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Abstract

RNA expression data reveals that human embryonic stem (hES) cells differ from mouse ES (mES) cells in the expression of
RNAs for keratin intermediate filament proteins. These differences were confirmed at the cellular and protein level and may
reflect a fundamental difference in the epithelial nature of embryonic stem cells derived from mouse and human
blastocysts. Mouse ES cells express very low levels of the simple epithelial keratins K8, K18 and K19. By contrast hES cells
express moderate levels of the RNAs for these intermediate filament proteins as do mouse stem cells derived from the
mouse epiblast. Expression of K8 and K18 RNAs are correlated with increased c-Jun RNA expression in both mouse and
human ES cell cultures. However, decreasing K8 and K18 expression associated with differentiation to neuronal progenitor
cells is correlated with increasing expression of the Snai2 (Slug) transcriptional repression and not decreased Jun expression.
Increasing K7 expression is correlated with increased CDX2 and decreased Oct4 RNA expression associated with the
formation of trophoblast derivatives by hES cells. Our study supports the view that hES cells are more similar to mouse
epiblast cells than mouse ES cells and is consistent with the epithelial nature of hES cells. Keratin intermediate filament
expression in hES cells may modulate sensitivity to death receptor mediated apoptosis and stress.
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Introduction

Keratin intermediate filament proteins, keratin 8 (K8, Krt8,

EndoA) and keratin 18 (K18, Krt18, EndoB) were first identified

in liver and as markers of mouse embryonal carcinoma (EC) and

embryonic stem (ES) cell differentiation [1–3]. Investigation of

early mouse embryos confirmed that the differentiation of the

inner cell mass of mouse blastocysts to trophoblast derivatives and

extra-embryonic endoderm parallels the induction and accumu-

lation of K8 and K18 [4–6]. The mouse inner cell mass initially

expresses low amounts of K8/K18 intermediate filaments but then

represses expression [7,8]. Many studies have confirmed the low

levels of both protein and RNA for K8 and K18 in mouse ES cells

in their undifferentiated state. The isolation of human ES cells that

express transcription factors associated with pluripotentiality in

mouse ES cells (Oct4, Sox2, Nanog) led to the expectation that

epithelial keratins K8 and K18 might be expressed at similar low

levels as mES. [9]. Recently a new pluripotent stem cell, the

epiblast stem cell (EpiSC), derived from post-implantation mouse

embryos was isolated and characterized by two different

laboratories [10,11]. While ES cells and EpiSC cells share

characteristics of pluripotency such as the expression of Oct4,

Sox2 and Nanog, the gene expression profile of EpiSC includes

markers of the embryonic epiblast and resembles human ES cells

more than mouse ES cells. Our analysis of the published RNA

expression profiles of hES, mES and EpiSC reveals that K8 and

K18 RNAs are greatly elevated in EpiSC.

Here we show that expression of K8, K18 and K19 is

characteristic of hES cell lines in the undifferentiated state and

contrasts with mES cells but is similar to EpiSC. The

differentiation of hES to neuronal progenitors results in decreased

expression of these keratins and elevated expression of neuronal

markers while the spontaneous differentiation of hES cells to

presumptive extraembryonic endodermal derivatives results in

increased accumulation of K18. Expression of K8, K18 and K19

are characteristic of the epithelial nature of undifferentiated hES

cells and contrasts with mouse ES cells.

Results

Differential expression of keratin RNA in human and
mouse ES cells

The RNAs for simple epithelial keratins K8, K19 and K19 are

expressed at low levels in undifferentiated mES and embryonal

carcinoma (EC) cells [2,3]. Figure 1A shows a typical time course

of induction of K8, K18 and K19 RNAs as measured by cDNA

array analysis, during the differentiation of mES cells as embryoid

bodies. The baseline expression of these genes in undifferentiated

ES cultures varies with the extent of contamination from

spontaneously differentiated cells. In contrast to mES cells,
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pluripotent epiblast stem (EpiSC) cells have greatly increased levels

of K8 (34 fold), K18 (26 fold) and to a less extent K19 (6 fold) while

the pluripotency factors Nanog, Sox2 and Oct4 (Pou5f1) vary little

between the two different cell type (Figure 1B). The expression of

K8 and K18 RNAs appear coordinately regulated (Figure 1C).

Furthermore the increased expression of K8 and K18 RNA in

EpiSC is directly correlated with increased expression of Jun

(Figure 1D), a component of AP1 transcription factor activity and

previously identified as a key regulatory of K18 gene regulation

[12,13,14,15]. We suggest that epithelial keratin gene expression is

consistent with the definitive polarized epithelial nature of the

mouse epiblast.

In contrast to mES cells, publicly available data show that hES

cells and human embryonal carcinoma cells express significant

levels of K8, K18 and K19 RNAs [9,16–18]. One example is

shown in Figure 2A in which keratin RNA expression of

undifferentiated hES cells is compared to cells grown as embryoid

bodies. K8 and K18 RNAs are easily detected in hES lines and is

modestly increased during embryoid body differentiation. These

data are supported by a meta analysis of 38 different array

experiments. [19] (http://amazonia.montp.inserm.fr/). While K8

and K18 are expressed in hES cells, differentiation of the cells

commonly results in higher expression and thus resulted in the

identification of K8, K18 and K19 as under expressed in hES cells

compared to differentiated cell types.

Examination of the data of individual array experiments

revealed that K8 and K18 levels are very tightly correlated

(Figure 2B). K19 RNA is also correlated with K8 levels (Figure 2C).

In addition, like mES and mEpiSC cells, K18 RNA expression is

associated with increased Jun RNA expression (Figure 2D). One

quantitative difference between hES and mEpiSC is the relative

expression level of K19, which is as strong as K18 in hES cells.

While comparison of hES and mEpiSC and mES cells depends on

similar sensitivities of measuring K19 and K19 RNAs, western blot

analysis of the proteins support the view that hES cells may have

greater relative contribution from K19 than mES or mEpiSC cells.

K19 is highly expressed in hES cells
To confirm expression of K8 and K18 in hES cells, we

performed western blot analysis with antibodies that recognized

both mouse and human forms of K8, K18 and K19. Typical

results for K8 and K18 are shown in Figure 3. Human ES cells

express moderate levels of K8 and K18 proteins (Figure 3B, lanes

5,6) compared to mouse parietal endodermal cells (Figure 3A, B,

lane 3). Mouse ES cells express very low levels of the two keratin

proteins (Figure 3A, B, lane 4) as expected from the low RNA

levels. Human ES cells also express significant levels of K19

(Figure 3C, 3D) while neither mES nor a mouse parietal

endodermal cell line had detectable levels of K19 protein. K19

expression is detectable in trophoblast stem cells and increases

upon differentiation in culture (data not shown). These results

were confirmed with several additional antibodies that were

species specific for either mouse or human keratins. While hES

cells express significant levels of K8, K18 and K19, human Caco2

colon carcinoma cells and MCF7 breast cancer cells (Figure 3B,

3D, lanes 7 and 8) express 3–20 fold higher levels of these proteins.

Figure 1. Keratin RNA expression in mouse ES cells and EpiSCs. A, time course of K8, K18 and K19 RNA induction in mouse ES cells during
embryoid body differentiation plotted from supplementary data of a published report [33]. Data set is identified by the GSE number of the GEO data
base. B, contrasting expression of K8, K18 and K19 in mouse ES and epiblast stem cells (EpiSC). RNA expression data [10] for the indicated genes was
compared by normalizing the values of the two cell types to the corresponding signals for beta-actin RNA. Note the elevated expression of K8 (346)
and K18 (266) in EpiSC while RNAs for Nanog, Sox2 and Oct4 are similar in the two cell types. C, coordinate variation of K8 and K18 RNAs in individual
array values of ES and EpiSC samples from GSE7902. D, strong correlation between K18 and Jun RNA levels. Jun is a component of the AP-1
transcription factor activity previously identified as important in the induction of K18 RNA in differentiation mouse ES cells.
doi:10.1371/journal.pone.0003451.g001

Keratins in hES Cells
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These results indicate that hES cells differ from mES cells with

regard to expression of K8, K18 and K19 RNA and protein. With

mES cells, this work confirms previous studies of mES and mEC

cells [2,12,13,20].

Human ES cell keratin filaments
Both mouse and human ES cultures commonly develop variable

numbers of spontaneously differentiated, fibroblast-like and

extraembryonic endodermal cells. Immunofluorescent staining of

human ES cells was performed to confirm that keratin expression

was due to ES stem cells and not the differentiated progeny.

Figure 4 shows typical results of K8, K18 and K19 localization in

hES cells. At low magnification, a colony of hES cells grown with

mouse fibroblast feeder cells is relatively uniformly reactive with

antibodies to both Oct4 and K19 (Figure 4A,B). The mouse feeder

cells do not react with either Oct4 or K19 antibodies (Figure 4A).

Human ES cells express both K18 (Figure 4C) and K19

(Figure 4A,C) as type I keratin filament proteins. K8 is the

primary complementary type II keratin expressed in these

epithelial cells (Figure 4D). Similar results were obtained for the

H9, H14 and Hues7 human ES cell lines (Figure 4F) and in the

presence or absence of feeder layers.

Keratin changes associated with the differentiation of
hES cells

Spontaneous differentiation of both human and mouse ES cells

occurs commonly, even under conditions promoting ES cell self

renewal. Large differentiated cells typically found at the borders of

ES cell colonies had increased levels of K8, K18 (Figure 4E) and

K19 (Figure 4A). Human ES cells, unlike mES cells, spontaneously

differentiate to trophoblast lineage cells. K7 has been found to be a

useful marker of human trophoblast lineage [21]. While K7

positive cells are relatively rare in hES cultures they can be

detected as discrete colonies of presumptive trophoblast derivatives

within undifferentiated hES cell neighbors in cultures incubated

for a week or longer. In freshly passaged cells K7 positive cells

were detected as dispersed single cells, apparently due to the

dissociation of rare colonies of presumptive trophoblasts.

(Figure 5A, B). Supporting evidence that the K7 expression

reflects trophoblast formation is provided by the correlation of K7

RNA with the CDX2 homeobox master regulatory transcription

factor (Figure 5C) in a data set that includes both undifferentiated

and differentiated hES cells [17]. Furthermore the expression of

CDX2 RNA was inversely correlated with OCT4 RNA

(Figure 5D), as expected from the known repression of CDX2

by OCT4 [22,23].

Simple epithelia keratins are expressed only in the ependymal

layer of the ventricles of the adult brain. The differentiation of hES

to neural tissues can now be performed routinely. We have

confirmed that during the accelerated differentiation of hES cells

to neuronal progenitor cells expression of K8 and K18 are

decreased (Figure 6A). The K8 and K18 RNAs appear

coordinately suppressed (Figure 6B). However, this suppression is

not due to decreased Jun RNA expression as there is no

correlation of K18 and Jun RNAs (data not shown). Repression

is correlated with increased expression of Snai2 (Slug) a

transcriptional repressor associated with neural crest formation

and epithelial-mesenchymal transition (Figure 6C). Snai2 has

previously been suggested as active in K8 repression [24]. Unlike

Figure 2. Keratin RNA expression in hES cells. A, published results of hES cells and embryoid body cultures [17]. Data was downloaded from
http://www.stemcellcommunity.org/. Averages and standard deviations of normalized data of six undifferentiated cell cultures (WA09, BG01, BG02,
BG03) and three embryoid body (EB) cultures (BG01, BG02, BG03). Keratin RNA expression in EBs was less than 26 greater than stem cultures. B,
coordinate levels of K8 and K18 RNAs. Values for single arrays of different conditions are compared. C, coordinate values of K8 and K19 RNAs. D,
correlation of K18 RNA values with Jun RNA, a key transcriptional regulator of the K18 gene.
doi:10.1371/journal.pone.0003451.g002

Keratins in hES Cells
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the RNAs for K8 and K18, K19 RNA levels do not reveal a simple

trend upon the induction of neuronal progenitor differentiation

(Figure 6D). Thus the mechanisms for suppression of K8 and K18

RNAs do not appear to extend to K19 regulation.

Discussion

Some investigations of the hES cells have reported unexpected

expression of K8 and K18 because these gene products were

expected to be differentiation markers. [9]. Some of these early

studies suggested that expression might be due to contamination

from differentiated cells or possibly translational regulation.

However, a meta analysis of the results of over 38 studies of gene

expression in hES cells confirms that K8 and K18 RNAs are

commonly found in undifferentiated hES cells [19] and are

generally increased in differentiated cells from embryoid bodies.

We have confirmed that undifferentiated hES cells express simple

Figure 3. Keratin protein expression in hES cells. Western blots
for K8 and K18 were performed with antibodies that recognize both the
mouse and human forms of K8 (TROMA1) [6] and K18 (1589) [40].
Antibody reactions were detected and quantitated with Infrared dye
labeled secondary antibodies and the LI-COR Odyssey imaging system.
A, keratin protein signals were divided by the corresponding tubulin
signals. K8 and K18 normalized values were set to 100% for mEndo cells.
B, digital image of secondary antibody reaction; MEF (1), mouse
embryonic fibroblast; csk (2), non-ionic detergent insoluble fraction of
mEndo cells; mEndo (3), the HR9 mouse extraembryonic endodermal
cells (4) [43]; Human ES cell lines (5,6); CaCo (7), human colon carcinoma
cell line; MCF7 (8), human breast cancer cell line. The upper two panels
are from one filter and the bottom two panels are from a second

Figure 4. Immunofluorescent detection of K8, K18 nd K19 in
hES cells. A, low magnification of H9 hES cells surrounded by MEF
feeder layer double stained for Oct4 (red) and K19 (green). Feeders do
not react with either antibody. B, high magnification of colony shown in
A, showing single Oct4 positive ES cells contain K19 positive filaments.
C, low magnification of H14 hES cell colony grown on Matrigel without
feeders and stained for K18. D, high magnification of H14 hES cells
showing K8 network. Nuclei are stained with DAPI (blue). E,
spontaneous differentiated cells at edge of H14 hES colony have
increased size and K18 expression. F, example of K8 staining of Hues7
hES cell line.
doi:10.1371/journal.pone.0003451.g004

duplicate filter. C, ratio of K19 signal to tubulin signal after background
subtraction. D, K19 protein expression in hES cells. Western blot
reaction with the L2PK mouse monoclonal antibody to K19 [41,42].
Tubulin was detected after stripping the K19 antibody. Lanes 1–8 are
defined as above.
doi:10.1371/journal.pone.0003451.g003

Keratins in hES Cells
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epithelial keratin RNAs and proteins as filament networks, typical of

other simple epithelial cells, and by contrast with mouse ES cells.

The differences in K8 and K18 expression in mouse and hES

cells may reflect a fundamental difference between the embryonic

equivalent of the mouse and human inner cell masses. The human

epiblast is an epithelial structure while the mouse ICM does not

adopt an epithelial organization until after blastocyst implantation.

Keratin expression in hES cell lines reflects the more flattened

epithelial phenotype of hES colonies compared to mouse ES cells.

The expression of keratins may reflect differences in the

originating cell types of the respective blastocysts or differences

in the the state of acquisition of a stable, self-replicative capacity.

The suppression of K8 and K18 expression in the mouse inner cell

mass is an active process that may correspond to the transcrip-

tional inhibitory activity detected in embryonal carcinoma cells

[13]. The increased expression of K8 and K18 in mouse epiblast

stem cells (EpiSC) is consistent with the suggestion that both ES

and EpiSC cells lines reflect the characteristics of the embryonic

tissue of origin. In transplantation experiments human specific K8,

K18 or K19 antibodies may aid in identifying both hES cells and

their differentiated progeny.

Mouse EpiSC are poorly compatible with embryo chimerism, at

least by standard ES cell methods of blastocyst injection and

morula aggregation, but retain the ability to differentiate to

multiple tissues as judged by teratoma formation and in vitro

differentiation [10,11]. The strong intercellular adhesive and

epithelial nature of EpiSC and hES cells may challenge the

integration of EpiSC into preimplantation embryos. Thus ES cells

are preferable for gene knockout studies. Mouse EpiSC do provide

the opportunity of investigating maintenance of the pluripotent

state and perhaps model hES cells. Speculative extrapolation of

the similarity between hES cells and mouse EpiSC might question

the compatibility of hES cells with early embryonic chimerism.

Differences in expression of simple epithelial keratins in mouse

and human ES cells may also have direct consequences on hES

cells. These keratins have been implicated in resistance against

death receptor mediated apoptosis [25,26,27] and stress, possibly

through the titration of phospho-protein signaling molecules

[26,28]. Phosphorylated K8/18 networks can titrate phospho-

protein binding proteins such as 14-3-3 isoforms and thus impact

Figure 5. Presumptive trophoblast differentiation of H9, hES
cells. A, K7 positive colony of cells forming within a H14 hES cell
colony. Nuclei are stained with DAPI (blue). B, higher magnification
showing extended cytoskeletal pattern of K7 with increased densities at
intercellular borders. C, K7 RNA expression is correlated with Cdx2 RNA
expression in hES cell cultures [17]. Cdx2 is a master regulator of
trophoblast differentiation. D, Cdx2 RNA is inversely correlated with
Oct4 RNA expression in differentiating cultures of hES cells.
doi:10.1371/journal.pone.0003451.g005

Figure 6. Decreased keratin expression during neuronal
differentiation. Averages o fat least two samples for each time point
were used to measure K7, K8, K18 and K19 RNAs as a function of hours
after starting induction of neuronal progenitor differentiation. A, K7, K8
and K18 RNA levels over time course of 240 hours. Trendline is for K18
data. B, correlation of K8 and K18 RNA levels during neuronal
progenitor differentiation. C, negative correlation of K18 RNA and
Snai2 RNA levels. D, K19 RNA levels do not reveal a simple trend.
doi:10.1371/journal.pone.0003451.g006
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cell proliferation [29]. Furthermore, expression of the relatively

insoluble subunits of simple epithelial keratins carries the risk of

protein aggregation induced cellular disease [30]in the event of

mutation, imbalance of subunit expression, chemical induced

aggregation or deficient degradation [31].

While expression of keratins in hES cells is substantial,

accumulated expression in some cells can be much higher. For

example in the MCF7 human breast cancer cell line, K18 is

among the most abundant proteins within the cells. Similarly,

spontaneous differentiated cells arising in hES cultures contain

substantially higher accumulation of keratin proteins. The stability

and abundance of individual keratins makes them excellent cell

type or lineage markers. However, the molecular mechanisms

responsible for the cell type specific expression are still obscure.

The very close correspondence of RNA levels of K8 and K18 very

likely reflect their coordinate regulation from adjacent locations at

the distal end of the type II keratin locus on chromosome 12. Both

genes are regulated by AP-1 and Ets transcription factor families

[14,32]. Jun activates the K18 gene from an enhancer located in

the first intron and from a regulatory element embedded within a

coding exon [33]. The coordinate regulation of K8 and K18 may

reflect the recent identification of CTCF insulator protein binding

sites flanking the two genes on chromosome 12 [34] that suggests a

chromosomal regulatory domain. In contrast, the coordinate

expression of the K8 and K19 genes occurs despite the separate

chromosomal locations of K8 on chromosome 12 and K19 on

chromosome 17. The basis of coordinate regulation of pairs of

type I and II keratins is not known.

Materials and Methods

RNA expression analysis
Primary RNA expression data from mouse ES cells [35] (Agilent

platform, GSE3231), human ES cells [17] (Illumina platform),

(www.stemcellcommunity.org) and mouse EpiSC and ES cells

(Agilent platform, GSE7902) [10] were downloaded and examined

for keratin gene expression in Excel. For some comparisons of

different cell types, keratin expression was normalized to signals of

same arrays for beta-actin although this normalization did not

change the results greatly. Confirmation of hES cell expression of

keratins was confirmed in array results available through Amazonia!

public database [19] (http://amazonia.montp.inserm.fr/).

Differentiating human ES cells RNAs were isolated with the use

of Trizol reagent (Sigma Chemical, St. Louis, Mo). Labeled cRNA

was prepared from 500 ng RNA using the IlluminaH RNA

Amplification Kit from Ambion (Austin, TX, USA). The Biotin

labeled cRNA (750 ng) was hybridized 18 hr at 58uC to the

HumanRef-8 v2 Expression BeadChip. (Illumina, San Diego, CA,

USA) according to the manufacturer’s instructions. BeadChips

were scanned with an Illumina BeadArray Reader and hybrid-

ization efficiency was monitored using BeadStudio software

(Illumina) and internal controls built into the Illumina system.

Gene expression data was imported into Genespring software.

Cell culture
Human ES cell lines H9 and H14, were cultivated on

inactivated mouse fibroblast feeder layers or on growth factor

reduced Matrigel coated plastic in Knockout DMEM (Invitrogen)

supplemented with 200 mM glutamine, 0.1 mM 2-mercaptoeth-

anol [36] 20% Knockout serum substitute (Invitrogen) and 25 ng/

ml recombinant human basic FGF (Sigma, St. Louis, MO) as

described [37,38]. Hues7 and Hues13 cells were propagated as

described [39]. D9 mouse ES cells, HR9 mouse extraembryonic

endodermal cells and mouse trophoblast stem cells were cultivated

as previously described [3,40,41]. MCF7 and CaCo2 human

tumor cells were obtained from ATCC.

Methods and characterization of accelerated hES cell differen-

tiation to neural progenitors, will be described in detail elsewhere

(Bajai, R and Terskikh, A, submitted). In short, small clusters (10–

100 cells) of hESCs were grown in uncoated dishes (Costar) in 1:1

ratio of DMEM/ and F12 medium with N2 (Gibco) and B27

(Gibco) factor supplements, 20 ng/ml insulin 20 ng/ml bFGF,

20 ng/ml EGF and 2 mM N-acetyl cysteine (NAC)). The spheres

were grown for 6–8 days, with a change in medium every alternate

day. Spheres were collected, gently triturated and plated on

ornithine coated (5 ng/ml, Sigma) plates in DMEM/F12, 10%

BIT 9500 supplement (Stem Cell Technologies, ), 20 ng/ml

bFGF, 20 ng/ml EGF, 5 ug/ml fibronectin, 2 ug/ml heparin).

Protein analysis
For western blot analysis of total keratin proteins, 6 cm dishes of

PBS washed cells were dissolved in 200 ul of 9.5 M urea, heated to

100c for 5 min, mixed vigorously and cleared of minimal residual

debris by centrifugation. Samples were dilute with concentrated

SDS sample buffer and separated in low bis acrylamide gels as

previously described [3]. Proteins were blotted onto PVDF

membranes according to the instructions of the supplier of the

secondary antibodies (Li-COR Bioscience) and detected with 680

or 800 CW IR-dye labeled secondary antibodies. Reaction was

imaged and quantitated in a LI-COR Odyssey image analyzer.

Filters were stripped in 62.5 mM TrisHCL, pH 6.8, 2% SDS,

100 mM 2-mercaptoethanol at 55C for 1 hour and re-probed with

antibody to beta-tubulin (E7 mouse monoclonal antibody,

(Developmental Studies Hydridoma Bank, Iowa City, Iowa).

Results are shown for antibodies that detected both human and

mouse form of rat monoclonal antibody to K8 (TROMA1) [6] (gift

from Rolf Kemler, available from Developmental Studies

Hydridoma Bank); rabbit polyclonal antiserum to mouse K18

(1589) [42] and mouse monoclonal antibody to K19 (L2PK)

[43,44] (gift from Dr. Birgit Lane) are shown. Results were also

confirmed with the following antibodies that were species

dependent: mouse monoclonal to K8, M20 (Sigma); rat mono-

clonal to mouse K18, TROMA2 [6], mouse monoclonal to

human K18, CK5 (Sigma); mouse monoclonal to human K19,

K4.62 (Sigma).

Immunofluorescence
Cells were plated on feeder layer or Matrigel coated glass

coverslips, fixed in cold methanol for 10 minutes, rinsed and

incubated with PBS-T (PBSCa+/Mg++0.1% Tween20) for one hour

at room temperature. Cells were blocked for 20 minutes in PBS

supplemented with 2% goat serum (Gibco). For combined

detection of Oct3/4 and K19, Oct3/4 antibody (H-134, sc-9081

rabbit polyclonal from Santa Cruz) was diluted 1:250 in 1% goat

serum (GS) in PBS and incubated with the cells overnight at 4uC.

Cells were washed with PBS-T and PBS. The second primary

antibody (K19, LP2K monoclonal cell culture supernatant) was

used neat for one hour at room temperature. After washing,

secondary antibodies against the species were combined and

diluted 1:500 in 1% GS-PBS (Alexa 488 anti-mouse and Alexa

546 anti-rabbit from Invitrogen). Cells were incubated with the

secondary antibodies for one hour at room temperature in the

dark. Washes were repeated as described above. Finally cells were

incubated with a DAPI solution for 3 minutes followed by two

PBS washes. Other keratins were detected by incubating with

either TROMA1 (rat antiK8), M20 (mouse antiK8, 1:200), 1589

(rabbit polyclonal antiK18, 1:40), RCK105 (mouse monoclonal

antiK7, 1:2, gift from F. Ramaekers) and the appropriate

Keratins in hES Cells
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secondary antibody and the same blocking and washing

procedures. Images were acquired on an inverted TE300 Nikon

or an OlympusIX71 fluorescence microscope with a Diagnostic

Instrument cooled color CCD SPOT RT camera or Hamamatsu

Digital Camera respectively. Images were combined in either

SPOT or MetaVue 7.1.6.0 software and were formatted for

publication with Photoshop software.
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