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Machicao1, Silke Schäfer1, Florian Lang2, Teut Risler1, Susanne Ullrich1, Norbert Stefan1, Andreas

Fritsche1*, Hans-Ulrich Häring1
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Abstract

Hypothesis: Serum- and Glucocorticoid-inducible Kinase 1 (SGK1) is involved in the regulation of insulin secretion and may
represent a candidate gene for the development of type 2 diabetes mellitus in humans.

Methods: Three independent European populations were analyzed for the association of SGK1 gene (SGK) variations and
insulin secretion traits. The German TUEF project provided the screening population (N = 725), and four tagging SNPs
(rs1763527, rs1743966, rs1057293, rs9402571) were investigated. EUGENE2 (N = 827) served as a replication cohort for the
detected associations. Finally, the detected associations were validated in the METSIM study, providing 3798 non-diabetic
and 659 diabetic (type 2) individuals.

Results: Carriers of the minor G allele in rs9402571 had significantly higher C-peptide levels in the 2 h OGTT (+10.8%,
p = 0.04; dominant model) and higher AUCC-Peptide/AUCGlc ratios (+7.5%, p = 0.04) compared to homozygous wild type TT
carriers in the screening population. As interaction analysis for BMI6rs9402571 was significant (p = 0.04) for the endpoint
insulin secretion, we stratified the TUEF cohort for BMI, using a cut off point of BMI = 25. The effect on insulin secretion only
remained significant in lean TUEF participants (BMI#25). This finding was replicated in lean EUGENE2 rs9402571 minor allele
carriers, who had a significantly higher AUCIns/AUCGlc (TT: 22667, XG: 24669; p = 0.019). Accordingly, the METSIM trial
revealed a lower prevalence of type 2 diabetes (OR: 0.85; 95%CI: 0.71–1.01; p = 0.065, dominant model) in rs9402571 minor
allele carriers.

Conclusions: The rs9402571 SGK genotype associates with increased insulin secretion in lean non-diabetic TUEF/EUGENE2
participants and with lower diabetes prevalence in METSIM. Our study in three independent European populations supports
the conclusion that SGK variability affects diabetes risk.
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Introduction

Type 2 diabetes arises when insulin resistance cannot be

compensated for with increased insulin secretion owing to a

gradual loss of pancreatic beta-cell function [1]. Recently,

genome-wide association studies have been undertaken to further

investigate the genetic background of type 2 diabetes, revealing

that many high risk alleles are located within genes that are linked

to beta cell function, including TCF7L2 [2,3,4], CDKAL1

[5,6,7,8], SLC30A8 [5,9,10], IGF2BP2 [5], HHEX/IDE

[6,9,11,12], and CDKN2A/B [13]. Our study therefore focuses

on genes that play a role in insulin secretion, using a classical

candidate-gene approach.

One interesting candidate for the regulation of insulin secretory

function is the serum and glucocorticoid inducible kinase SGK1,

which is a ubiquitously expressed serine-threonine kinase in
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humans that is encoded by the gene SGK on chromosome 6q23.

SGK1 was originally identified in rodents as a serum and

glucocorticoid regulated kinase [14], and was shown to be up-

regulated by mineralocorticoids [15], TGF-ß1, and insulin [16].

SGK1 seems to provide an important molecular link between salt

and glucose homeostasis, as SGK12/2 knockout mice fed with

high-salted chow demonstrated decreased SGK1-dependent

cellular glucose uptake [17]. Beyond SGK1 functions in

transmembranous glucose transport [18,19,20,21] and insulin

signalling [16], SGK1 also plays a role in insulin secretion. In INS-

1 cells, SGK gene transcription and protein expression is strongly

regulated, and SGK1 up-regulates the activity of voltage-gated K+

channels, which in turn reduces Ca++ influx and inhibits insulin

release [22]. Another SGK1-dependent molecular mechanism in

insulin secretion is the activation of Na+/K+-ATPase during

plasma membrane repolarisation [23].

Taken together, compelling evidence points to a role of this

ubiquitously expressed serine/threonine kinase SGK1 in glucose

metabolism, especially in the regulation of insulin secretion. So far,

studies on the role of SGK genetic variance in human physiology

are rather limited. Two studies confirmed an association of SGK

variability with blood pressure in a German twin population [24]

and the cohort of the Scandinavian Malmo Diet and Cancer

Study [25]. We conducted our study on SGK genetic variance and

potential associations with insulin secretory function in the

German TUEF cohort and the EUGENE2 consortium (Denmark,

Finland, Germany, Italy, and Sweden), as these two European

diabetes risk populations were extensively phenotyped for insulin

secretion traits at the prediabetic stage. To confirm the relevance

of associations found for later onset of type 2 diabetes mellitus,

corresponding SGK risk alleles were further investigated in the

METSIM Trial, which provides a large population-based Finnish

cohort for the endpoint diabetes. Analyzing four selected tagging

SNPs of SGK, the SNP rs9402571 was consistently found to be

associated with altered insulin secretion in both prediabetic

populations, and was further confirmed to associate with the

prevalence of type 2 diabetes mellitus in the population-based

cohort.

Methods

Participants
Three independent European cohorts were analyzed for SGK

genetic variance and insulin secretion traits for this study. The

TUEF project provided the screening population, while EU-

GENE2 served as a replication cohort for insulin secretion traits.

METSIM is a population-based cohort providing both non-

diabetic and type 2 diabetic individuals, and was employed for

estimation of SGK diabetes-risk alleles. Further details on each of

the three study cohorts are provided in the following, with baseline

characteristics presented in Table 1.

TUEF cohort. The TUEF (Tuebingen Familiy Study) cohort

includes non-diabetic individuals from southern Germany with

increased risks for developing type 2 diabetes (family history of

type 2 diabetes, diagnosis of impaired fasting glucose). The study

protocol included standard procedures as medical history, physical

examination, routine blood tests and oral glucose tolerance test

with blood sampling (plasma insulin, plasma glucose, plasma C-

peptide) at 0, 30, 60, 90 and 120 min [26]. Informed written

consent was obtained from all participants, and all study

procedures were approved by the local medical ethic research

committee of the Faculty of Medicine at the University of

Tuebingen. 1000 TUEF participants were genotyped for SGK and

phenotyped by OGTT and AUCCP/AUCGlc (see below). For

further investigation, individuals with one of the following criteria

were excluded: taking medications known to affect glucose

tolerance, severe diseases (malignancies, cardiovascular or

psychiatric disease, etc.), newly diagnosed diabetes, positive

GAD antibodies, and one or more missing parameters needed

for AUCCP/AUCGlc calculation. This method of elimination

resulted in a final study cohort of 725 non-diabetic individuals.

EUGENE2 consortium. Five different European clinical

diabetes centres contributed non-diabetic offspring of patients

with type 2 diabetes to the EUGENE2 (European network on

Functional Genomics of Type 2 Diabetes) consortium, including

the Lundberg Laboratory for Diabetes Research (Göteborg,

Sweden), the Polyclinic Mater Domini of the University Magna

Graecia (Catanzaro, Italy), the Steno Diabetes Center

(Copenhagen, Denmark), the Kuopio University Hospital

(Kuopio, Finland), and the Tübingen University Hospital

(Tübingen, Germany). All study participants underwent a

standard medical history, routine laboratory testing, assessment

of social issues (alcohol consumption, activity, smoking status), and

an OGTT. Informed written consent was obtained of all

participants, and the local ethics committees approved the study

protocol at the different centres. Further details about the

EUGENE2 consortium are provided elsewhere [27].

METSIM cohort. The Finnish cohort comprised 4457 male

participants, aged from 50 to 70 years. Among them, 43.4% had a

family history of diabetes. The primary aim of the ongoing

METSIM (METabolic Syndrome In Men) trial is to investigate

the effects of SNPs in genes of interest on the risk of type 2 diabetes

and cardiovascular disease in a random sample of Finnish men,

living in the town of Kuopio (population 95,000), in eastern

Finland [4]. The WHO criteria in 1999 for diabetes mellitus were

used for classification of the METSIM participants, based on

fasting plasma glucose and 2-hour post-load glucose levels in an

OGTT [28] conducted at baseline. Among the 4457 participants,

659 had known or newly diagnosed diabetes and 3798 were non-

diabetic. The protocol includes a 1-day visit to the Clinical

Research Unit of the University of Kuopio. This study was

approved by the Ethics Committee of the University of Kuopio

and was in accordance with the Helsinki Declaration.

Body composition and body fat distribution
Body mass index (BMI) was calculated as weight divided by the

square of height (kg/m2). Waist and hip circumferences were

measured in the upright position.

Table 1. Characteristics of the 3 investigated study
populations.

TUEFa EUGENE2b METSIMc

(N = 725) (N = 827) (N = 4457)

Gender (m/f) 261/464 344/483 4457/-

Age (years) 37.2612.5 40.1610.3 59,565.9

BMI 29.368.8 26.665.0 27,464.2

Waist (cm) 93.9618.4 89.0613.4 99,1611.5

Data are presented as means6SD.
aTuebingen Family Study (South Germany; non-diabetic individuals).
bFinns, Danish, Dutch, Swedish and Germans from the EUGENE2 consortium

[27]. Only non-diabetic EUGENE2 participants with complete datasets for
AUCIns/AUCGluc calculations were analyzed.

cMETabolic Syndrome In Men (METSIM) cohort from Kuopio (Finland),
population-based (non-diabetic and diabetic individuals).

doi:10.1371/journal.pone.0003506.t001
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Analytical procedures
Blood glucose was determined using a bedside glucose analyzer

(Yellow Springs Instruments, Yellow Springs, CO, USA). Plasma

insulin was determined by microparticle enzyme immunoassay

(Abbott Laboratories, Tokyo, Japan) for both the TUEF and

EUGENE2 cohorts. Plasma C-peptide was determined by

radioimmunoassay (Byk-Sangtec, Dietzen bach, Germany).

Oral glucose tolerance test (OGTT)
The OGTT was performed according to the recommendations

of the World Health Organization after a 12 h fasting period [28].

Blood glucose, insulin (all centres), and C-peptide (TUEF cohort

only) plasma levels were determined at 0, 30, 60, 90, and 120 min.

Insulin sensitivity and insulin secretion
Insulin sensitivity was calculated from glucose and insulin values

obtained during the OGTT, as proposed by Matsuda and

DeFronzo [29]. Estimation of insulin secretion by the OGTT

parameters was obtained by C-peptide levels measured at 30 min

during the OGTT. Alternatively, insulin secretory function was

calculated by the ratio of the area under the curve (AUC) of C-

peptide (AUCCP; TUEF cohort) or insulin (AUCIns; EUGENE2

cohort) plasma levels, referred to as the AUC of plasma glucose

(AUCGlc), using the trapezoidal approximation rule for AUC

calculation [30].

SNP Genotyping
The SGK (NM_005627) gene on chromosome 6q23 was

subjected to Hap Map analysis in the CEU population (Utah

residents with ancestry from Northern and Western Europe; data

release 21a/Jan07). Tagging SNPs were selected using the

TagSNP Picker software (settings: multimarker mode

MAF.0.05, r2.0.9), screening the complete SGK gene, 10 kb of

the promoter, and 1.5 kb downstream of the 39 untranslated

region. Genotyping of tagging SNPs was accomplished by means

of the TaqManH assay and an ABI Prism 7500 sequence detection

system (Applied Biosystems, Foster City, CA, USA). Genotyping

quality was tested by including three known controls of each

genotype in each assay.

Data Analysis
Unless otherwise noted, data are stated as means6SEM.

Comparison between genotype groups was performed using

logarithmically transformed data for non-normally distributed

parameters in ANOVA and t-tests. Each effect was adjusted for

relevant covariates using mixed linear models. Parameters that

remained non-normally distributed despite log transformation

were directly analyzed by a non-parametric (Wilcoxon) test.

Association with diabetes (METSIM) was tested using logistic

regression analysis. Hardy-Weinberg equilibrium was tested with

the x2 test. A p-value#0.05 was considered to be statistically

significant. The software package JMP (SAS Institute Inc, Cary,

NC, USA) and SPSS 14.0 for Windows (SPSS Inc., Chicago, IL,

USA) were used for statistical data analysis. The software JLIN

(Western Australian Institute for Medical Research) was used for

calculation of linkage disequilibrium [31].

Results

Genetic analysis of the human SGK gene
The human SGK gene comprises 12 exons spanning 5.6 kb on

chr6q23. Analysis of a 17 kb region of the SGK locus by Tag SNP

Picker revealed five tagSNPs in the HapMap, each with a minor

allele frequency (MAF) of .0.05 in the CEU population. Four

SNPs (rs1763527, rs1743966, rs1057293, and rs9402571) were

finally selected for genotyping, covering 83% of all SNPs fulfilling

the inclusion criteria mentioned above. Both rs1743966 (intron 6)

and rs1057293 (exon 8; synonymous: Asp/Asp) are located within

the SGK gene, while rs1763527 (promoter) and rs9402571

(1429 bp downstream of the SGK 39UTR) tag the regions

surrounding SGK. MAF and Hardy-Weinberg-Equilibrium test

results of all tagging SNPs are indicated for the TUEF and

EUGENE2 cohort in Fig. 1A, with linkage disequilibrium (LD)

analysis provided in Fig. 1B.

SGK association analyses in the TUEF screening cohort
There was no association between genotypes, anthropometrics,

and insulin sensitivity in the south German screening cohort,

which was investigated for all four tagging SNPs (data not shown).

Most consistently, two different indices of insulin secretion differed

significantly among rs9402571 genotypes (Table 2). Minor allele

carriers of rs9402571 had significantly higher C-Peptide levels in

the 2 h OGTT than individuals with the wild type allele (+10.8%,

p = 0.04, dominant model), after adjustment for age, gender, BMI,

and insulin sensitivity. This genotype also associated with better

AUCC-Peptide/AUCGlc ratios (+7.5%, p = 0.04; dominant model,

adjusted for age, BMI and gender; Table 2).

Interaction analysis and replication in EUGENE2
An interaction analysis for the trait of insulin secretion was

performed. BMI6rs9402571 genotype was revealed to be

significantly relevant for the endpoint insulin secretion in TUEF,

independent of which calculation model for insulin secretion was

used (p = 0.04, both models) and of whether BMI was treated as a

continuous or discrete variable with BMI cut-off points ranging

from 24 to 28 kg/m2. We therefore stratified the cohort for BMI,

using a cut off point of BMI = 25 to distinguish lean from

overweight or obese individuals, and did a reanalysis for insulin

secretion for both subgroups. The effect on AUCCP/AUCGlc was

only significant in the lean TUEF subgroup (BMI#25: TT:

31865, TG: 33567, GG: 342617; p = 0.031; dominant model,

adjusted for age, gender, and insulin sensitivity; Fig. 2A), while

there was no association with insulin secretory function in

overweight to obese study participants (BMI.25; p.0.24, all;

additive and dominant models; data not shown). To replicate our

findings of the association between rs9402571 and insulin

secretion, the EUGENE2 cohort was genotyped for rs9402571

and the AUCIns/AUCGlc ratio was calculated for each genotype.

Again, AUCIns/AUCGlc was significantly higher (TT: 22667, TG:

23969, GG: 289633; p = 0.019 for the dominant model; adjusted

for study centre, familial relationship, age, gender, and insulin

sensitivity; Fig. 2B) in lean (BMI#25) minor allele carriers of

rs9402571, while there was no significant association in overweight

to obese individuals (BMI.25: p.0.44; data not shown).

Diabetes risk analysis in the METSIM population-based
cohort

The METSIM cohort was genotyped for all four selected

tagging SNPs to analyze SGK genetic variance for the endpoint

diabetes (type 2) in a population-based cohort. The minor allele of

rs9402571, which was found to associate with a higher insulin

secretion in the screening (TUEF) as well as the replication

(EUGENE2) populations, associated almost significantly

(p = 0.065; adjusted for age, family history of diabetes, and BMI)

with a lower prevalence of type 2 diabetes (odds ratio: 0.845;

95%CI: 0.706–1.011), comparing the 659 diabetic patients with

SGK and Insulin Secretion

PLoS ONE | www.plosone.org 3 November 2008 | Volume 3 | Issue 11 | e3506



the non-diabetic 3798 METSIM participants. In contrast, there

was no significantly altered odds ratio in regard to the three other

genotyped SGK tagging SNPs rs1763527, rs1743966, and

rs1057293 (Fig. 3).

Discussion

This is the first study to investigate the role of SGK (Serum- and

Glucocorticoid-inducible Kinase 1) genetic variance in two

independent prediabetic diabetes risk populations (TUEF and

EUGENE2), including a confirmatory analysis in a third

independent, older population that includes both diabetic and

non-diabetic individuals (METSIM). SGK is an attractive candi-

date gene for type 2 diabetes mellitus onset in humans, as SGK1

exerts pleiotropic effects on glucose metabolism and insulin

secretion in various cellular and animal models [16,22,23].

In the screening population (TUEF; N = 725), we found a

significant association of rs9402571 with glucose-induced insulin

secretion in various estimation models based on oral glucose

tolerance testing. This association was reproducible in a subgroup

that was additionally phenotyped by an intravenous glucose

tolerance test (data not shown). After confirming a significant

interaction between BMI and rs9402571 for the endpoint insulin

secretion, BMI stratification (BMI cut off: 25) was introduced in

Table 2. Metabolic Traits of the German Cohort according to rs9402571 genotype.

SNP Genotype ______rs9402571______ p1 p2

TT TG GG

N 434 251 40 - -

Age (y) 37.060.6 37.160.8 39.662.2 0.44 0.62

BMI (kg/m2) 29.060.4 30.060.6 28.961.3 0.24a 0.20

Fasting glucose (mM) 5.1060.03 5.0560.04 5.0860.09 0.10b 0.0376

Glucose, 120 min OGTT (mM) 6.1960.08 6.1160.11 6.3360.29 0.31b 0.16

Insulin sensitivity, OGTT (U) 17.160.5 16.960.8 14.161.4 0.12b 0.64

C-Peptide, 30 min OGTT (pM) 2020643 2153660 22396158 0.12c 0.0398

AUCC-peptide/AUCglucose, OGTT (?1029) 31865 33567 342618 0.09b 0.0416

Data are given as means6SEM; p1–additive model; p2–dominant model. AUC–area under the curve; OGTT–oral glucose tolerance test; SNP–single nucleotide
polymorphism.
aadjusted for age and gender.
badjusted for age, gender and BMI.
cadjusted for age, gender, BMI and insulin sensitivity.
doi:10.1371/journal.pone.0003506.t002

Figure 1. The gene encoding human serum- and glucocorticoid-regulated kinase 1 (SGK) on chromosome 6q23. A) Exons (light grey)
and untranslated regions (dark grey) are indicated. Four tagging SNPs were selected by HapMap analysis considering the SGK gene 610 kb upstream
of the first translational start codon and 1.5 kb downstream of the 39 untranslated region. SNP information is provided in boxes (var = variation;
MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium, x2 test) for populations investigated for all tagging SNPs (South German TUEF
cohort/Finnish METSIM cohort). B) Linkage disequilibrium analysis of selected tagging SNPs for the TUEF and METSIM population: D’ (in bold, upper
numeral) and r2 (bottom numeral).
doi:10.1371/journal.pone.0003506.g001
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our analysis, revealing that only lean individuals were affected by

the rs9402571 minor allele. This genotype-phenotype association

was also restricted to lean individuals in the replication cohort

from the EUGENE2 consortium (N = 827), comprising individuals

from Sweden, Italy, Denmark, Finland, and Germany. Interest-

ingly, the rs9402571 allele that associates with higher insulin

secretion in TUEF and EUGENE2 accordingly associates with

lower diabetes prevalence in the METSIM trial. Despite the fact

that SGK1 has a regulatory function for glucose transporter

expression and translocation [18,20,21], no association of the four

investigated SGK tagging SNPs with insulin sensitivity was found in

the TUEF screening population or in the EUGENE2 study. One

could suggest that the SGK rs9402571 SNP was not detected in the

genome-wide association (GWA) studies due to its dependence on

BMI, as the GWA analyses did not stratify for BMI. Interestingly,

a genome-wide linkage analysis identified the gene locus 6q23,

which also includes SGK, to be associated with BMI progression in

participants of the Framingham Heart Study [32].

The increase in insulin secretion reported here (10.8% in

TUEF; 8.8% in EUGENE2) within lean rs9402571 G allele

carriers was remarkable compared to wild type genotype, and may

indicate a protective genotype against type 2 diabetes. This

protective rs9402571 SGK genotype may become blurred in

overweight or obese individuals, as environmental factors may

dominate compared to the SGK genotype. However, our analysis

in the METSIM trial assumed that the protective rs9402571 SGK

genotype effect obviously persists even in a population-based

cohort containing individuals 20 years older than those from the

TUEF and EUGENE2 studies. Therefore, although the number

of study participants was limited after BMI stratification in both

TUEF and EUGENE2, our findings in three independent

European populations allow the assumption that the SGK

rs9402571 genotype is protective against type 2 diabetes. Further

studies on the role of SGK1 in human insulin secretion and

diabetes onset are therefore needed.
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