between tissues than Fbxl3, with maximal expression

in the adenohypophysis, hypothalamus and pineal (all neuroen-

docrine structures associated with timing and homeostasis) and no

expression evident in liver, adrenal or white adipose tissue (WAT)

(Fig 1F). The truncated transcript, oFbxl21sv, was detected in all

tissues in which oFbxl21fl was also expressed. A similar

distribution pattern was observed when RNA were extracted

from animals sampled at either ZT4 (present data) or ZT15 (data

not shown) indicating that absence of detection of Fbxl21 in liver,

adrenal and WAT is unlikely due to a time-of-day effect on

sampling (see below).

Transcripts encoding truncated protein products such as

oFbxl21sv have long been considered as erroneous splicing events

but recent evidence indicates they may have specific functions

[27,30,32]. Strikingly, conservation in splice-variant isoforms

between mouse and human is very low, with estimates around

10–20% [28–29]. This might indicate meaningful evolutionary

differences or, alternatively, reveal that splice-variants are merely a

reflection of molecular noise generated by the splicing machinery

[28–30]. In this context it is noteworthy that the same in-frame

Fbxl3sv transcript characterized in the sheep is also present in the

mouse (data not shown). Furthermore, we cloned a novel splice-

variant for Fbxl21 in the mouse that encodes for a truncated

protein product of a sequence reminiscent to that of oFbxl21sv

(GenBank EU770600). These data demonstrate that AS is

commonplace in the F-box protein family as emphasized

elsewhere [26], which offers another putative layer of fine-tuning

in the circadian clock. Furthermore, the fact that oFbxl3fl and

oFbxl3sv are ubiquitously expressed while oFbxl21fl and

oFbxl21sv display a clear-cut tissue-specific distribution strength-

ens the view that circadian clocks among tissues might have

different characteristics, as previously suggested [7,33].

Fbxl3 and Fbxl21 physically associate with Cry1
We used co-immunoprecipitation assays to determine whether

sheep Fbxl3/21 orthologues bind to CRY1 in-vitro. We therefore

cloned a full-length cds for ovine Cry1 (oCry1, GenBank

EF494243) in a Flag-tagged expression vector while Fbxl3fl,

Fbxl3sv, Fbxl21fl and Fbxl21sv were cloned in Myc-tagged

expression constructs. These were co-transfected into COS7 cells

in different combinations, prior to co-immunoprecipitation with

beads coated with a-Myc antibodies followed by Western blotting

(WB) with a-Myc or a-Flag antibodies (WB, Fig 2A). Consistent

with data in the mouse [23,25], we observed pull-down of oCRY1

by oFbxl3fl. This was also observed for oFbxl3sv, as predicted by

the preservation of the CBD in this transcript. A similar pull-down

was observed for oFbxl21fl, but not for oFbxl21sv that lacks the

CBD. These findings confirm predictions and indicate that

interaction with CRY1 requires the CBD.

In spite of the sequence divergence between the Fbxl21 CBD of

sheep and mouse (Fig 1G), pull-down experiments using mFbxl21

instead of oFbxl21 demonstrate that the CRY1 binding ability is

intact (Fig 2B).

Differential effects of ovine Fbxl variants on CRY1 protein
degradation

We then assessed whether oFbxl proteins affect the degradation

kinetics of molecular clock components. For this purpose full-

length cds for orthologues of Clk (oClk, GenBank EU016223) and

Bm1 (oBm1, GenBank EF494245) were cloned in the sheep.

COS7 cells were co-transfected with oCry1, oBm1 and oClk in

combination with the three Fbxl constructs which co-immuno-

precipitated with oCRY1, and then treated with the protein

synthesis inhibitor cycloheximide (CHX, 25 mg/ml) for 0–8 h.

Proteins were extracted and relative levels were assessed by WB

(Fig 3A).

The Fbxl proteins had different effects on baseline oCRY1 and

oBM1 levels immediately prior to CHX treatment (t = 0), but no

impact on those for oCLK (Fig 3B). Full-length oFbxl3 strongly

reduced baseline of oCRY1 levels while oFbxl21fl did not have any

clear effect on oCRY1 levels, in agreement with previous results (see

Fig 2A, input). Contrastingly, baseline levels of oCRY1 showed a

trend towards higher levels by co-transfection of oFbxl3sv, in-line

with the predicted impaired coupling to the proteasome degradation

pathway and suggestive of a dominant-negative effect.

To normalise for these differing baseline levels, data were

replotted as a fraction of t = 0 values for each expression vector

combination (Fig 3C). Degradation rates in cells co-transfected

with empty vector (ev) served as controls. These data demonstrate

that only the rate of oCRY1 degradation is highly dependent on

co-transfection of oFbxl expression vectors (two-way ANOVA, the

value for the interaction treatment6time is indicated on the right

of Fig 3C). When compared to the ev control condition it was

clear that oFbxl3fl exerts the strongest degradation promoting

effect on CRY1 proteins (post-hoc test, p,0.01), reducing their

Figure 2. Ovine and murine Fbxl3 and Fbxl21 physically associate with oCry1. A. Extracts from COS7 cells co-transfected with Myc-Fbxl
and Flag-Cry1 expression vectors were submitted to immunoprecipitation (IP) with a-Myc beads followed by western-blotting (WB). The oCRY1
protein was readily co-purified with oFbxl3fl, oFbxl3sv and oFbxl21fl but not with oFbxl21sv. Note the low CRY1 levels in the input when Fbxl3fl was
present. Similar detection levels of IgG (from Myc antibodies) across all conditions demonstrate loading of comparable amounts of supernatant.
ev = empty expression vector. B. The use of similar methods demonstrates that the mouse Fbxl21 also interacts with oCRY1.
doi:10.1371/journal.pone.0003530.g002
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levels to less than 25% of t = 0 values after 8-h of protein synthesis

blockade. A qualitatively similar but quantitatively more modest

effect (non-significant, post-hoc test p,0.1) was seen for oFbxl21fl.

By contrast, degradation rates for oCRY1 (but not oCLK or

oBM1) in cells transfected with oFbxl3sv showed a trend towards

reduction compared to controls (non-significant, post-hoc test

p,0.1), confirming predictions that the truncated F-box motif in

this protein leads to a protein stabilising effect.

Collectively these data indicate that Fbxl21fl and Fbxl3sv, in

addition to Fbxl3fl, govern the kinetics of degradation of CRY1.

Fbxl3 and Fbxl21 modulate CRY1 suppression of CLK/
BM1 induced E-box transactivation

To investigate whether these differential effects on protein stability

result in different clock gene function in vitro, we constructed a

luciferase reporter with the promoter region of the sheep Rev-erb a
gene (GenBank EF494248), a gene whose transcription is regulated

through circadian E-boxes, responsive to CLK/BM1 [1–3]. We

then performed further co-transfection experiments in which the

impact of the various Fbxl on oCRY1-dependent transcriptional

repression of oRev-erb a expression could be assessed.

Similarly to results obtained in the mouse [25], this approach

revealed that oCRY1 is a potent inhibitor of oCLK/oBM1-

induced oRev-erb a transactivation, reducing expression by

approximately 5-fold (Fig 4A). This repressive effect was

attenuated by approximately 75% upon co-transfection with

oFbxl3fl or oFbxl21fl, consistent with the oCRY1 degradation

promoting effects of these proteins. According to predictions,

oFbxl3sv and oFbxl21sv proteins failed to reduce the repressive

effects of oCRY1, likely due to the truncated F-box motif and lack

of the CBD, respectively.

A similar set of experiments was performed using previously

validated [34] murine clock components (mClk, mBm1, mCry1

and an mPer1-luc reporter gene construct). Akin to what is observed

for oFbxl21fl, mFbxl21fl is able to reverse mCRY1-induced

repression of mCLK/mBM1 transactivation (Fig 4B).

Rhythmical Fbxl21 expression is confined to the SCN
within the hypothalamus

Our RT-PCR screen showed that Fbxl3 is ubiquitously

expressed while Fbxl21 has a highly tissue-specific expression

pattern. We therefore wondered if Fbxl21 also shows localised

expression within the hypothalamus. To address this, we

performed radioactive in situ hybridisation in brain tissue from

sheep sampled at ZT 4-6 and mice sampled around the clock using

homologous probes. Remarkably, in the sheep hypothalamus we

observed strong labelling within the SCN, which harbours the

mammalian master clock, in a region overlapping with sites of

arginine vasopressin (Avp, GenBank EU045357) and vaso-active

intestinal polypeptide (Vip, GenBank EU016225) expression

Figure 3. Fbxl21 and Fbxl3 promote degradation of ovine
CRY1 and BM1. A. COS7 cells were transfected with oCry1, oBm1 and
oClk, and an oFbxl expression vector as indicated above each lane.
Extracts were made at the start of cycloheximide (CHX) treatment (t = 0)

or 2 or 8 h later as indicated and protein levels assessed by WB.
Transfection conditions per well: 1 mg of oClock, 600 ng of oBmal1,
600 ng of each oFbxl/ev and 400 ng of oCry1. B. Quantitation of
baseline levels (t = 0) of oCRY1, oBM1 or oCLK proteins. Data are
normalised to values observed in cells not transfected with any oFbxl
(ev). **: significantly lower density than for ev, p,0.01, One-way ANOVA
followed by Student-Newman-Keuls post-hoc test. C. Quantitation of
temporal decline in protein levels following the start of CHX treatment.
Data are expressed relative to t = 0 values for each vector combination.
p values for the interaction (treatment6time, two-way ANOVA) are
given on the right. Data in B/C are mean6SEM of observations from 3
replicate experiments.
doi:10.1371/journal.pone.0003530.g003
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(Fig 5A). This pattern contrasts markedly with that for Fbxl3,

which showed relatively weak and diffuse labelling (Fig 5A).

Further experiments in mice confirmed this SCN-restricted

pattern of Fbxl21 expression, and demonstrated pronounced

diurnal and circadian expression rhythms, rising rapidly at the

start of the day (or ‘‘subjective day’’ in animals run into constant

darkness), and declining at the onset of the (subjective) night

(Fig 5B). In contrast, Fbxl3 was diffusely expressed in the SCN of

mice where it displayed no diurnal or circadian oscillation (data

not shown and Fig 5C), in-line with previous findings [24,25].

Representative hybridization images from brains of animals

sampled either in the beginning/middle of the day (ZT4) or

beginning/middle of the night (ZT16) are shown in Fig 5C.

These data suggest that Fbxl21 may be a clock-controlled gene

that plays a specific role in SCN pacemaker function.

Fbxl21 is a clock-controlled gene
The circadian pattern of Fbxl21 expression in the mouse SCN is

reminiscent of that seen for other genes whose expression is driven

by CLK/BM1 such as Per1 or Dbp. Analysis of the mFbxl21 gene

promoter revealed no canonical E-Box (CACGTG) but 11 E’

Boxes (CANNTG). Only 4 of these are conserved in the rat

promoter (Fig 6A, E’1–4). Interestingly we noticed a putative D-

Box element (Fig 6A), which is also conserved in the rat, human,

bovine, dog and chicken Fbxl21 gene promoters in spite of the very

poor sequence conservation between species (data not shown).

Such a response element is known to mediate transactivation by

members of the PAR-bZIP transcription factors family (DBP:

albumin D-site binding protein, GenBank EU293835; HLF:

Hepatic leukemia factor, Genbank EU293836 and TEF: thyro-

troph embryonic factor, GenBank EU293837) that are clock-

controlled genes and display strong circadian oscillation within the

SCN peaking early into the light phase [12–13]. We therefore

cloned a 1.3 kb fragment of the proximal mFbxl21 gene promoter

and used luciferase assays to assess transactivation by CLK/BM1

and the PAR-bZIP proteins (Fig 6B). This revealed modest (,2-

fold) transactivating effects of CLK/BM1 and DBP, and stronger

(4–7 fold) effects of HLF and TEF. The modest (n.s., p = 0.08)

effect of DBP could be due to differences in binding affinities of the

various PAR-bZIP proteins towards this D-Box [35]. Alternative-

ly, transcriptional co-factors required for DBP might be missing in

this cell type.

Taken together, these data suggest that the rhythmic expression

of Fbxl21 in the mouse SCN derives from combined transactiva-

tion through E’boxes and a conserved D-Box element.

Conclusion
Altogether, these data indicate a broad conservation of

transcriptional and post-translational mechanisms of the circadian

clock between a nocturnal rodent and a diurnal ungulate and

identify Fbxl21 as a new clock component whose expression is

driven by the core-clock. The functional characterization of new

splice-variants also suggests that AS might be an important

mechanism to fine-tune the clock. This idea is also supported by

data for Bmal2 [34,36], Timeless [37] or the finding of a

temperature-dependent splicing of the Period gene in Drosophila

[38]. Since Fbxl21 directs degradation of CRY1 and displays

strong and specific rhythmic circadian expression within the

central pacemaker of the SCN, we suggest that Fbxl21 stands at a

crucial crossroads between activation and repression in central

clocking (Fig 7). Finally, the present data also raise the possibility

of functional redundancy between Fbxl3 and Fbxl21 in the SCN

akin to what was recently reported for Clock and Npas2 [39].

Future studies defining FBXL21 protein profiles within the SCN

and targeted deletion of the gene should help delineate further the

role of Fbxl21 in circadian timing.

Materials and Methods

Sheep tissue collection
Hypothalamic blocks for in-situ hybridisation and central tissue

samples were obtained from Blackface sheep killed at a local

Figure 4. Functional transcriptional effects of Fbxl3 and Fbxl21. A. oFbxl3 and oFbxl21 dose-dependently reverse oCRY1 inhibition of oCLK/
oBM1 induced transactivation of an oRev-erb a reporter construct. Transfection conditions per well: 100 ng of oClock, 100 ng of oBmal1, 100 ng of
oCry1, 100 or 200 ng of each Fbxl or ev, 50 ng of oRev-erb alpha promoter reporter, 50 ng of b-Gal reporter and/or necessary amount of empty vector
to make a final amount of 600 ng. B. mFbxl21 dose-dependently reverses mCRY1 inhibition of mCLK/mBM1 induced transactivation of an mPer1
reporter construct. Transfection conditions per well: 100 ng of mClock, 100 ng of mBmal1, 20 ng of oCry1, 100 or 200 ng of mFbxl21 or ev, 50 ng of
Per1 promoter reporter, 50 ng of b-Gal reporter and/or necessary amount of empty vector to make a final amount of 600 ng. Data in A/B are
mean6SEM of one triplicate representative from 3 replicate experiments. Different letters above bars indicate significantly different groups (p,0.05).
doi:10.1371/journal.pone.0003530.g004
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slaughterhouse (McIntosh Donald, Portlethen, UK). Sheep were

killed by the pneumatic captive bolt gun method carried out by a

licensed person. Peripheral tissues were sampled from Soay rams

killed by an overdose of barbiturate (Euthatal; Rhone Merieux,

Essex, UK) administered intravenously. All experiments were

performed in accordance with Home Office (UK) legislation and

approved by University of Edinburgh Local Ethics Committee.

Tissues were rapidly dissected out, frozen onto dry ice and kept at

280uC until sectioning or RNA extraction.

Mouse tissue collection
Adult male Swiss mice (Charles River, Lyon, France) were kept in

a 12-h light/dark cycle (LD) or transferred to constant darkness (DD)

for 2 days. After mice were deeply anesthetized with isoflurane and

decapitated, brains were removed, frozen and cut in 20-mm coronal

sections at the level of the suprachiasmatic region. Five mice were

killed every 4 h throughout the LD cycle (expressed in zeitgeber

time, ZT0 being the time of lights on) or throughout the DD cycle

(expressed in circadian time, CT0 being defined as the projected

time of lights on). Experiments were performed in accordance with

the rules of the European Committee Council directive of November

24, 1986 (86/609/EEC) and the French Department of Agriculture

(license nu67–88 to E.C.).

Cloning
DNA extraction was done with a QIAamp DNA mini kit

(Qiagen). RNA extraction was performed using Tri-reagent

(Sigma) according to the manufacturer’s protocol, and cDNA

synthesis was carried out using a reverse transcription kit (Qiagen).

When sheep EST were not available, ClustalW alignments of

mammalian sequences were performed in order to identify

conserved regions suitable for primer design (primers from

MWG Biotech, Germany). PCR was done with Platinum Taq

Hifi (Invitrogen) according to the manufacturer’s protocol.

Following agarose gel electrophoresis, PCR fragments of the

expected sizes were extracted using a gel extraction kit (Qiagen)

and cloned in pGEM-T easy vector (Promega). Four to six positive

clones were sequenced (MWG, United Kingdom), and the

sequences deposited in GenBank. To generate expression

constructs, a second round of PCR was performed using primers

flanked by adequate restriction sites and the pGEM-T clone as

template. PCR fragments were extracted as described above,

digested by the adequate restriction enzymes, purified with a PCR

purification kit (Qiagen) and cloned in the expression vector

backbone. Two different expression vectors with either a Flag or a

5X-Myc tag were used. To generate promoter reporter constructs,

a strategy identical to that described above was applied. All

fragments were cloned into the pGL3 basic backbone (Promega)

digested with the appropriate restriction enzymes. Sequencing was

performed to check accuracy of the re-amplified cloned fragments.

All primer sequences and constructs are available upon request.

Cell culture, transfection and luciferase assay
COS-7 cells were grown in Dulbecco’s modified Eagle’s

medium supplemented with 10% fetal bovine serum, 1% Pen/

Strep mix and sodium pyruvate in a humidified atmosphere with

5% CO2 at 37uC. Cells were plated in either 6-well or 24-well

plates (for WB or luciferase assay, respectively), and transfected

with GeneJuice (Novagen). For luciferase assays, expression

vectors were used at different doses depending on the experiment.

Figure 5. In-situ hybridisation for Fbxl3 and Fbxl21 within the SCN of the sheep and mouse. A. Representative images for expression of
Fbxl21 (top), Fbxl3 and the neuropeptides, Avp and Vip (bottom) in the hypothalamus of sheep sampled at ZT4-6. Sense controls for Fbxl riboprobes
are also shown (top and middle right panels). B. Fbxl21 undergoes circadian expression in the SCN of the mouse. Top: mRNA profiles in the SCN of
mice sampled at 6 different time-points (n = 5 per time-point) under either a 12/12 light-dark cycle (LD) or under constant darkness (DD). Data for ZT/
CT0 are double-plotted. Bottom: representative in-situ autoradiograms. Note the SCN-restricted pattern of expression. Two-way ANOVA: time-effect,
P,0.001, light condition6time interaction, p = 0.39. C. Fbxl3 does not show circadian expression in the SCN of the mouse. Representative images for
expression of Fbxl3 in the brain of mouse sampled at ZT4 and ZT16. Note the ubiquitous pattern of labelling including diffuse expression in the SCN.
doi:10.1371/journal.pone.0003530.g005
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Promoter reporter constructs and b-galactosidase reporter con-

struct were used at 50 ng/well. Total transfected DNA amount

was set to an equal amount between all conditions by addition of

the corresponding empty vector. Luciferase assay was performed

on the day following transfection. Briefly, cells were rinsed twice in

cold PBS and lysed for 15 min in lysis buffer (25 mM Tris, 2 mM

EDTA, 1 mM DTT (dithiothreitol), 10% glycerol and 1% Triton

X-100). The luciferase assay was performed using a Luciferase

assay system kit (Promega) and a Lumicount microplate

luminometer (Packard). Results were normalised to b-galactosi-

dase activity. Data (in relative luminescence units) represent fold

induction once normalised to b-galactosidase. Experiments were

repeated three to five times, each condition in triplicate. For WB

experiments, variable amounts of DNA were transfected, never

exceeding 4 mg/well. Experiments were done at least in triplicate.

Western blot and immunoprecipitation
Cells were plated in 6-well plates and transfected as described

above. For protein synthesis inhibition experiments, 25 mg/ml

cycloheximide (CHX; Sigma) was added 24 h post-transfection for

8, 2 or 0 h prior to harvesting. Cells were rinsed twice in cold PBS,

resuspended in RIPA buffer (50 mMTris-HCl, pH 8, 150 mM

NaCl, 1% Nonidet P40, 0.5% Na-deoxycholate, 0.1% SDS,

0.5 mM DTT, 1 mM PMSF and a cocktail of protease inhibitors

(Complete Mini; Roche) and incubated for 30 min on ice. After

vortexing, the extract was centrifuged for 1 min at 16000 g and

supernatants used for Western blot (WB) or kept at 280uC. For

immunoprecipitation assay cells were harvested 48 h post-

transfection in IP buffer (150 mM NaCl, 5 mM EDTA, 0.5%

Nonidet P40, 50 mM Tris, pH 7.8, 1 mM PMSF and a cocktail of

protease inhibitors (Complete Mini; Roche). An aliquot of

supernatant was kept as input for western-blot analysis while the

rest was incubated overnight at 4uC with anti-Myc affinity resin

(Sigma) in IP buffer. The beads were then washed twice with IP

buffer, resuspended in Laemmli buffer (50 mM Tris/HCl pH 6.8,

2% SDS, 0.1% Bromophenol Blue, 10% glycerol and 100 mM

DTT), denatured at 95uC for 5 min and the supernatant was

resolved on a 6% or 12% SDS polyacrylamide gel. Nitrocellulose

membranes (Amersham) were then probed with antibodies

directed against Myc (Roche) or Flag (Sigma). Anti-mouse

horseradish peroxidase-conjugated antibody (Sigma) and the

ECLH (enhanced chemiluminescence) detection reagent (Amer-

sham) were used for revelation using Hyperfilm ECL (Amersham).

RT-PCR on tissues
RT-PCR was performed as described in the tissue collection and

cloning section. Co-amplification of an 879 bp fragment of oCKId
was used as a positive control. Omission of cDNA in the PCR mix

was used as a negative control. Initial screening for Fbxl3 was

performed using oligos O47C (GGGGTAATCTCCTTCAGG)

and O48C (CTAGGACTTTGAGCGAGG) yielding 471 and

327 nt PCR fragments for Fbxl3fl and Fbxl3sv, respectively.

Another PCR was performed using oligos O51C (GCAACTG-

GAACCAGGTGG) and O52C (GGAAGTGAGTCTGTCCT-

GG) yielding a 474 nt PCR product for Fbxl3sv only since O51C

spans the splicing junction (the sequence corresponding to O51C in

Fbxl3fl being GCAACTGGAACCAGGTAT prevents complete

hybidization of the oligo hence polymerisation). Confirming

specificity of the approach, no PCR product was obtained with

O51C/O52C when the Fbxl3fl expression vector was used as a

template while the expected 474 nt product was readily amplified

from the Fbxl3sv expression construct. PCR screening for Fbxl21

was performed using oligos O49C (CCATCTCCAGTATGT-

CAGC) and O50C (ATGCCAGTTCTCTCAGACC) yielding

386 and 298 nt PCR fragments for Fbxl21fl and Fbxl21sv,

respectively.

Figure 6. mFbxl21 is a clock-controlled gene. A. Schematics
depicting the promoter region of the mouse Fbxl21 gene, E’ indicate
non-canonical E-Box motifs, D-Box indicates a putative response
element for the PAR-bZIP proteins. B. The mouse Fbxl21 gene is
responsive to both CLK/BM1 and the PAR-bZIP transcription factors.
Transfection conditions per well: 50 ng of Fbxl21 promoter reporter,
50 ng of b-Gal reporter and either 100 ng of mClock+100 ng of mBmal1
or 100 ng of each of the PAR-bZIP transcription factors and/or
necessary amount of empty vector to make a final amount of 300 ng.
Data in A/B are mean6SEM of one triplicate representative from 3
replicate experiments. Different letters above bars indicate significantly
different groups (p,0.05).
doi:10.1371/journal.pone.0003530.g006

Figure 7. A model for Fbxl21 function in the mammalian
circadian clock. Transcriptional control (green dashed line) by CLK/
BM1 directs rhythmic expression of Cry1 and the PAR-bZIP and also has
a modest effect upon Fbxl21. Transcription of Fbxl21 mostly depends on
the PAR-bZIP proteins. The FBXL21 protein in turn controls degradation
of CRY1 (red diamond-ended line) and therefore exerts a pivotal role in
the control of CRY1-mediated inhibition of CLK/BM1 transcription (red
diamond-ended line).
doi:10.1371/journal.pone.0003530.g007
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In-situ hybridisation
Complete cds for the ovine arginine-vasopressin (Avp) and

vasoactive intestinal polypeptide (Vip) were cloned and deposited

in GenBank. Homologous probes used in this paper are as follows:

oFbxl3 covers nt 110–580 of EF643523, oFbxl21 covers nt 342–

709 of EU239380, oAvp covers nt 1–501 of EU045357, oVip

covers nt 1–513 of EU016225, mFbxl3 covers nt 450–1175 of

NM_015822, mFbxl21 covers nt 905–1656 of NM_178674.

Hypothalamic blocks for in situ hybridisation were cut into

20 mm sections using a cryostat, and thaw-mounted onto poly-

lysine and gelatin coated slides. Radioactive cRNA riboprobes

were prepared by plasmid linearisation and in vitro transcription

reactions including 35S-UTP (Perkin-Elmer). Sections were

hybridized overnight at 60uC with 5.105 cpm of probe per slide,

subjected to RNaseA digestion and stringency washes in sodium

citrate buffer to remove nonspecific probe hybridisation. Slides

were then dehydrated in graded ethanol solutions and exposed to

an autoradiographic film (Kodak) for 4 days.

Statistics
Data were analysed (Sigma-stat, Jandel Scientific) by one-way or

two-way ANOVA followed, when appropriate, by the Student-

Newman–Keuls post-hoc test. Significance was set at P,0.05.
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