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Abstract

Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice
(Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy.
To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole
genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and
validated the biological significance of the data by analyzing sources of variation and confirming expression trends with
reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene
ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with
published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy
Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform
Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally,
we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products
putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of
putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly
predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice
functional genomics.
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Introduction

Large genomes often contain many paralogous genes that are

closely related by sequence [1,2]. Eighty-three percent of the

25,193 predicted human proteins contain regions that significantly

match other human proteins [3]. This genomic property is even

more pronounced in plant species. For Arabidopsis, over 26,500

gene loci have been predicted, and rice and poplar contain more

than 40,000 genes [4]. The numbers of genes in sequenced plant

species are greater by 2-fold or more than the predicted number of

genes for the ancestral angiosperm (12,000–14,000) [4]. This

phenomenon can be explained by significant gene duplication

events [4]. The Osa1 Version 5 rice genome annotation (formerly

known as the TIGR v. 5 annotation, http://rice.plantbiology.msu.

edu/) recently identified 3842 rice paralogous gene families

consisting of 20,729 protein sequences. Such paralogous gene

families are a main source of functional redundancy in mouse and

yeast [5–7]. This poses a particular obstacle to functional studies

since it is often the case that a gene, when mutated, will display no

detectable phenotype [5,8]. Thus, a major challenge facing

scientists is identifying which paralog(s) functions in the biological

process of interest. Whole genome transcriptomics data are one

important tool for informing hypotheses regarding gene function,

both for unique and redundant genes [9,10]. With the goal of
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advancing functional genomics studies of rice, we have developed

and validated an inexpensive, publicly available rice whole

genome oligonucleotide (oligo) array.

Monocotyledenous crops in the family Poaceae, including rice,

wheat, maize, oat and sorghum, are the most important food and

feed crops for humans and domesticated animals [11–14]. Rice,

because of its small genome size, extensive genetic map, available

genome sequence and gene expression profiles, and relative ease of

transformation has emerged as a model monocot [15–21]. While a

great deal can be learned through comparison with more distantly

related species, a complete understanding of the biology of

economically important grasses, including cereals and bioenergy

crops, will depend upon a full characterization of the gene

complement of a model monocot

Researchers have sequenced the genomes of two distinct

subspecies of cultivated rice. The Beijing Genomics Institute

(BGI) generated a draft sequence of O. sativa subsp. indica cultivar

93-11 through shotgun sequencing [22]. In addition, the

International Rice Genome Sequencing Project (IRGSP), a

consortium of public laboratories, sequenced the genome of O.

sativa subsp. japonica cultivar Nipponbare using a bacterial artificial

chromosome (BAC)-by-BAC approach [19]. A well-annotated,

publicly available rice genome sequence has stimulated the

development of a number of functional genomics resources. One

such resource is gene-indexed mutants covering more than half of

rice genome [23]. These materials are valuable for identifying

gene function either through forward or reverse genetics, in which

hypotheses regarding the function of specific genes are tested in

corresponding mutants. Another way to gain clues about gene

function is to monitor gene expression in response to stimuli or

throughout development. The advent of nucleic acid microarrays

now makes this possible on a genome scale. Microarray

experiments permit biologists to concurrently measure expression

levels of thousands of genes in a single experiment through the

hybridization of nucleic acid to pre-designed oligos. As listed

below, three whole-genome oligo microarray platforms have been

developed for rice based on early rice gene predictions (called

pseudomolecules) from The Institute for Genomic Research

(TIGR) and/or rice full-length cDNAs available from the

Knowledge-based Oryza Molecular biological Encyclopedia

(KOME, http://cdna01.dna.affrc.go.jp/cDNA/) [23].

(1) Yale University and BGI designed an O. sativa genome oligo

set (Version 1.0) that contains 60,727, 70-mer oligos

representing both the indica and japonica genomes [24,25].

Oligos were designed from cDNAs, expressed sequence tag

(EST) sequences, putative genes based on the BGI rice

genome build and other public resources (http://www.

operon.com/arrays/oligosets_rice.php).

(2) Affymetrix (http://www.affymetrix.com/products/arrays/

specific/rice.affx) has developed a rice GeneChip that

contains oligos based on approximately 48,564 japonica

transcripts and 1260 indica transcripts. Sequence information

used to develop this array includes public content from

UniGene Build #52 (May 7, 2004), GenBankH mRNAs (July

13, 2004), and 59,712 putative genes based on TIGR’s rice

genome annotation release 2.0 [16,22]. Including control

spots, 55,515 probe sets were synthesized and included on this

chip. Each set is comprised of 11 probes of 25 nucleotides

each [26].

(3) Agilent (http://www.chem.agilent.com/scripts/pds.asp?lPage

= 12133) has released a 44K element oligo array based on rice

full-length cDNAs (http://cdna01.dna.affrc.go.jp/cDNA)

[27].

To date, most microarray studies in rice have not focused on

discovery of gene function per se, but instead have provided a

profile of a particular organ, environmental response, or genetic

background [25,26,28,29]. For example, researchers recently

reported the use of the Yale/BGI rice array and a similar array

for Arabidopsis thaliana to compare and contrast expression profile

changes of different organs in rice and Arabidopsis [25] and

during light-regulated seedling development [28]. They conclude

that light-regulated transcription is more similar between the two

species than dark-regulated transcription [28] and that expression

of biochemical pathways and protein synthesis genes are more

highly correlated than that of transcription factors [25,28]. Walia

et al. [26] reported one of the first uses of the rice Affymetrix array

and described profiling of rice responses to salt stress of a tolerant

recombinant inbred line and its sensitive parental line. These

researchers noted that some of the induced genes fell into physical

clusters on the rice chromosomes, including a region associated

with a salt-tolerance quantitative trait locus (QTL). Shimono et al.

[27] report one of the first uses of the Agilent 44K rice array and

one of the first instances of using microarray data for gene function

discovery in rice. This study led to the identification of a positive

role for a transcription factor gene product, OsWRKY45, in rice

defense against a fungal pathogen. However, the basis for further

testing of this gene among the ,300 genes induced under the

treatment conditions was based on previous knowledge about the

roles of WRKYs in defense responses, and three other related

genes examined based on the same criteria yielded no phenotype.

Here, we report construction and validation of a 43,311 oligo

rice gene array based on 45,116 gene models from the 61,420 total

target sequences present in TIGR rice annotation release 3 [30].

Because this array was supported by the National Science

Foundation and is based on 45,116 gene models, it is called the

NSF45K array. To validate the functional utility of the NSF45K

array, we conducted experiments to identify candidate genes

involved in light responses. We hybridized RNAs from four rice

varieties exposed to light and dark treatments to the array. With

the data resulting from these experiments, we employed five

methods to verify the usefulness of the NSF45K array (Table 1),

including analyzing the sources of variation, GO-term enrichment

in lists of light- and dark-induced genes, and comparing the data

with rice EST and other microarray data. We then assessed

functional redundancy with an approach for integrating expres-

sion data with pathway information by analyzing available gene

expression profiles from multiple array platforms. For the project,

we developed publicly available web-based tools for analysis of

gene expression based on rice ESTs and data from other array

platforms. These methods and tools will allow users to more

accurately refine their candidate gene lists to improve the

efficiency of functional testing, greatly accelerating rice gene

discovery.

Results and Discussion

Light vs. dark experimental design
Light and dark responses are fundamental to the biology of

plants and produce dramatic differences in gene expression [28].

To verify that the NSF45K array can be used to obtain

biologically meaningful data, we performed an experiment to

identify rice genes involved in the response of rice to light and dark

treatments. With a number of methods as summarized in Table 1,

we validated our results and the usefulness of the NSF45K array.

For the light vs. dark experiment, we carried out expression-

profiling on RNA from leaves of two-week old plants grown in a

natural light-dark cycle (light-grown) in comparison to RNA from

Microarray and Gene Redundancy
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leaves of plants grown in a natural light dark cycle for a week and

then transferred to constant darkness for the second week (dark-

grown). In this validation experiment our aim was to identify genes

that are universally important to the light/dark response in rice

and thus to de-emphasize genotypic differences in the response

[31]. Hence, as our biological replicates we employed four

different rice varieties with representatives of the two subspecies

of rice: japonicas, Kitaake, Nipponbare, and Taipei309; and indica,

IR24. For statistical purposes, we conducted an additional set of

hybridizations with the dyes used to label each sample swapped for

each genotype (i.e., technical replicates). Details of the exper-

imental design are summarized in Table S1.

Light vs. dark treatment was the primary source of
variation

To examine sources of variation in our microarray data, we

used a diagnostic analysis of variation (ANOVA) method

developed by Rocke [32] and demonstrated in Lu et al. [33]. We

considered the following four sources of variation: the dye

incorporated into the hybridization probes (Cy5 or Cy3), sample

identity (1–4), treatment (light or dark), and error due to undefined

variation. We obtained relative mean square values for the four

factors for each spot. Relative mean square was calculated as the

mean square of each factor normalized by the sum of mean

squares for each spot [33]. The relative mean square value of each

factor corresponds to the significance of the factor, with a larger

relative mean square value indicating that the factor is more

significant.

Figure 1 shows the significance of each factor across the

NSF45K array as a frequency distribution (density) of relative

mean square values. For both slides, NSF45Ka and NSF45Kb, the

treatment (black line) has the largest effect among the factors

examined. The next most significant factor is the sample,

consistent with the use of different genetic backgrounds [31];

whereas, the dye and random error effects are smaller yet. This

analysis indicates that the observed significant changes in gene

expression are largely due to the treatment and not to variability in

the other parameters examined. This analysis effectively checks the

quality of the array data prior to generating a list of genes with

significant expression changes.

Identification of differentially expressed transcripts and
independent experimental validation of the microarray
results

We used the LMGene Package developed by Rocke [32] to

analyze the data and reveal differentially expressed genes between

light and dark treatments. This software package has the

advantage of being able to identify differences in expression levels

even when the expression levels (signal) are low [32]. LMGene

uses an empirical Bayseian methodology that combines spot-

specific and global error analysis to estimate a false discovery rate

(FDR) for each spot. A detailed description of the data generated

in this experiment, including average normalized spot intensity,

and fold changes in light vs. dark treatments, plant gene ontology

(GO) slim terms, and digital northern data based on the number of

ESTs in 19 tissue samples (http://www.ricearray.org/rice_digital

_northern_search.shtml) can be found in Table S2.

As is typical for microarray data, increased confidence is

associated with higher fold-change values and greater average

signal intensity between the two channels. The distribution of the

NSF45K array data, including the relationships between signal

intensity, fold change (log2 [light/dark]), and FDR are shown in

Figure S3, Table S3 and Table S4. The signal-to-noise of many

oligos with a high level of normalized spot intensity is less;

therefore, highly and differentially expressed RNAs are generally

associated with lower FDR-values (Figure S2). Greater log2

(light/dark) values are also associated with lower FDR-values

(Figure S3). For example, oligos with an FDR of #1026 all show

nearly 2-fold changes in gene expression or greater (20.89#log2

[light/dark]$0.93; Table S3 and Figure S2). Significantly, these

trends mean that genes expressed at low levels, such as those that

encode many transcription factors, receptor-like kinases, and other

regulatory proteins, may undergo biologically significant changes

that are not highly statistically significant. We suggest that for

genes with lower levels of expression a researcher may need to

Table 1. Strategy employed for validating the data from the rice NSF45K array.

Validation method Validated parameter Result

1. Analysis of variation (ANOVA) test Treatment, slide, samples, other errors. Treatment is major source of variation (Figure 1).

2. Independent experimental analysis Validation of gene expression patterns
using RT-PCR

Expression patterns of 30 highly light-induced genes
were confirmed (Figure S1).

3. PlantGOSlim analysis Enrichment analysis of GO terms at four FDRs. Photosynthesis in biological processes, chloroplast in
cellular components, and chlorophyll binding activity in
molecular functions were the most meaningful
(Figure 2–3, Figure S4).

4. Comparison with public transcriptomics data a. Digital northern of numbers of ESTs in
leaf tissue.

Significantly differentially expressed genes are more
likely to have leaf-derived EST support than EST-support
from other tissues (Figure 4A and 4B).

b. Comparison with other microarray data using
different platform with similar experiments
(various intensities of light vs. dark).

485 of 887 candidate light induced genes had similar
gene expression patterns among different platforms
(Figure 5).

5. Analysis of a biochemical pathway with the
microarray data

Expression of eight components in the
photorespiration pathway.

One or more paralogous genes from all 8 steps of the
pathway showed significant induction in the light
(Figure 6B).

Two steps in the pathway showed light induction from
more than one paraloga, suggesting functional
redundancy (Figure 6B and 6C).

aParalogs are genes related by duplication within a genome and as a wider meaning, indicate gene families likely to have functional redundancy.
doi:10.1371/journal.pone.0003337.t001
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reduce the fold change-threshold and increase the FDR-threshold

when identifying a significant gene list.

Of relevance to further discussion of the data in this manuscript,

the list of significantly changing transcripts derived using an FDR

of #1024 contains 4,962 oligos (Table S2). Eighty three percent

of oligos on the NSF 45K array correspond to a single transcript

(gene model), and the remaining oligos represent genes associated

with multiple transcripts [23]. Of the 4962 transcripts, 70% show

at least 2-fold induction, or 2,073 and 1,430 transcripts in the light

and dark, respectively. Most of these transcripts with a 2-fold

change in expression are associated with the even more stringent

FDR of #1026 (1,695 and 1,098 induced in the light and in dark,

respectively). Among transcripts with an expression change of at

least 2-fold and a lower confidence (FDR.1024), only 267 and

361 were induced in the light and dark, respectively (Table S2).

Though most discussion here will focus on transcripts associated

with a higher confidence level, many oligos associated with lower

confidence changes may still be biologically relevant.

To experimentally verify a subset of the microarray data, we

examined the expression patterns of 30 highly light-induced genes

by reverse transcription (RT)-PCR (Figure S1). FDR-values for

these genes were #1024, with the exception of one, Os08g33820.1.

Figure S1 shows that in all four genetic backgrounds the assayed

genes are clearly more highly expressed in the light. Our RT-PCR

results provide evidence that the NSF45K array can be used to

accurately identify many differentially expressed genes.

Overview of Gene Ontology analysis
Gene Ontologies (GO) provide controlled vocabulary to

describe the biological process, molecular function, and compo-

nent of the cell to which a gene product putatively contributes

[34–39]. GO are useful for identifying biological patterns in a list

of genes in a genome, microarray data set, or cDNA collection.

The terms in GO are linked by a simple, class (parent)–subclass

(child) relationship, in which a more specialized, child term can

have many less specialized, parent terms. A simplified plant

classification system, Plant GOSlim, has been applied to rice gene

products (http://rice.plantbiology.msu.edu/GO.retrieval.shtml)

based largely on homology with Arabidopsis proteins, which have

been subject to relatively high quality annotation [16,22,34]. The

‘‘slimmed’’ GO provides a broad overview of the ontology content

without the detail of many specific, fine-grained terms. Of the

oligos on the NSF45K array, approximately 41% have a Plant

GOSlim assignment; 28% of assignments are to a biological

process, 37% to a molecular function, and 18% to a cellular

component (Table S5). Many genes have GOSlim terms in more

than one category.

To further validate our data and identify processes and cellular

compartments most relevant to light and dark responses, we

examined the distribution of Plant GOSlim terms within our data.

Often, researchers enumerate GO classifications of a microarray-

derived gene list selected using a particular p-value or fold-change

threshold [40–42]. We have used two approaches to improve on

this basic analysis. First, we evaluated enrichment or depletion of a

GO term in a gene list relative to the frequency of that term in the

whole genome with corresponding hypergeometric p-values, using

a procedure similar to published methods [43]. To our knowledge,

this is the first application in rice of this method of GO analysis.

Second, since selection of a particular p-value or fold change is

arbitrary and may conceal trends in the data, we evaluated GO

term enrichment in data sets delimited by a number of FDR-value

thresholds. Johns and Mao [44] used a similar approach to

describe the degree of polymorphism among genes in the japonica

and indica genomes by conducting FDR tests with different

thresholds.

Figures 2 and 3 show the results of our analysis of enrichment

or depletion of fifteen selected biological process and cellular

Figure 1. Results of ANOVA analysis to identify the primary sources of variation in the NSF45K light vs. dark microarray dataset.
Light treatment (treatment, black line), results per each individual slide (sample, red line), whether Cy5 or Cy3 dye was utilized (dye, green line), and
inexplicable variation (error, blue line) were the four different factors considered for this ANOVA analysis. The significance of each factor across the
NSF45K array was evaluated as a frequency distribution of relative mean square values. The frequency is marked as density on the y-axis. This analysis
was carried out separately for the two slides of the array, NSF45Ka and NSF45Kb, as the results could in principle differ significantly. Larger relative
mean square values indicate higher significance.
doi:10.1371/journal.pone.0003337.g001
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Figure 2. Plant GOSlim enrichment analysis of light-induced transcripts. (A) Enrichment or depletion among light-induced transcripts of
selected cellular component GOSlim terms. (B) Enrichment or depletion among light-induced transcripts of selected biological process GOSlim terms.
Enrichment and depletion values were generated for transcript lists determine with four FDR cutoff-values, #1026 (black bars), #1024 (dark grey
bars), #0.01 (light grey bars), and #0.05 (open bars). Shown are selected enriched GOSlim terms with a hypergeometric p-value,0.05 at FDR#1026

and most other FDRs examined (left panel), less consistently enriched GOSlim terms with a hypergeometric p-value.0.05 at FDR#1026 (middle

Microarray and Gene Redundancy
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component GOSlim terms among dark and light accumulating

transcripts at four FDR thresholds. Other data related to the GO

enrichment analysis are available in Table S6 and Figure S4. GO

fold-enrichment values of .1 indicate that a GO term occurs more

frequently in a gene list compared with the frequency of the term in

the genome and suggests that the GO term is representative of a

coordinated change in transcript accumulation relevant to the

process examined. Conversely, GO enrichment of ,1, which can

also be expressed as fold-depletion (1/fold-enrichment), indicates

that the GO term occurs less frequently in the list than a random list

and may indicate general lack of or reduced participation of certain

processes or compartments. Based on the hypergeometric distribu-

tion, we calculated the probability (p-value) of randomly observing

each GO term enrichment or depletion value [43,45]. This method

is one of several that facilitate distinguishing statistically significant

patterns in data [46]. Figure 2, Figure 3 and Figure S4 contain a

subset of significantly enriched or depleted GOSlim terms based on

their biological meaning, consistency of enrichment or depletion in

gene lists determined with different FDR-values, and hypergeo-

metric p-value.

GO enrichment in the light
Much of the GO enrichment data for light responsive genes is in

good agreement with our expectations and provides strong support

that the NSF45K array data are valid (Figure 2 and Figure
S4A). In the cellular component category, transcripts for the

‘‘light-harvesting complex’’ have the highest level of enrichment

among light-induced transcripts (Figure 2A). As strongly

expected, this and several other plant GOSlim terms associated

with chloroplasts show significant enrichment that is maintained in

gene lists determined at every FDR-threshold examined

(Figure 2A). Notably, the GOSlim term ‘‘mitochondrion’’

provides an example of a term that shows only a small numerical

fold-enrichment value (1.3-fold at FDR#1026; Table S6).

However, because this term is associated with a large numbers

of transcripts (1187) the enrichment is highly significant

(p = 0.0016 at FDR#1026), consistent with the role of this

metabolic compartment in light-grown plants. On the other hand,

the terms ‘‘extracellular region’’, ‘‘plasma membrane’’, and ‘‘cell

wall’’ are all depleted in the light, with this pattern maintained in

gene lists determined with all FDRs (Figure 2A; Table S6).

For light-induced transcripts, analysis of the biological process

principle GO category revealed significant enrichment of GOSlim

terms related to known light responses, including ‘‘photosynthe-

sis’’, ‘‘photorespiration’’, and mitochondrial and chloroplast

anabolism terms. These terms were all associated with hypergeo-

metric p-values of ,0.05 and are representative of previously

described light-responsive processes [47–51]. Conversely, GOSlim

terms such as ‘‘hypersensitive response’’ and ‘‘lateral root

development’’ are significantly depleted from the light-induced

lists, as expected for healthy, above-ground tissues (Figure 2B).

GO enrichment in the dark
Responses of plants to darkness are both less well-studied and

less conserved compared with light responses [28]. Figure 3 shows

selected GOSlim terms in the principle categories of cellular

component and biological process that are enriched and depleted

among transcripts induced in the dark relative to the light. Many

of the cellular component and biological process GOSlim terms

that are enriched in dark-responsive transcript lists are indicative

of stressed plants that are in the process of recycling their

constituents for survival. For example, ‘‘fatty acid beta-oxidation’’,

which is among the dark-enriched biological process terms,

functions to mobilize carbon reserves for use by seedlings when

photosynthesis is unavailable [52]. Plant fatty acid beta-oxidation

is exclusively peroxisomal [52,53], which at least partially explains

the significant enrichment of this cellular component term in the

dark-enriched gene lists. The GOSlim terms ‘‘ubiquitin-dependent

protein catabolism’’ (biological process) and ‘‘SCF ubiquitin ligase

complex’’ (cellular component) are also enriched among dark-

induced transcripts (Figure 3B). The Arabidopsis ubiquitin-

dependent protease, AtCOP1 degrades a number of transcription

factors that function in light responses [54]. Enrichment of this

GOSlim term in the dark is consistent with functional conservation

of the rice COP1-related gene products and other related proteins.

Other biological process terms related to stress, including

‘‘response to oxidative stress’’ and ‘‘response to osmotic stress’’

were also enriched among dark-induced transcripts. Similarly, four

Arabidopsis oxidative stress-related genes are induced during

prolonged dark treatment [55]. Consistent with enrichment of

mitochondrial and peroxisomal terms in dark-grown rice,

peroxisomes, mitochondria, and to a limited extent, chloroplasts,

contain multiple enzymes or enzyme systems for removing reactive

oxygen species [53]. Furthermore, osmotic and cold stresses have

overlapping responses in some cases [56]. However, while

‘‘response to osmotic stress’’ shows significant enrichment in the

dark, ‘‘response to cold’’ is only mildly enriched, with the number

of terms represented similar to that expected from in random gene

lists (Figure 3B). We conclude that dark-induced stress overlaps

more significantly with specific categories of abiotic stresses, and

not abiotic stress in general.

GO-enrichment analysis at multiple FDRs
Figures 2, 3 and S4 display GO term distributions in transcript

lists determined with multiple FDR-value thresholds. To demon-

strate the utility of the method, these figures also include a few

GOSlim terms that do not show consistent levels of enrichment or

depletion in lists determined with various FDRs (middle panels). All

terms in these middle panels are associated with high hypergeo-

metric p-values ($0.05). For example among light-induced

transcripts, the term ribosome shows significant enrichment in

light-induced lists delimited with FDRs of #0.01 and #0.05, but as

the gene list shrinks with increased confidence, ribosome-associated

genes are no longer observed more often than randomly expected

(Figure 2A). This indicates that ribosome-associated transcripts

may only mildly accumulate in the light compared with the dark.

Among dark-induced genes, the term ‘‘thylakoid membrane’’ is

slightly enriched in the #1026 FDR-delimited list but significantly

depleted in lists with other FDRs (Figure 3A). Among the three

highly expressed thylakoid genes that lead to enrichment at #1026

FDR is the copper-transporting ATPase 3 (APP2, Os02g10290). In

Arabidopsis, this protein transports copper ions across the thylakoid

panel), and depleted GOSlim terms with a hypergeometric p-value,0.05 at FDR#1026 and most other FDRs examined (right panel). The y-axis
indicates the GOSlim fold- enrichment or depletion. GO enrichment values are calculated as the observed number of transcripts for a particular term
divided by the expected number of transcripts and GO depletion values are the inverse of GO enrichment values. A GO enrichment value .1 means
that the analyzed term occurs more frequently than expected in a gene list at a selected FDR than it would in a random list with the same number of
genes. GO enrichment data for all other GOSlim terms are available in Table S6. The symbol (‘) indicates that the denominator for generating the
GO depletion values was zero.
doi:10.1371/journal.pone.0003337.g002
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Figure 3. Plant GOSlim enrichment analysis of dark-induced transcripts. (A) Enrichment or depletion among dark-induced transcripts of
selected cellular component GOSlim terms. (B) Enrichment or depletion among dark-induced transcripts of selected biological process GOSlim terms.
See the Figure 2 legend for a description.
doi:10.1371/journal.pone.0003337.g003
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membrane and is involved in activation of chloroplastic copper/

zinc superoxide dismutase [57], consistent with active oxidative

stress protection functioning in dark-stressed rice plants. This

example illustrates how GO enrichment analysis for terms with

relatively small numbers of assigned genes can be subject to noise.

Thus, though the thylakoid membrane is generally involved in light-

related, but not dark-related processes, a small, specific subset of

thylakoid membrane-localized gene products are dark-related.

These examples demonstrate how interpretation of GO enrichment

data can depend on the FDR criteria chosen, and thus supports

analysis with a range (or a continuum) of criteria to distinguish

trends from noise [46].

Light-responsive genes are abundantly represented
among leaf ESTs

To explore and further validate our NSF45K microarray data we

compared the results with publicly available rice gene expression

data. We developed new tools to facilitate such comparisons in rice,

which are available through the rice genome annotation website

(http://rice.plantbiology.msu.edu/) for public use. The first of these

tools is the Oligo and EST Anatomy Viewer, http://www.ricearray.

org/rice_digital_northern_search.shtml (Table S7 and S8), which

supports semi-quantitative analysis of EST-based expression

profiling data in 19 rice organs and tissues for all loci represented

on the NSF45K array (i.e., digital or electronic northern). Digital

northern data based on ESTs have corroborated microarray data in

other recent studies [29]. Estimated expression patterns from digital

northern data have been found to be well matched with RT-PCR

data [58].

In validation of the NSF45K array data collected on young

above-ground tissues, we found that differentially accumulating

transcripts associated with greater confidence (i.e., lower FDR)

were more likely to appear multiple times in leaf-derived EST

collections (Figure 4A; Table S7). This analysis included both

light-induced and dark-induced genes from the NSF45K array.

Similarly on the array, differentially expressed transcripts

associated with greater confidence were usually more highly

expressed (Figure S2 and S3). However, this analysis strongly

suggests that most, but not all, transcripts involved in light

responses have been captured in EST libraries. Even with an

FDR#1024, about 6.8% (338/4962) of differentially accumulat-

ing transcripts lack EST support.

To further examine whether light-responsive transcripts are

likely to be associated with gene expression specifically in leaves,

we examined the representation of light- and dark-induced

transcripts with an FDR#1024 among ESTs from the following

diverse rice organs: leaf, seed, root, panicle, and callus. As shown

in Figure 4B, a higher percentage of transcripts that are

differentially regulated on the array have EST-support in leaves

compared to other organs. For leaves, 96% of differentially

expressed oligos have one or more ESTs; whereas, only 4% have

one or more EST from another tissue, but not from leaves. Among

ESTs from seeds and roots, only 42% and 56%, respectively, of

differentially regulated gene products are represented, consistent

with these organs not normally being exposed to light. We found

that these qualitative patterns of organ specificity also emerged at

other FDR-values (data not shown). These results support the

hypothesis that light-responsive genes are more likely to be specific

to leaves, rather than commonly expressed among leaves and

other tissues, such as roots.

The Rice Multi-platform Microarray Search tool
A major goal of microarray analyses is to identify genes with

necessary functions in a particular process that are good candidates

for further functional studies. Here, as in many studies, the list of

candidate genes with highly significant changes in expression of

relatively large magnitude is too extensive for rapid analysis. We took

advantage of the .800 rice hybridizations housed at the National

Center for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) to further

validate our results with the NSF45K array and refine the list of

genes likely to be required for rice light responses. Recently, the

MicroArray Quality Control (MAQC) project determined that there

was a high level of consistency in data across different array platforms

[59]. In view of this and the dramatic nature of the response of plants

to light, we reasoned that it should be possible to identify genes that

show similar expression patterns from public rice array data sets

regardless of variations among experimental design, such as cultivar,

sample preparation and array platform. With the caveat that gene

products with roles in the light responses of specific tissues or growth

stages might be missed, such variation might assist identification of

consistently responsive genes. However, due to varying platform

designs and annotation methods, comparing data from different

array platforms has been cumbersome. To solve this, we mapped the

oligos from the Affymetrix, Agilent 22K, and YALE/BGI, and

NSF45K platforms to the Osa1 Version 5 rice genome annotation

gene models and developed the Rice Multi-platform Microarray

Search tool (http://www.ricearray.org/matrix.search.shtml). This

tool enables users to search across these four different rice oligo

microarray platforms to determine which probes from each platform

map to a common Osa1 Version 5 rice genome annotation locus.

Candidate gene list refinement with publicly available
array data

To refine the NSF45K light-induced gene list, we selected

relevant whole genome microarray datasets (Table S9). Most

comparable to this current study, Jiao and associates [28] reported

on rice gene expression under various light wavelengths using the

YALE/BGI array. No light /dark treatment data were available for

the Affymetrix array. However, since EST analysis (Figure 4)

showed that significantly light-induced transcripts are likely to be

leaf-expressed, we reasoned that transcripts preferentially expressed

in rice seedling tissue compared, for example, to root tissues would

be more likely to be involved in light responses. Thus, we judged

that the data of Jain and colleagues [29] collected with the

Affymetrix array for various stages of development and organs,

including young seedling tissue, would also be relevant to this study,

which was conducted with 2-week-old seedlings. We also used a

number of BGI/Yale data sets gathered for different developmental

stages and organs [24,25] and Affymetrix data sets available for

leaves of plants treated with various abiotic stress treatments.

Altogether, we identified 39 publicly available array data sets, 19

from the YALE/BGI platform and 20 from the Affymetrix platform

for comparison with our data. To compare the two-channel

microarray data with single channel Affymetrix array data, we

divided each hybridization by a relevant comparison hybridization

(Table S9). For example for developmentally derived Affymetrix

data, we divided the data for young seeding tissue by data for other

tissues (e.g. log2 [young seedling/root]). We then normalized the

resulting ratios to give a similar level of differential expression in

comparison with the two channel array data.

Having standardized the data across the three microarray

platforms, we selected 887 transcripts from our data that showed

$3.1-fold induction in the light with an FDR#1024 and that were

present on the all three (near) whole genome microarray

platforms. We used the TIGR Multiexperiment Viewer (MeV,

http://www.tm4.org/mev.html) to perform an unsupervised,

hierarchical clustering analysis of the expression of the 887
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transcripts across the 40 microarray data sets [60]. This analysis

resulted in 18 transcript clusters with similar differential expression

patterns (Figure 5A). We characterized these clusters for patterns

with respect to consistent light induction (red in datasets delimited

with yellow box) and/or consistent induction in young seedlings

relative to other tissues (red in datasets delimited with blue box).

Several transcript clusters were highly induced in both the light

and seedling leaves, including clusters III, V, VI, VII, XIII, XVI,

and XVIII, with cluster XVI containing the most highly induced

transcripts. Transcripts in clusters X, XI, and XIII showed more

moderate differential expression in either the light or in leaves

compared to the previously mentioned clusters. The remaining

clusters were not consistently induced in either light, young

seedlings or both. To identify consistently light-induced tran-

scripts, we applied the criteria of .1.5-fold induction in at least

three of the seven light vs. dark data sets generated using the

NSF45K and YALE/BGI array platforms [28] and narrowed the

list of transcripts approximately by half to 485 (Table S10).

Evaluation of the refined light-induced transcript list
Hierarchical clustering of the refined set of 485 transcripts

results in eight major clusters (Figure 5B). Most of this refined set

of consistently light-induced transcripts, except a small number of

transcripts in cluster III, V, and VII, also exhibit preferential

Figure 4. Comparison of microarray data and digital northern data based on ESTs. (A) Percentage of oligos on the NSF45K array with
representation in EST leaf libraries or among all EST libraries (total) and among light-responsive transcripts determined at FDRs of #0.01, #1024,
#1026, and #1028. Bars depict representation by .9 (grey gradient), 3–9 (black), 1–2 (dark grey), or 0 (light grey) ESTs in leaf tissues or no ESTs in all
analyzed tissues (white). (B) Percentage of light-responsive transcripts with an FDR of #1024 with EST expression levels in leaf, root, panicle, callus,
and seed. For this analysis, we included only the oligos on the NSF45K array that correspond to one or more EST in any tissue, i.e., ,90% of genes
with an FDR#1024. The x-axis indicates the tissues analyzed; y-axis indicates relative percentage of genes having significantly altered expression in
light versus dark conditions at a FDR of #1024, and z-axis indicates the number of ESTs identified in each tissue, 0 (black) or .1 (grey).
doi:10.1371/journal.pone.0003337.g004

Microarray and Gene Redundancy

PLoS ONE | www.plosone.org 9 October 2008 | Volume 3 | Issue 10 | e3337



expression in young seedlings compared with other developmental

stages (Figure 5B). This finding is consistent with the result that

leaf-expressed genes are more likely to be differentially regulated

in response to light (Figure 4). We also compared the

representation of ‘‘chloroplast’’ and ‘‘mitochondrion’’ cellular

component GOSlim terms between refined and unrefined lists. In

the refined transcript list, there are 204 gene products with a GO

term in the cellular component category. Approximately 80%

(164/204) have GO terms related to ‘‘chloroplast’’ and ‘‘mito-

chondrion’’. While in the unrefined transcript list, about 65%

(217/341) of gene products with a cellular component assignment

are related to ‘‘chloroplast’’ and ‘‘mitochondrion’’ (data not

shown). Enrichment of these terms in the refined list demonstrates

the effect of refinement toward focusing the list to transcripts that

are consistently involved in light responses.

Changes in the distribution of the light-related GO biological

process terms, ‘‘photosynthesis’’ and ‘‘photorespiration,’’ com-

pared with terms not directly related to light shows a significant

enrichment of light-related terms relative to unrelated terms after

refinement. From a total of 32 ‘‘photosynthesis’’ GOSlim

assignments in the rice genome, 17 and 15 gene products are

found in the original and refined lists, respectively. Thus, while

refinement reduces the list size by approximately half, most of the

photosynthesis-related genes are retained. A similar pattern occurs

with the GOSlim term, ‘‘photorespiration’’. Out of 17 gene

products with this assignment in rice, seven and six transcripts are

found in the original and refined lists, respectively. In contrast,

representation of transcripts with the GOSlim terms not directly

involved with light responses, such as, ‘‘response to wounding’’

and ‘‘response to heat’’, is proportional to the size of the lists. Of

Figure 5. Hierarchical clustering analysis of light-inducible transcripts in 40 rice array data sets gathered on multiple array
platforms. (A) Hierarchical clustering analysis of 887 light-inducible transcripts. Included are transcripts from the NSF45K light vs. dark microarray
data with .3.1-fold induction in light and FDR#1024 and which are reported on by all three whole genome rice microarrays. Roman numerals
delineate eighteen transcript clusters with similar expression patterns. For hierarchical clustering analysis, we used average log2 ratios. In the case of
the Affymetrix array data, we downloaded raw data from NCBI GEO and normalized the intensities of all array data (See Materials and Methods). The
resulting values were transformed to ratios by comparing with a reference data set followed by log2 transformation of the resulting ratios. For BGI/
Yale array data, we downloaded from NCBI GEO data in the form of log2 ratios of target samples relative to reference samples. We used the average
log2 ratio for multiple replicates for each condition. (B) Hierarchical clustering analysis of a refined list of 485 consistently light-inducible transcripts.
Roman numerals delineate eight clusters with similar expression patterns. Yellow boxed regions indicate the data from light vs. dark experiments, and
blue boxed regions indicate Affymetrix data for expression patterns relative to young seedling tissue.
doi:10.1371/journal.pone.0003337.g005
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the 226 ‘‘response to wounding’’ GOSlim terms in the genome,

seven are present in the unrefined list; whereas, three are in the

refined list. Similarly, of the 212 ‘‘response to heat’’ GOSlim

terms, eight and four are in the unrefined and refined lists,

respectively. This analysis demonstrates that genes that are

consistently light-inducible are more likely to be meaningful and

emphasizes the power of integrating multiple microarray data sets

for functional genomics analysis, whenever possible.

In summary, we developed the Rice Multi-platform Microarray

Search Tool to integrate data from other rice microarray

platforms with those from the NSF45K array. Further, we

narrowed the candidate transcript list by considering consistency

of expression patterns of the most relevant publicly available data

sets. In the next section, we will utilize this analysis of consistent

induction in multiple data sets generated from different array

platforms to facilitate analysis of putatively redundant gene

products in a biochemical pathway.

Biochemical pathway analysis based on gene expression
As a primary functional validation of the biological relevance of

the data generated with the NSF45K array, we conducted a finer

analysis of a light-regulated biochemical pathway, namely photo-

respiration. Integration of gene expression data with pathway

information has revealed that often gene products that function in

the same pathway have similar gene expression patterns. For

example, genes encoding the Arabidopsis tetrapyrrole biosynthesis

pathway were intensively analyzed using a mini-microarray

consisting of 35 genes [61]. Most of steps of this pathway were

found to be induced by light. Other rice microarray studies have

also revealed involvement of biochemical pathways in various

processes. Jiao and associates found that light induces numerous

central anabolic pathways, including purine nucleotide biogenesis,

gluconeogenesis, and leucine and valine biosynthesis [28]. In

another example, salt treatment induced anthocyanin synthesis in a

salt sensitive cultivar relative to a salt tolerant cultivar [26,28].

Those studies highlight that data can be applied to carry out

functional study of the participation of particular pathways in

various biological processes. Here, we analyze expression of

transcripts for a single biochemical pathway toward assigning roles

for putatively functionally redundant genes for that pathway.

Refinement of the candidate gene list for
photorespiration

As displayed in Figure 6A, the photorespiration pathway

recovers the product of the ribulose bisphosphate oxygenation

by ribulose bisphosphate carboxylase/oxygenase (Rubisco). Under

conditions of low CO2 and high O2 concentrations, Rubisco

oxidizes ribulose bisphosphate to 2-phosphoglycolate (and 3-

phosphoglycerate), leading to loss of a fixed carbon molecule

[62,63]. Global understanding of the photorespiration pathway

through functional analyses in rice and other C3 crops may

provide a way to enhance the efficiency of photosynthesis and

improve crop yield [64]. Genes for photorespiration were

prominently identified through Plant GOSlim analysis as being

highly enriched among gene products that accumulate in the light

(Figure 2B). Of the eight steps of the photorespiration pathway,

genes for six of these steps are among the refined 485 genes found

to be consistently light-induced and preferentially leaf-expressed

(Table S10). Consistent with the prominence of this pathway in

the light-induced data, Rubisco activity is low in darkness and

increases with light [65].

In rice, 52 genes encode enzymes predicted to catalyze the eight

steps in the photorespiration pathway in RiceCyc of Gramene

(http://www.gramene.org/pathway/) (Figure 6A). Single genes

in the rice genome code for the enzymes that catalyze steps 4

(serine-glyoxylate aminotransferase) and 8 (glycerate kinase)

(Figure 6B). The other six steps are potentially catalyzed by

enzymes encoded for by one or more paralogous genes that are

closely related to each other by sequence homology, (designated by

2-1, 2-2, and so on). We used rice microarray data to address the

following question: do all of these loci contribute equally to

catalyzing photorespiration?

NSF45K array expression data show that only one or two genes

for each step show higher absolute expression relative to other

genes that putatively participate in the same step, i.e., predominate

(Figure 6B). Following the observation that genes that function in

biochemical pathways tend to be coordinately expressed, we

hypothesized that the unique and predominantly expressed genes

for each step are those that function in photorespiration. Of steps

encoded by gene families, there are two genes in step 1, three in

step 6 and ten in step 7. Genes 1-1 (Rca1), 6-1 (glycine decarboxylase)

and 7-1 (D-isomer specific 2-hydroxyacid dehydrogenase) are the

predominantly light-expressed genes in each gene family

(Figure 6B). On the other hand, steps 2, 3, and 5 exhibit

functional redundancy in the light in terms of absolute gene

expression patterns. For these steps, two gene family members

exhibit relatively high levels of light-induced expression, or co-

predominate. For step 2 (phosphoglycolate phosphatase), both 2-1

and 2-15 co-predominate; for step 3 (glycolate oxidase), 3-1 and 3-

2 co-predominate; and for step 5 (serine hydroxymethyltransfer-

ase), both 5-1 and 5-2 co-predominate according to the NSF45K

microarray data (Figure 6B).

We have found that consistent gene expression patterns under

similar experimental conditions to be a good indicator to refine the

candidate gene lists. Specifically, we recently described five genes

that were highly induced in the light in the NSF45K array data but

not in BGI/Yale light vs. dark array datasets. However, functional

analyses with homozygous T-DNA insertional lines of these genes

has not yet identified defective phenotypes [66]. In view of the

apparent benefit of using other microarray data to corroborate and

refine gene lists, we also evaluated the differential expression

patterns of the 52 putative photorespiration genes across the 40

microarray data sets described above (Figure 6C; Table S11).

Unsupervised clustering of the differential gene expression patterns

of the putative photorespiration genes across these data, revealed

that genes in clusters VI and VII are mostly highly expressed in

young seedlings and are significantly induced in the light

(Figure 6C). The exception in these clusters is gene 7-4, which

displayed inconsistent light inducibility between the two array

platforms and low absolute expression according to the NSF45K

array; it is excluded from the following analysis. Six genes in the

photorespiration pathway, 1-1, 4, 5-1, 6-1, 7-1, and 8, are grouped

within clusters VI and VII and apart from other gene family

members (Figure 6C). In this list, 4 and 8 are unique sequences,

while genes 1-1, 6-1 and 7-1 are predominantly expressed gene

family members according to the analysis of NSF45K data. This

clustering analysis distinguishes 5-1 among the five genes that

putatively catalyze step 5; whereas, analysis of the NSF45K array

data alone revealed similar absolute expression levels of genes 5-1

and 5-2. When the additional data are considered, 5-1 clearly

clusters with the other highly differentially expressed genes in cluster

VII, and 5-2 falls into cluster IV with other less differentially

expressed genes. Below we describe the functional data that

supports the assignment of genes in clusters VI and VII to encode

enzymes that function in photorespiration in young seedlings.

Unlike the six steps we predict to be carried out by the products

of unique or predominantly expressed genes, neither the NSF45K

array data nor clustering analysis with other data sets differentiates
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between the other co-predominantly expressed loci corresponding

to steps 2 and 3 of photorespiration. Genes 2-1 and 2-15 both fall

in cluster VII, as do 3-1 and 3-2 (Figure 6C) and all of these

transcripts show comparatively high absolute levels of expression

according to the NSF45K array data (Figure 6B). From this

result we infer that steps 2 and 3 in this pathway may be catalyzed

by the products of two members of the associated gene families.

We predict that functional analysis of these genes with single

knockout mutants may therefore be impeded due to functional

redundancy in which loss of a single gene may be compensated for

by expression of the co-predominantly expressed paralog, masking

association of either paralog with a phenotype. Further functional

studies of these steps may thus require silencing of multiple family

members using RNA interference or double knockout mutants.

Silencing of multiple genes was recently applied to the rice OsRac

gene family [67].

Figure 6. Analysis of the 52 genes predicted to encode enzymes involved in eight steps of the photorespiration pathway. (A)
Depiction of the rice photorespiration pathway as provided in the RiceCyc pathways in Gramene (http://www.gramene.org/pathway/). Step 1 is
catalyzed by ribulose-1,5 bisphosphate carboxylase, which is regulated by rubisco activase (RCA) 1 [63,70,85] for which there are two gene family
members (1-1 and 1-2). Rubisco oxygenase activity results in the two-carbon molecule, 2-phosphoglycolate. 2-phosphoglycolate is converted to
glycine by phosphoglycolate phosphatase (Step 2), glycolate oxidase (Step 3) and glycine aminotransferase (Step 4). There are 23 gene family
members for phosphoglycolate phosphatase (PGP; 2-1 to 2-23). Glycolate oxidase (GLO) has seven gene family members (3-1 to 3-7). Serine-
glyoxylate aminotransferase (SGAT) is a unique gene (4). The decarboxylation of two glycines by the glycine cleavage system (GCS; Step 6) generates
serine, CO2 and NH3. Serine is further converted to 3-phosphoglycerate by serine hydroxymethyltransferase (SHMT; Step 5), hydroxyacid
dehydrogenase (HPDH; Step 7), and glycerate kinase (GLK; Step 8). There are five genes for SHMT (5-1 to 5-5). There are three GCS gene family
members (6-1 to 6-3); Ten d-isomer specific 2-HDPHs (7-1 to 7-10). GLK is a unique gene (8). The three-carbon molecule, 3-phosphoglycerate
generated from photorespiration re-enters the CO2 fixation Calvin cycle [86]. The SHMT (Step 5) gene identified in this study for which a mutant gives
a defect is in the red box. (B) Average expression levels of the 52 candidate photorespiration pathway genes in the NSF45K light vs. dark data set.
Open bars show the average absolute signal intensity in the light of four replicates; black bars show the average absolute signal intensity in the dark
of four replicates. Underlining indicates genes that are unique or predominantly expressed compared to other gene family members. Asterisks
indicate genes that have high expression, but with levels that do not clearly predominate over other gene family members. (C) Hierarchical clustering
analysis of the differential expression patterns of the 52 candidate photorespiration pathway genes carried out using 40 microarray data sets. The
yellow box delimits data from light vs. dark experiments; the blue box indicates Affymetrix developmental data compared to young seedling tissue.
Clusters VI and VII (red-filled brackets) have more significant gene expression patterns in NSF 45K and BGI/Yale microarray data in response to light.
Underlined gene labels indicate unique or predominantly expressed genes in the photorespiration pathway, based on the consistency of light
induction and preferential expression patterns in young seedling tissue. Asterisks indicate gene family members that fall within the same cluster and
are expected to have functional redundancy. Genes in step 5 are marked with red open boxes. The microarray data corresponding to the putative
photorespiration genes are provided in Table S11.
doi:10.1371/journal.pone.0003337.g006
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Evaluation of the method used for refinement of the
photorespiration gene list

Data regarding rice and Arabidopsis orthologs of predicted rice

photorespiration genes support the use of predominant expression

and/or highest differential expression for predicting the function

of gene products in biochemical pathways. Mutations in the

Arabidopsis RCA1 gene (step 1), serine-glyoxylate aminotransferase

(SGAT, step 4) gene and, glycerate kinase gene (step 8) display stunted

and chlorotic phenotypes in normal air but the phenotypes are

repressed at elevated CO2 [62,68–70]. Similarly, a dramatic

reduction in growth and bleached leaves was observed in 3-month-

old Rca1 (1-1) under-expressing rice plants [71,72].

We have recently examined the function of the rice gene serine

hydroxymethyltransferase (5-1) and found that it also appears to

function in light-dependent processes [66]. This study made use of

the currently available indexed knockout mutant collection that

now covers ,50% of rice gene models (http://signal.salk.edu/

RiceGE/RiceGE_Data_Source.html) [23]. A T-DNA insertional

knockout mutant for gene 5-1 showed a variegated leaf

morphology in the early seedling stage [66]. Further, examination

of photographs available for a Tos17 insertional mutant collection

(NC2658, http://tos.nias.affrc.go.jp) reveals that mutants in this

gene show the same phenotype as the rice T-DNA insertional

mutant. The phenotype is similar to that of a mutant of the

Arabidopsis ortholog of 5-1, SMH1, when it is grown at ambient

CO2 [66,73]. Consistent with the Arabidopsis phenotype, SHM1

displays the highest induction of the five Arabidopsis gene family

members in the various light conditions using Genevestigator

(https://www.genevestigator.ethz.ch/) (KHJ and PCR unpub-

lished data).

This analysis of the photorespiration pathway highlights the

usefulness of incorporating transcriptomics data with pathways to

distinguish among multiple gene products putatively involved in

metabolic pathways. The absolute expression levels in the

NSF45K data alone were able to guide identification of three

predominantly expressed genes. Examining differential expression

in the NSF45K and other array data pointed toward another

candidate gene, which has been supported by mutant analysis of

gene 5-1. From the available genetic data, we conclude that

unique and predominantly expressed genes from closely related

families are excellent candidates for further functional study.

Consistent with this, homozygous T-DNA insertion lines in 6 of 11

highly light-inducible unique genes and 4 of 9 predominantly light-

inducible gene family members showed defective light-related

phenotypes, such as albino, pale green, or growth retardation [66].

We propose that this method can be an effective means to select

candidate genes for functional studies with single knockout

mutants or for designing effective experimental schemes for

functional analyses of candidate redundant genes. However, the

general applicability of focusing on predominantly expressed or

highly differentially expressed genes involved in diverse processes

remains to be determined. As with all studies that use gene

expression as an indication of function, this analysis will be unable

to identify gene products that are involved in the process under

examination but whose transcript levels do not appear to change

in general, or at least in the samples examined. Complementary

genetic, biochemical or protein-protein interaction studies will be

needed to detect such genes/gene products [74,75].

Conclusion
Rice is a crop of paramount importance to humanity and has

emerged as the primary reference for study of grass genomics.

Despite the modern molecular genetic tools available for analysis of

the rice genome, the number of fully characterized genes in rice to

date lags far behind that of the reference dicot, Arabidopsis. We

have developed a publicly available NSF45K oligo array and

employed five methods to demonstrate that it can be used to obtain

high-quality, biologically relevant data. Advantages of this array

include its low cost, availability of detailed information about the

oligos spotted onto the platform (http://www.ricearray.org/), and

web-based tools for analysis. Application of the methods established

in this study for refining lists of candidate genes obtained through

transcriptome analyses, including the identification of likely

functional paralogs among hypothesized paralogs, will allow for

more efficient functional studies of this important plant.

Materials and Methods

NSF45K Array and Annotation
The usefulness and accuracy of an oligo microarray platform

relies on careful design of the oligos. We used the oligo

identification tool, PICKY 2.0, to design the 50- to 70-mer oligos

that comprise the NSF45K array [76]. Because species with large

genomes tend to contain large numbers of homologous genes, it is

not possible to design long oligos capable of differentiating among

all genes in these species [30,76]. It is particularly difficult to

differentiate transposable element (TE)-related genes, which

amount to 15,424 gene sequences in the rice genome (http://

rice.plantbiology.msu.edu/pseudomolecules/info.shtml) [77].

Among the rice TE-related genes, PICKY 1.0 software, for

example, was able to identify unique oligos for only a couple of

hundred [76]. The improved PICKY 2.0 includes a new feature

that groups highly similar genes and designs oligos for the groups,

including sets of alternatively spliced isoforms. Using PICKY 2.0,

we applied an oligo design stringency requiring less than 17

nucleotides exact match to any non-target and a 10uC minimum

separation of hybridization temperature between the highest

affinity non-target and the target for all genes (http://www.

complex.iastate.edu/download/Picky/Picky2_oligos/RiceOligos.

html) [76]. These criteria led to the design of 43,311 oligo probes

that target 45,116 gene models out of a total of 61,420 target

transcript sequences in the TIGR V3 rice gene set release.

The array is printed on two slides, NSF45Ka and NSF45Kb.

NSF45Ka contains 23,040 oligos including 240 oligos comple-

mentary to the hygromycin phosphotransferase (hph) gene (GenBank

Accession: AF354045), a selectable marker used in transgenic rice

generation. NSF45Kb contains 20,727 oligos including 216 hph

oligos. The hph oligos serve as positive controls for experiments

comparing transgenic plants with wild type plants. These show

approximately 10-fold induction relative to non-transgenic

samples (data not shown). Alternatively, the hph oligos serve as

negative controls for non-transgenic samples, as in the light vs.

dark experiment, in which all of our samples were harvested from

non-transgenic plants. Of the 456 hph control oligos on the array,

there were only three that showed differential expression with

#0.05 FDR (Table S12). This result suggests that the hph probes

can effectively be used as negative controls. In addition, due to the

uniform signal and distinct pattern produced by the hph oligos,

they help align array matrices with images, avoiding data

collection errors due to mis-alignment.

The rice genome annotation project has recently released the

Osa1 Version 5 rice genome annotation, and we have mapped the

oligos on the four available rice oligo microarray platforms to this

latest annotation [23]. The NSF45K array covers 30,797

putative/known genes, 7,182 expressed genes, 1,259 conserved

hypothetical genes, and 6,862 hypothetical genes (http://www.

ricearray.org/rice_layout.shtml), with 32,975 unique oligos for

single gene models (transcripts) and 6,544 shared oligos corre-
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sponding to 15,003 gene models [23]. The unique oligos

distinguish individual gene models; whereas, the shared oligos

are designed to more than one gene model, allowing users to

capture data on the corresponding gene families. Importantly, the

shared oligos used in combination with the unique oligos can

detect alternative splice forms. Of the 43,311 oligo probes on the

array, 3,792 did not map to the Osa1 Version 5 rice genome

annotation gene models. Of these, 1784 target non-exonic regions

of Version 5 gene models due to updated annotation of previous

TIGR version 3.0 gene models, 237 map to unanchored models,

300 map to rice genome annotation Transcript Assemblies, 55

map to chloroplast genes, and 44 map to mitochondrial genes.

Oligo synthesis and array fabrication
Oligos were commercially synthesized by Integrated DNA

Technologies (IDT, www.idtdna.com; Coralville, IA). Copies of

the hph oligo were randomly placed into four wells in each 384-well

oligo synthesis plate serving as a quality control for array printing

and hybridization.

The contents of the oligo synthesis plates were normalized to

equimolar concentrations and lyophilized by IDT. The oligos were

then resuspended in sterile water to a concentration of 50 mM in

384-well microtiter plates. The oligos were combined with 16
Pronto!TM Universal Spotting Solution (Corning, Inc., Corning,

NY) to a final concentration of 25 mM in 0.56 spotting solution

and spotted onto bar-coded Corning UltraGAPSTM c-amino-

propyl-silane-coated microarray slides (Corning, Inc., Corning,

NY). Spotting was performed using an Intelligent Automation

Systems custom-built arrayer (Brooks Automation, Chelmsford,

MA) with a 48-pin print head. Printing was performed under

environmentally controlled conditions of 72uC and 45% relative

humidity. Oligos were bound to the glass slides by UV-crosslinking

at 25 mJ/cm2. Completed slides were stored in the dark under

argon at room temperature until use. Information about the array

platform design has been deposited at the NCBI Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under the

accession numbers GPL4105 and GPL4106.

Plant growth
Nipponbare, Kitaake, Taipei 309 (TP309), and IR24 rice seeds

were germinated by imbibing for three days in the water and

subsequently planted in clay soil and maintained in a greenhouse.

For light treatments, seedlings remained in the greenhouse for two

weeks. For dark treatments, seedlings were moved after 7 days to

an incubator (Percival Scientific, Inc., Perry, IA) and maintained

in continuous darkness at 28uC for another 7 days. Approximately

50 leaves from 2-week old rice plants were collected for each

biological replicate at 2 pm for the light and 11 pm for the dark.

RNA and Probe preparation
Total RNA was isolated using TRIZOL reagent (Invitrogen,

Carlsbad, CA), DNaseI-treated for 15 minutes, purified using

RNeasy Midi Kits (Qiagen, Germantown, MD), and enriched for

poly-A RNA using the Oligotex mRNA Kit (Qiagen). All steps

were performed according to the manufacturer’s instructions. The

quality of RNA was visualized after electrophoresis through a 1%

agarose gel followed by staining with ethidium bromide. The

quantity of total RNA and mRNA were determined using a

Nanodrop ND-1000 spectrophotometer (Nanodrop, Wilmington,

DE). In addition, the level of protein contamination in the RNA

was determined based on the A260/A280 ratio.

We used unamplified mRNA to make probe for microarray

experiments, as, when obtainable, unamplified material provides

the least bias for transcriptome analysis. Labeled probe for

hybridizations with the NSF45K microarray were prepared from

1–2 mg mRNA samples using the SuperScriptTM indirect cDNA

Labeling System (Invitrogen, Carlsbad, CA). This system utilizes a

secondary labeling method and thereby avoids the dye bias

commonly associated with direct incorporation of dye-modified

nucleotides during the reverse transcription reaction. Amino allyl-

dUTP is incorporated during cDNA synthesis followed by

coupling of the amino allyl-modified cDNA with a fluorochrome

(Cy3 or Cy5). A more detailed procedure follows.

In vitro reverse transcription was performed using 1 mg mRNA

combined with random 9-mer and oligo(dT) primers with

incubation for 3 hours at 46uC in a final volume of 30 ml

containing SuperScriptTM III Reverse Transcriptase (400 U/ml),

56 reaction buffer, 0.1 M DTT, and a dNTP mixture including

amino allyl-modified nucleotide (AA-dUTP). Subsequent to

reverse transcription, the RNA template was hydrolyzed using

15 ml of 1 N NaOH (70uC, 15 min) followed by neutralization

with 15 ml of 1N HCl. Unincorporated primers and nucleotides

were removed using the S.N.A.P.TM Column purification system

according to the manufacturer’s protocol (Invitrogen) and the

purified amino allyl-modified cDNA was re-suspended in 5 ml of

the coupling buffer supplied by the manufacturer. The amino

allyl-modified cDNA was then mixed with lyophilized Cy3 or Cy5

suspended in 5 ml dimethylsulfoxide (Sigma-Aldrich Corp., St.

Louis, MO) and incubated for 1 hr at room temperature in the

dark. The reaction was quenched by adding 15 ml of 4 M

hydroxylamine (15 min, room temperature in the dark). Dye-

coupled cDNA was then purified by using the S.N.A.P.TM

Column purification system.

Microarray hybridizations and scanning
All hybridizations were conducted at the Arraycore Microarray

Facility at the University of California, Davis (http://array.

ucdavis.edu/home/). Prior to hybridizations, microarrays were

treated with a solution containing sodium borohydride to

minimize non-specific autofluorescence from the spotted material

as described previously [78]. For this, slides were placed into a

solution containing 26 saline-sodium citrate (SSC), 0.05% SDS,

and 0.25% NaBH4 (Sigma, St. Louis, MO) and incubated at 42uC
for 20 min. Slides were transferred to 16SSC for 5 min at room

temperature and then sequentially washed with vigorous stirring

using fresh 16 SSC (365 min, room temperature), 0.26 SSC

(462 min, room temperature), and Nanopure (Millipore, Milford,

MA) water (162 min, room temperature). Slides were spin-dried

(1000 rpm, 10 min) and stored under argon until use.

Hybridizations were performed in a clean room environment

(HEPA- and carbon-filtered) to minimize exposure of microarrays

and labeled-targets to dust and ozone [79]. Microarray pre-

hybridization, hybridization, and washes were performed using an

HS4800 Automated Slide Hybridization Station (Tecan, Switzer-

land). Corresponding Cy3- or Cy5-labeled cDNA targets were

mixed and dried by vacuum centrifugation. Targets were

suspended in 100 ml GeneFrames hybridization solution (MWG

Biotech, UK), incubated in boiling water for 3 min, centrifuged

(14,0006g, 5 min), and kept at room temperature until injection

into the hybridization station. Microarray slides were pre-

hybridized in the hybridization station for 15 min at 50uC in 56
SSPE, 6M Urea, 0.5% Tween-20, 106 Denhardt’s solution

(Sigma). Samples were hybridized for 16 hours at 50uC with

medium agitation, then sequentially washed in solutions compris-

ing 26SSC, 0.2% SDS [26(1 min wash, 1 min soak, 37uC)], 16
SSC [26(1 min wash, 1 min soak, 37uC)], and 0.56 SSC

[26(1 min wash, 1 min soak, 30uC)], and then dried under N2

(5 min, 30uC). Slides were kept under N2 until they were scanned.
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Hybridized microarray slides were imaged using a GenePix

4000B dual laser microarray scanner (Axon Instruments, now part

of Molecular Devices, Sunnyvale, CA) at 5 mm resolution using

100% laser power for both lasers (532 and 635 nm). Slides were

scanned twice, once using a high photomultiplier tube (PMT) and

again using low PMT settings.

Microarray data processing and normalization
Spot intensities were quantified using Axon GenePix Pro 4.0

image analysis software. Afterwards, GenePix Pro 4.0 result data

files (.gpr files) were generated using high PMT and low PMT

settings. For high PMT, we normalized replicated data to

minimize the variations caused by experimental procedures using

the Lowess normalization method in the LMGene Package in R

[32,80]. We further normalized for signal intensity among

different experiments using averages of all the gene signals

obtained during individual experiments. In addition, we estimated

the background ‘‘expression’’ level based on the signal associated

with the hph gene. From eight hybridizations of four biological

replicates, we detected an average normalized spot intensity for the

hph oligos of 220630. We then generated average normalized spot

intensities following a common strategy by subtracting average hph

intensity (220) and adding 2 standard deviations (60) of the average

normalized hph intensity). To identify differentially expressed

genes, we used the method in LMGene, as developed by Rocke

(2004). FDRs and fold changes of light over dark were generated

and the data within 1024 FDR are represented in Table S2. The

expression data from these experiments are available through

GEO (Accession GSE8261). The Affymetrix raw data was

downloaded from NCBI GEO (platform Accession Number is

GPL2025). We used MAS 5.0 method provided by R package for

Affymerix oligo array to convert probe level data to expression

values [81,82]. The trimmed mean target intensity of each array

was arbitrarily set to 500. The data were log2 transformed.

GO term enrichment or depletion
We evaluated enrichment or depletion of GO terms for light

induced and dark induced genes in each of the principle GO

categories, cellular component, biological process, and molecular

function. We calculated fold-enrichment in each principle GO

category for each GOSlim term (e.g., photorespiration) for gene

lists determined with FDR threshold values of #0.05, 0.01, 1024,

and 1026. For each term, fold-enrichment is the observed number

of genes in the gene list divided by the expected number of genes,

given the size of the gene list compared with the whole genome.

Fold-depletion of a GOSlim term is calculated as 1/fold-

enrichment. Table S6 contains these calculations for each

GOSlim term. We used the hypergeometric distribution to

evaluate the probability (p-value) of randomly observing the

enrichment or depletion for each GOSlim term [43]. GO terms

with a p-value #0.05 are marked with asterisks in Table S6.

Digital northern data based on the numbers of ESTs
We used the number of ESTs representing specific transcripts

isolated from 19 rice tissue sources (i.e. callus, suspension cells,

seedling, leaf, shoot, root, stem, sheath, phloem, panicle, flower,

anther, pistil, endosperm, immature seed, mixed tissues, mature

seed, whole plant, and unknown samples) to estimate gene

expression levels in the different tissues. The EST evidence was

analyzed using the Program to Assemble Spliced Alignments

(PASA) software, which utilizes a number of alignment programs

to maximally align transcripts to the genome as introduced by

Haas et al. [83].

Multiplatform microarray search and data generation
All data were downloaded as a series matrix files from NCBI

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

geo/). GEO accession numbers are given in Table S9. The series

record links together a group of related samples. We used the rice

Multi-platform Microarray Search (http://www.ricearray.org/

matrix.search.shtml) to determine the oligo identifiers for the

light-induced genes from our array data. The matrix file available

at the Rice Multi-platform Microarray Search web site (http://

www.ricearray.org/matrix.search.shtml) allows easy systematic

comparison of data across rice whole genome microarrays. The

file contains the oligo identifiers of Affymertrix, YALE/BGI,

NSF20K, and Agilent 22K rice arrays. Mapping to the latest

annotation revealed that the four publicly available rice oligo array

platforms together encompass 80–90% of annotated genes in the

rice genome, with substantial overlap among the platforms.

We developed a method for comparing data from the different

array platforms. Agilent, YALE/BGI, and the NSF45K use a two-

color hybridization method with data presented as log2 ratios of the

signal from different treatments (e.g. log2[dark/light]). Affymetrix

chip data, however, are generated using a single color array

platform and are presented as absolute expression values. Thus,

single channel and two channel array data cannot be directly

compared. To compare single channel Affymetrix array data with

two-channel data from the other arrays, we divided each data set by

a relevant comparison data set (Table S9). For microarray data

from stress-treated samples, we divided the data in various stress-

treatment by the data in untreated reference generated in same

experiment. From this, genes preferentially expressed in young

seedling tissue or samples treated with various stresses have positive

values and are shown in red in Figures 5 and 6. As most log2 ratios

calculated from Affymetrix array data relative to expression in

seedling were ,2-fold greater than those of NSF45K light vs. dark

array data, we reduced the log2 ratios we calculated from the

Affymetrix array by 2-fold to make them more comparable to the

NSF45K light vs. dark array data. In contrast and in justification of

this adjustment, YALE/BGI array data was quantitatively similar to

the NSF45K dataset without any adjustment.

Hierarchical clustering of microarray data
We used the TIGR MultiExperiment Viewer (MeV, http://

www.tm4.org/mev.html) to carry out clustering analyses of the 40

microarray data sets [60,84]. We generated tab-delimited files

comprising the average log2 ratios determined for multiple samples

selected from the 40 microarray data sets were and used them as

input for these analyses. For unsupervised, hierarchical, clustering,

we based the analysis on the Euclidean distance, the difference in

log2 ratios between two genes, which is the default metric distance

used for hierarchical clustering [60]. To further refine the

significant gene list, we selected 485 genes showing at least 1.5-

fold induction in the light in more than three out of seven light-

related microarray data sets (NSF45K light vs. dark, YALE/BGI

blue light vs. dark, YALE/BGI red light vs. dark, YALE/BGI far

red light vs. dark, YALE/BGI white light vs. dark, YALE/BGI

root white light vs. dark, and YALE/BGI shoot white light vs. dark)

and later referred to 14 Affymetrix microarray data sets

comprising developmental-stage type experiments in comparison

with young seedling tissue (i.e., young seedling tissue vs. root,

young seedling tissue vs. mature leaf, young seedling tissue vs.

shoot apical meristem, young seedling tissue vs. panicle 1 [0–

3 cm], panicle 2 [3–5 cm] vs. young seedling tissue, panicle 3 [5–

10 cm] vs. young seedling tissue, panicle 4 [10–15 cm] vs. young

seedling tissue, panicle 5 [15–22 cm] vs. young seedling tissue,

panicle 6 [22–30 cm] vs. young seedling tissue, young seedling
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tissue vs. developing seed 1, young seedling tissue vs. developing

seed 2, young seedling tissue vs. developing seed 3, young seedling

tissue vs. developing seed 4, young seedling tissue vs. developing

seed 5, Table S9). BGI/Yale array data showing relative

expression levels to suspension cultured cells, sequential expression

patterns of wild type anthers relative to palea/lemma, and

Affymetrix data comparing stress-treated targets to untreated

reference are also used to check gene expression patterns in other

conditions (Table S9).

Pathway analyses incorporating gene expression
profiling data

The pathways used in this study were developed using Gramene

RiceCyc (http://pathway.gramene.org/RICE/class-instances?ob-

ject = Pathways). Candidate genes in the pathways having

evidence of expression, such as expressed sequence tags (ESTs)

or full length cDNAs, were available at the above website.

Additional candidate genes for which no evidence of gene

expression was available were selected based on Arabidopsis

best-hit genes homologous to the Osa1 Version 5 rice genome

annotation gene models. Probable paralogous gene family

members of all candidate genes were checked using the

information of all rice paralogous gene family members [66].

Supporting Information

Table S1 Summary of NSF45K light vs. dark array experimen-

tal design.

Found at: doi:10.1371/journal.pone.0003337.s001 (0.03 MB

DOC)

Table S2 Summary of the light- and dark-induced transcripts with

an FDR less than 1024 from the NSF45K microarray data. In the

worksheet labeled ‘‘less than 1024 FDR’’, there are NSF45K light vs.

dark microarray data with a more than 2-fold change in expression

and a FDR less than 1024. The sheet ‘‘more than 1024 FDR’’,

contains data for transcripts that showed more than 2-fold change in

expression, but a FDR more than 1024. 2073 transcripts show 2-fold

higher accumulation (log2-value.1) in the light compared to dark

and 1430 show 2-fold higher accumulation (log2-value,21) in the

dark compared to light. Oligo_id is the name of NSF 45K oligo;

Locus_id is the Osa1 Version 5 rice genome annotation gene model;

FDR is the LMGene-generated adjusted p-value; log2 (Light/Dark) is

log2(average normalized spot intensity in the light /average

normalized spot intensity in the dark); Avg_light intensity is the

average normalized spot intensity in the light; Avg_dark intensity is

the average normalized spot intensity in the dark; std_light is the

standard deviation in the normalized intensity in the light of all

replicates and std_dark is the variation in the normalized intensity in

the dark of all replicates. For each oligo, corresponding EST counts

for 19 tissues are shown and are labeled according to the organ/tissue

from which the ESTs were prepared, including the following: callus,

root, leaf, seedling, sheath, phloem, shoot, stem, flower, panicle,

anthers, pistil, endosperm, immature seed, seed, suspension, mixed,

unknown, and whole plant. Information about the EST data for each

tissue is in Table S8. Sum of total ESTs is the number of ESTs from

all tissues related to the corresponding oligo. Full length cDNA is the

cDNA accession number available from the Knowledge-based Oryza

Molecular biological Encyclopedia (KOME, http://red.dna.affrc.go.

jp/cDNA/). GO_id indicates the GO identifier accessible at AmiGO

(http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?session =

7122b1203889484).

Found at: doi:10.1371/journal.pone.0003337.s002 (2.63 MB

XLS)

Table S3 Relationship between FDR-threshold values, normal-

ized spot intensity, and minimum log2 (light/dark)-values of

NSF45K light vs. dark microarray data.

Found at: doi:10.1371/journal.pone.0003337.s003 (0.04 MB

DOC)

Table S4 Relationship between FDR-interval values, normal-

ized spot intensity, and maximum log2 (light/dark)-values of

NSF45K light vs. dark microarray data.

Found at: doi:10.1371/journal.pone.0003337.s004 (0.04 MB

DOC)

Table S5 Summary of the number of plant GOSlim assignments

for the genes that correspond to the NSF45K oligo set. There are

three gene ontology (GO) principles: cellular component,

biological process, and molecular function. Forty one percent of

the NSF45K oligo set have at least one GOSlim term.

Found at: doi:10.1371/journal.pone.0003337.s005 (0.03 MB

DOC)

Table S6 GO fold-enrichment values at five FDRs for the

NSF45K light vs dark array data set. This table consists of six work-

sheets, one for each principle category (cellular component, biological

process, and molecular function) in the light and in the dark.

Found at: doi:10.1371/journal.pone.0003337.s006 (2.69 MB

XLS)

Table S7 Relationship between FDR-threshold used to deter-

mine a significant gene list and expression level based on the

number of ESTs in leaves of the NSF45K light vs. dark data. The

number of ESTs in five selected tissues (callus, root, panicle, seed,

and leaf) were compared to the FDR values from NSF45K light vs

dark data. The data in this table are displayed in Figure 4.

Found at: doi:10.1371/journal.pone.0003337.s007 (0.05 MB

DOC)

Table S8 Information on the libraries used in Oligo and EST

Anatomy Viewer. The Oligo and EST Anatomy Viewer tool

(http://www.ricearray.org/rice_digital_northern_search.shtml) is

based on EST frequency in nineteen tissues. The library identifiers

(id) used for this tool are summarized in this table.

Found at: doi:10.1371/journal.pone.0003337.s008 (0.12 MB

XLS)

Table S9 Summary of rice microarray data from NCBI GEO

used for this study. We used the Rice Multiplatform Microarray

Search Tool (http://www.ricearray.org/matrix.search.shtml) to

identify oligo identifiers (ids) for genes from the different array

platforms. We generated log2 fold-change data for 887 light

inducible genes selected from the NSP45K light vs dark data and

compared the expression of these genes with that in 20 rice

Affymetrix array data sets and 19 BGI/Yale rice array data sets.

More detailed information on these data is accessible at NCBI

GEO (http://www.ncbi.nlm.nih.gov/geo/) with the GEO acces-

sion numbers in this table.

Found at: doi:10.1371/journal.pone.0003337.s009 (0.17 MB

DOC)

Table S10 Microarray data for the 485 genes refined in

Figure 5B. Microarray data were generated from 40 data sets

generated on three microarray platforms (Affymetrix, BGI/Yale,

and NSF45K). A description of the column headings in this table is

contained in Table S9.

Found at: doi:10.1371/journal.pone.0003337.s010 (0.26 MB

XLS)

Table S11 Microarray data for 52 genes putatively acting in the

photorespiration pathway shown in Figure 6C. The rice
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photorespiration pathway consists of 8 steps, as predicted by the

RiceCyc tool, which is curated by Gramene (http://pathway.

gramene.org/RICE/server.html?). The eight steps are encoded by

52 genes whose involvement cannot be excluded a priori. To help

narrow the number of hypothesized genes for each step, we

evaluated expression patterns of the 52 genes across 40 rice

microarray data sets. The information on the column heads in the

table is in Table S9.

Found at: doi:10.1371/journal.pone.0003337.s011 (0.07 MB

XLS)

Table S12 Error rate of NSF45K light vs dark microarray data

according to analysis of hph oligos. The NSF45K array contains

456 hph oligos randomly spotted throughout the two slides of the

array. They are designed to anneal to the hygromycin phospho-

transferase gene, a commonly used selectable marker for

Agrobacterium-mediated plant transformation. In the case in

which RNA from plant tissue that lacks this gene is used for the

array experiment, there should be no specific annealing to these

oligos and they serve as negative controls. We used their average

spot intensity to calculate the background level of hybridization.

Found at: doi:10.1371/journal.pone.0003337.s012 (0.03 MB

DOC)

Figure S1 Thirty highly accumulating light-inducible genes

were randomly selected for confirmation with RT-PCR with the

same RNA samples applied to the NSF45K array. All tested genes

consistently showed higher accumulation in the light (L) compared

with the dark (D) in the 4 rice varieties (N, Nipponbare; K,

Kitaake; I, IR24; T, TP309), similar to the microarray data. Rice

Actin1 and Ubiquitin1 RNAs were used as internal controls [58].

Found at: doi:10.1371/journal.pone.0003337.s013 (0.63 MB TIF)

Figure S2 The percent of oligos represented by .1000 (grey

gradient), 500–1000 (black), 280–500 (dark grey), 120–280 (light

grey) or ,120 normalized spot intensity (white) determined using

the entire oligo set of the NSF45K array without considering FDR

(total) and with genes selected from the NSF45K light vs. dark

microarray data with FDR thresholds of #0.01, #1024, #1026,

and #1028.

Found at: doi:10.1371/journal.pone.0003337.s014 (1.66 MB TIF)

Figure S3 Comparison of log2 (light/dark) and (2log10) FDR-

values. Blue-symbols represent data from the NSF45K slide a, and

red symbols are data from the NSF45K slide b.

Found at: doi:10.1371/journal.pone.0003337.s015 (5.68 MB TIF)

Figure S4 Fold-enrichment analysis of GOSlim terms in

response to light or dark in the molecular function GO category.

(A) GO enrichment analysis in the light. (B) GO enrichment

analysis in the dark. See Figure 2 for a description of the panels.

Found at: doi:10.1371/journal.pone.0003337.s016 (2.06 MB TIF)
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