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Abstract

Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a
general theory of its computational function. Here I present a theory that relates the established biophysical properties of
single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest
that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to
mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to
the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic
inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing
distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of
the past. The neuron’s membrane voltage is proposed to signal the difference between current and prior information
(‘‘prediction error’’ or ‘‘surprise’’). A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are
the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with
the most ‘‘new’’ information about future reward. To minimize the error in its predictions and to respond only when
excitation is ‘‘new and surprising,’’ the neuron selects amongst its prior information sources through an anti-Hebbian rule.
The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local
environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous
system could reflect the structure of the external world, and how the complexity and intelligence of the system might
develop from a population of undifferentiated neurons, each implementing similar learning algorithms.
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Introduction

Our knowledge of the computational function of the nervous

system remains limited and no general theory has emerged.

Perhaps the most obvious difficulty in developing a computational

theory is the complexity of the system, with its large and diverse

population of neurons, each with its own unique connectivity.

However, we know that the entire system develops from a single

cell, and thus it may be possible to identify relatively simple

principles that shape the structure and function of all neurons. The

present work proposes that each neuron shares the same basic

computational function, and that function mirrors that of the

system as a whole.

In analogy to the conceptual framework suggested by Marr [1],

a general computational theory of the nervous system should

contribute to our understanding at three distinct levels of analysis.

First, a general theory would need to identify a single

computational goal that is broad enough to cover the entire

nervous system and to subsume all of the more specific

computational problems that the nervous system encounters.

Second, the theory should describe how the computational goal is

achieved; that is, how information is organized in the nervous

system and how it flows through space and time. Finally, the

theory should specify the physical mechanisms that implement the

computation, the molecular and cellular processes that hold and

transform information. The present theory attempts to address all

three of these levels.

Central to the theory is the proposition that all neurons operate

according to shared computational principles. Below I outline the

theory in the form of five hypotheses. These address the general

computational goal of the system (1), the organization of

information in a single neuron (2), the rules that govern the

selection of a neuron’s inputs, or information sources (3 and 4),

and the organization of the system (5). Whereas much past work

has focused on describing our information about the nervous

system, I suggest here a fundamentally distinct approach in which

the goal is to characterize the information the nervous system

possesses about its world. This approach, outlined below under

hypothesis 1, is made possible by combining Bayesian probability

theory with biophysics.

Results

Hypothesis 1: The Computational Goal
The computational goal of the nervous system is to minimize uncertainty

(maximize information) about the state of the world (or more specifically, an

aspect of the world that could be referred to as ‘‘future reward’’).

From a biological perspective, the goal of all nervous systems is

to select motor outputs in order to promote the future of an

animal’s genetic information. It is proposed that the only problem
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in making such decisions is uncertainty about the state of the

world. If the system could accurately predict the state of the world,

then the problem would be solved, and the system would merely

select the output that it knows will maximize its expected future

reward. The process of minimizing uncertainty is thus considered

to be formally identical to the process of ‘‘decision-making,’’ since

decisions are rendered trivial in the absence of uncertainty. The

system does not need to concern itself with the state of the world in

general, but only with a part of the world that I will refer to as

‘‘future reward’’ (defined below under hypothesis 4). The

computational goal of the system described here is similar to that

found in the field of reinforcement learning, [e.g. 2–4]. However,

although the brain is specifically concerned with future reward,

this goal is otherwise equivalent to the proposal that the brain must

use its limited information to predict or estimate the state of the

world, an idea that dates back at least to the work of von Helmholz

[5] and which remains prominent today [e.g. 6,7].

The proposal described above is perhaps already the dominant

view of the computational problem facing the brain. It is widely

agreed that the nervous system is an information processing

system, and information is defined solely by its ability to reduce

uncertainty. However, I suggest here that there has been confusion

surrounding the concept of information, and I propose what I

believe to be a novel, strictly Bayesian approach to the biophysical

information of neurons. This particular approach to information is

critical to the claim that the present theory addresses the

fundamental computational goal of minimizing uncertainty (or

maximizing information) about the world.

A prediction necessarily involves uncertainty, and it is therefore

properly described in terms of a probability distribution of

potential states of the world. Uncertainty refers to the width of

the probability distribution (as quantified by the distribution’s

entropy), and it is inversely related to information. The greater the

information, the narrower the probability distribution and the

lower the uncertainty. Information and uncertainty cannot be

specified mathematically without first determining a probability

distribution. Although probability theory has been widely used to

describe neural function, contradictory definitions of probability

have been proposed, and there are different approaches that can

be taken in applying the concept of probability to the nervous

system (Text S1). The present work applies a strictly ‘‘Bayesian’’

definition to probabilities, as described by Jaynes [8] (as opposed

to a ‘‘frequentist’’ definition, which equates probabilities with

frequencies). According to a Bayesian view, probabilities are

always conditional on a set of information. There are rules of logic

that relate a set of information to a probability distribution. For

example, the principle of maximum entropy requires that we fully

acknowledge our ignorance by considering all possibilities equally

probable unless we have evidence to the contrary. Thus if the only

information available is that an event has four possible outcomes,

then the probability of each is 0.25 (since the probabilities must

sum to one and the flat distribution is the one with maximum

entropy).

A Bayesian understanding of probability provides us with two

equally valid but very distinct approaches to describing neural

function. We can either describe our information about a nervous

system and its environment, or we can describe a nervous system’s

information about its environment. Whereas the former ‘‘third-

person’’ perspective has often been utilized [e.g. 6], I suggest here

that the latter ‘‘first-person’’ perspective may provide for a simpler

and more compact description of neural function. To this end, I

describe below how we can take ‘‘the neuron’s point of view’’ by

determining a probability distribution of potential states of the

external world conditional only on information held within the

biophysical structure of the neuron. This approach is distinct from

previous work, which derived probability distributions that were

not conditional on information known to be found within a neuron

[e.g. 6]. The novelty of my approach arises from the definition of

probability, rather than from any distinct interpretation of

biophysics. For a more detailed discussion of the different

approaches to quantifying a neuron’s information, see Text S1.

A neuron’s information must be about something, and thus we

must first define the ‘‘subject’’ of a neuron’s information (what it is

that a neuron is predicting). Each neuron possesses information

about some aspect of the world that I will define as the neuron’s

‘‘stimulus.’’ Although the word ‘‘stimulus’’ is often associated with

concrete sensory aspects of the world, I use it here in a broader

sense that would also apply to the much more abstract subject

matter of the information in a high-level cortical or motor neuron.

If a neuron is close to the sensory periphery, then it may be

relatively straightforward for us to precisely specify its stimulus.

For example, a photoreceptor possesses information about the

intensity of light of particular wavelengths in a particular region of

space. The stimulus of a neuron further from the sensory

periphery is more abstract, and as a practical matter it may be

difficult for us to specify precisely. However, although each neuron

is presumed to possess information about some aspect of the

external world (broadly conceived), a neuron must also possess

information about its local environment. The proximal surrogate

of a neuron’s external stimulus is proposed to be the local

concentration of a neurotransmitter summed across a set of

individual synapses (Fig. 1). For most neurons this would be an

excitatory neurotransmitter such as glutamate. A typical neuron is

envisioned as being linked to the sensory periphery through a feed-

forward series of excitatory neurons. Thus, by possessing

information about local glutamate concentration, a neuron would

also possess information about its external stimulus.

If a neuron possesses information about the intensity of its

stimulus, then we can say that it estimates or predicts its stimulus

(‘‘estimate’’ and ‘‘predict’’ are used here as synonyms, and

‘‘prediction’’ could apply to the present as well as the future).

To quantify a neuron’s prediction, we would like to find the

probability distribution of possible stimulus intensities conditional

exclusively on the information possessed by the neuron. A neuron

gathers information about its stimulus through sensors (Fig. S1),

such as rhodopsin or glutamate receptors, which are coupled to

ion channels and thereby influence the neuron’s membrane

voltage. As described in Methods, the Maxwell-Boltzmann

equation of statistical mechanics (equation 5) specifies the

likelihood of various stimulus intensities given the state of a sensor

(Fig. 2). We can therefore determine the probability distribution of

potential stimulus intensities conditional only on the information

in one or more sensors (Fig. 2). Thus, merely by deploying sensors

in its plasma membrane, the neuron performs the critical function

of predicting stimulus intensity. The prediction is necessarily

accompanied by a reduction in uncertainty (relative to the

complete uncertainty and flat distribution that would accompany

the absence of sensors), and in principle, the reduction in

uncertainty can be precisely quantified.

The simple two-state sensor described in the Maxwell-

Boltzmann equation is assumed to be the fundamental substrate

of information. The entire theory is concerned with the

arrangement of sensors within the nervous system, since this

arrangement naturally determines the flow of information. The

sensors that are of primary concern here are those found in ion

channels. However, I use the term ‘‘sensor’’ because it is a general

term and it has a simple relationship to the Maxwell-Boltzmann

equation. Indeed, protein molecules such as ion channels usually
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consist of multiple two-state sensors. Sensors can be arranged in

parallel or in series. If a population of sensors all directly sense the

same stimulus, such as the sensors found in the rhodopsin

molecules of a photoreceptor cell, then those sensors are in parallel

to one another and it is useful to refer to the entire population as a

single ‘‘layer.’’ Within a layer, each sensor contributes additional

information to the layer’s estimate of stimulus intensity. Sensors

can also be arranged in series, so that information can be

communicated from ‘‘upstream’’ to ‘‘downstream’’ sensors. A

downstream sensor may be found in the same protein molecule, in

a distinct molecule in the same neuron, or in a downstream

neuron. An example, described below and in figure 2, is that of a

first layer of glutamate-gated channels and a second layer of

voltage-gated potassium channels. A second layer of sensors would

‘‘sense’’ and thereby estimate the output or state of the first layer.

In doing so, the second layer would be indirectly estimating the

stimulus or input to the first layer. In an idealized (though

unrealistic) case, the second layer would possess a perfect copy of

the information in the first layer, although it would necessarily

receive that information after the first layer. Because of the

communication made possible by a series of sensors, a sensor of

membrane voltage could contain information about glutamate

concentration (Fig. 2), and at the systems level, the sensors in a

cortical neuron could contain information about a quantity

external to the nervous system. In Text S1, I describe in greater

detail the principles by which we can determine probability

distributions of stimulus intensities conditional only on the

information contained in multiple sensors, arranged either in

parallel or in series.

Hypothesis 2: Prediction Error
A neuron is proposed to integrate current information about its stimulus from

one pool of ion channels and synapses, and prior information from another pool.

Figure 2. Estimates of glutamate concentration by glutamate-gated cation channels (‘‘layer 1’’) and by voltage-gated K+ channels
(‘‘layer 2’’) in a model neuron that has 100 channels of each type. See Methods and Text S1 for details. A. Estimates made by single two-state
sensors in their on conformations (equations 5–7). The glutamate sensor (red) had an equilibrium dissociation constant (KD) of 500 mM. The voltage
sensor (blue) had 4 elementary charges (z), and the voltage at which either state was equally likely (V1/2) was 250 mV. B. Glutamate concentration
(magenta) was stepped from 10 to 1000 mM, which evoked a membrane depolarization that declined with time (black). C. The conductance of
glutamate-gated cation channels and voltage-gated K+ channels. In each case the maximal possible conductance was 100. D. Maximum likelihood
estimates and expected values of glutamate concentration conditional only on information present in the populations of sensors in layers 1 and 2. E–
H. Probability distributions of glutamate concentrations at time points 1–4, as indicated in panel C. Each of these distributions is entirely conditional
on the information of layer 1 or layer 2. Note that glutamate concentration is presented on a logarithmic scale, and that the y-axes differ in F and G
relative to E and H.
doi:10.1371/journal.pone.0003298.g002

Figure 1. Schematic illustration of a model neuron. Arrows
indicate the direction of information flow. A typical neuron receives
inputs from the sensory periphery via glutamate, which depolarizes the
membrane potential (‘‘+’’). The glutamate-gated ion channels and
synapses that mediate this response are referred to as layer 1. They
define the neuron’s stimulus (the ‘‘excitatory center’’ of its receptive
field). The function of layer 1 is to provide current information about
the external world. Those individual inputs that are most successful in
depolarizing the neuron, and which are most closely correlated with
reward, are selected according to a Hebbian or error-maximizing rule
(equation 4). The neuron’s other ion channels constitute layer 2. The
function of layer 2 is to use prior information to predict membrane
voltage, and thereby predict the conductance of layer 1 and glutamate
concentration as well. The membrane voltage is determined by the
difference between the output of layer 1 and its expected output as
determined by layer 2 (equation 1), and it therefore functions as a
prediction error. In predicting voltage, layer 2 acts to drive voltage
towards a point near the middle of its range where the error is zero. The
ion channels of layer 2 are selected to perform this function by an anti-
Hebbian or error-minimizing rule (equation 3). Many of these ion
channels are inhibitory (‘‘2’’) and tend to open when the neuron is
depolarized, whereas others are excitatory (‘‘+’’) and tend to open when
the neuron is hyperpolarized. Some are gated by membrane voltage
and provide prior temporal information, whereas others are gated by
neurotransmitters and contribute prior spatial information.
doi:10.1371/journal.pone.0003298.g001
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Its membrane potential signals prediction error (the difference between its

current and prior information).

The simplest scenario to imagine would be that a neuron

estimates the intensity of its stimulus (as described above) and

communicates that estimate to downstream neurons. However, it

is known that neurons preferentially signal changes in stimulus

intensity. We also know that a neuron’s output is influenced by

many types of ion channels that do not directly sense the neuron’s

stimulus. Many of these ion channels are proposed to contribute

prior information about the stimulus. In the present model a

neuron has an expectation of stimulus intensity based on prior

information, and it only produces a positive output signal when

stimulus intensity exceeds its expectation. Thus a neuron can be

said to signal ‘‘prediction error.’’

By using its membrane potential to signal prediction errors, the

neuron is efficient in only teaching itself what it does not already

know, and in only telling downstream neurons what they have not

already been told. Thus prediction errors promote efficient

communication [e.g. 9–13]. They are also used to drive plasticity

in learning algorithms, where they allow a system to identify the

internal and external events that are the earliest and best

predictors of a stimulus [e.g. 2–4,14]. Observation of animal

behavior suggests that learning in the nervous system is driven by

prediction errors [15]. Although error signals have previously been

described within the nervous system [2,3,9–13,16], the present

work suggests that single generic neurons are inherently designed

to signal prediction errors.

The present model of a neuron is illustrated schematically in

figure 1. A neuron’s membrane voltage (or output) depends on two

functional layers of sensor-gated ion channels. Layer 1 directly

senses current stimulus intensity, whereas layer 2 receives prior

information about the same stimulus indirectly (from other points

in space and time). I propose further below that the ion channels

and synapses of layer one may be selected by a Hebbian rule

(hypothesis 4), whereas those of layer 2 may be selected by an anti-

Hebbian rule (hypothesis 3). To illustrate the prediction of stimulus

intensity by layers 1 and 2, we can consider a simplified neuron

with just two types of ion channel. Although I focus here on a

graded-potential, single-compartment neuron, the same principles

are proposed to apply to spiking neurons and to the computational

function of dendritic compartments and pre-synaptic terminals

(Text S1). The neuron’s first layer consists of glutamate-gated

channels that are permeable to the cations sodium and potassium.

Binding of glutamate therefore depolarizes the membrane voltage

towards the cation equilibrium potential (Ecat,0 mV). The

neuron’s second layer consists of voltage-gated potassium channels

(EK,2100 mV). Membrane voltage approaches a steady-state

value (V‘) of

V?~
GcatEcatzGK EK

GcatzGK

ð1Þ

where Gcat and GK are the cation and K+ conductances. The

response of such a neuron to a square-wave pulse of glutamate is

shown in figure 2B–C. Information about glutamate concentration

naturally gets to glutamate-gated channels before it gests to K+
channels. The estimate of glutamate concentration by the K+
channels therefore lags behind the estimate made by the glutamate

receptors (Fig. 2E–H). Thus the voltage-gated K+ channels can be

said to use prior temporal information. Which period of the past

the K+ channels use to predict the present depends on their kinetic

properties (Text S1). When the estimate of glutamate concentra-

tion by the first layer (glutamate-gated channels) exceeds the

estimate made by the second layer (voltage-gated K+ channels),

the neuron is depolarized (Fig. 2). The neuron is hyperpolarized

when the opposite is true. Thus the membrane voltage can be

thought of as a prediction error.

The goal of the neuron is to accurately predict its stimulus,

which means minimizing its error. If membrane voltage

corresponds to the error, then ion channels contributing prior

information (layer 2) should modulate their activity in order to

drive voltage towards the middle of its range where the error is

zero (Fig. 2). Thus K+ and Cl- channels should tend to be open

when stimulus intensity is high and the neuron would otherwise be

depolarized, whereas depolarizing channels of layer 2 should tend

to be open when the neuron would otherwise be hyperpolarized.

Depolarizing channels of layer 2 would include non-selective

cation channels distinct from those of layer 1 (this could include

glutamate-gated channels at a distinct subset of synapses), but

possibly also including channels selective for sodium or calcium.

However, some sodium and calcium channels are presumed to

serve distinct roles in long-distance communication and plasticity,

respectively (Text S1), and they could therefore be entirely outside

of both layers 1 and 2. The prevalence of K+ channels activated

by depolarization, and non-selective cation channels opened by

hyperpolarization, is consistent with the present hypothesis, since

these channels would usually tend to stabilize membrane potential.

In addition, it has been found that inhibitory conductances in

cortical and tectal neurons tend to be activated at the same time as

stimulus-driven excitatory conductances, thus canceling or ‘‘pre-

dicting away’’ the excitation [17–20]. Some of the best evidence

for this hypothesis comes from studies of the retina.

Neurons rely on spatial and temporal correlations to predict

light intensity as accurately and as early as possible. There are

strong positive correlations between light intensities at neighboring

points in space and time, and there is substantial evidence that

neurons in the retina exploit these correlations to predict their

stimulus (light intensity in the receptive field center) [e.g.

9,10,13,21]. These predictions are evident in such familiar

phenomena as light adaptation and surround inhibition. Adapta-

tion results primarily from prior information about stimulus

intensity carried through time by molecules that are intrinsic to a

neuron, such as voltage-activated K+ channels. Spatial prior

information would be carried through neural circuitry and would

activate neurotransmitter-gated channels. The prototypical exam-

ple would be GABA-gated chloride and potassium channels. (Note

that relative to information from the excitatory center, information

from the inhibitory surround would typically be delayed by

communication through an additional neuron, and its prediction is

thus from the preceding moment in time.) Spatial information

refers to space in the nervous system, which does not necessarily

correspond to external space. Thus it would include information

derived from correlations between colors and between tones, in

addition to correlations through external space, since all of these

are represented by discrete neurons at the sensory periphery.

The description of a neuron’s output as signaling prediction

error is proposed to be useful for understanding the organization

and flow of information in neurons, and to emphasize that the goal

of the neuron is to predict the state of its stimulus. However, the

concept could be seen as a useful means of describing what we

already know about neurons, rather than as a new hypothesis

about neuronal function. The signaling of prediction errors does

not in itself significantly constrain the relationship between a

neuron’s inputs and outputs. This is because a neuron’s output

depends on its prior information (the prediction made by layer 2),

but we generally do not know what prior information a neuron

has, and the notion of prediction error does not necessarily tell us

anything about a neuron’s prior information. Below I discuss the

Theory of Neural Computation

PLoS ONE | www.plosone.org 4 October 2008 | Volume 3 | Issue 10 | e3298



rules by which a neuron may select amongst its sources of prior

information.

Hypothesis 3: Selection of Prior Information Sources
A neuron’s sources of prior information (including GABA synapses and

different types of voltage-dependent K+ channels) are selected to minimize its

prediction error. One way this could occur is through an anti-Hebbian type

plasticity rule.

By merely deploying sensors, a neuron reduces its uncertainty

about the intensity of its stimulus. Sensors devoted to any period of

the past and any region of space would be informative. However,

some would be more informative than others, resulting in smaller

prediction errors and less uncertainty. It is proposed that a neuron

should select its prior information sources in order to efficiently

minimize its errors. This could be done by regulating the number

of functional ion channels of a particular type or within particular

synapses. The goal of the following discussion is to delineate the

rules that determine a neuron’s inputs. Neither the mechanisms

nor the timescales of plasticity are a fundamental concern here.

Thus the proposed principles of selection could be implemented in

the adult system, during development, or exclusively through

natural selection over generations. Although the emphasis here is

on activity dependent plasticity rules that could be implemented

within the lifetime of a single neuron, the more critical point to the

general theory concerns the ‘‘solutions’’ towards which the system

converges, even if this occurs only through natural selection.

The inputs that contribute prior information span a spectrum of

points in space and time, and a neuron is proposed to select those

inputs that best minimize the error in predicting stimulus intensity.

Which period of the past a channel represents depends on its

kinetic properties (Text S1). There are numerous types of non-

synaptic ion channels that differ in their kinetic properties as well

as in their voltage dependence, with the diversity of potassium

channels being particularly striking [22]. A mature neuron

expresses only a subset of these ion channels. It is proposed that

the pattern of a neuron’s stimulus, acting via the voltage-mediated

error signal, would select the types of non-synaptic ion channel,

and the corresponding periods of the past, that best predict

stimulus intensity. The proposal that a neuron’s non-synaptic ion

channels are selected by the temporal pattern of a neuron’s input is

reminiscent of the antigen-driven selection of antibodies found in

the immune system. An analogous process would also occur in the

spatial domain. In this case, the individual components could be

GABA synapses, each synapse contributing prior information from

a distinct point in space (determined by the presynaptic neuron’s

stimulus, or receptive field center). Those synapses from the

surround that best predict stimulus intensity in the center would be

strengthened [13].

To illustrate how this could occur, we again consider a neuron

in which the second layer consists only of K+ channels, but now

there are distinct types of K+ channels that vary in their kinetic

properties. The conductance of the second layer (GK) at a given

moment in time could be described as the weighted sum of the

activities of each component (i) or type of K+ channel.

GK~{
X

i
wiUi ð2Þ

The activity of a component (Ui) refers to the time- and voltage-

dependent likelihood that a channel of that type is open at a given

moment (the channel’s open probability in a Hodgkin-Huxley type

model of average channel behavior). A component’s weight (wi)

would correspond to the number of functional channels of that

type (in the formalism used here, weights would be negative for

inputs contributing prior information (equation 3) and positive for

inputs contributing current information (equation 4)). The weights

could be adjusted by inserting or removing channels from the

membrane, or by an event such as phosphorylation that could

cause a channel to switch from one functional type to another

[23,24]. We would like to know the rules that govern the weights.

Minimizing the error means driving the membrane potential

towards the middle of its range. If a depolarization-activated K+
channel is open when the membrane is depolarized, it is correctly

guessing that glutamate concentration is high even though the

neuron’s second layer as a whole guessed too low. Therefore the

weight of that type of K+ channel should be increased. If the

membrane is hyperpolarized when a K+ channel is open, then

channels of that type should be removed since they guessed too

high and contributed to the negative error. If a K+ channel is

closed, it bears no responsibility for whatever the voltage may have

been, and its corresponding weight should not be changed

substantially. These principles suggest a learning rule like the

following:

wtz1~wt{aUt Vt{hð Þ{bwt ð3Þ

where the weight of an individual component is updated at each

moment in time (t) according to its activity (U), membrane voltage

(V), and learning rates (a and b). The last term (bwt) would

correspond to channels being removed from the membrane at a

low rate, which would help to insure that the weight of channel

types in which activity is not substantially correlated with

membrane potential goes to zero. The term ‘‘h’’ refers to a

voltage near the middle of the range. It functions as the null point

of membrane voltage where there is no error (Text S1).

Depolarization beyond h would increase weights, whereas

hyperpolarization would decrease weights. For further details of

the plasticity algorithm and mechanisms by which it might be

implemented, see Text S1.

Plasticity algorithms such as equation 3 are often referred to as

‘‘anti-Hebbian.’’ A Hebbian rule strengthens depolarizing or

hyperpolarizing inputs that are paired with depolarization or

hyperpolarization, respectively, and it therefore involves positive

feedback. An anti-Hebbian rule does just the opposite and results

in negative feedback. Anti-Hebbian plasticity has been observed at

both glutamate and GABA synapses, and it has previously been

proposed to be involved in learning to make accurate predictions

[12,13,25–27]. The present proposal extends its use to selecting

amongst non-synaptic ion channels. A functionally relevant term

for an anti-Hebbian rule would be ‘‘error minimizing.’’ Whereas

some past work has emphasized the advantages of this type of

plasticity, and adaptation in general, for efficient communication,

the present work suggests how these phenomena help to solve the

system’s central problem, which is not to communicate inputs but

to estimate their value.

Hypothesis 4: Selection of Current Information Sources
A neuron’ssources of current information (e.g. glutamate synapses) are

selected to be those that are most closely associated with reward and the least

predictable. One way this could occur is through a three-term Hebbian-type

plasticity rule that incorporates reward feedback as well as pre- and post-

synaptic activity.

The principles discussed above could allow a system to predict

the intensity of any sensory stimulus. However, real nervous

systems are only concerned with those aspects of the world that are

relevant to ‘‘future reward.’’ The definition of future reward used

here is very similar to that found in the field of reinforcement

learning, in which a key goal is to predict ‘‘the sum of future

Theory of Neural Computation
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rewards’’ [2–4]. As described above under hypothesis 1, I propose

that the general function of the nervous system is to predict

(minimize uncertainty about) future reward. Future reward is

ultimately defined in terms of biological fitness, or the future of an

animal’s genetic information, which is accepted to be the ‘‘goal’’ of

all life forms. Thus the ‘‘future’’ necessarily spans generations.

Since all of a nervous system’s outputs should be selected to

promote biological fitness, all the system’s information should be

about biological fitness (future reward). This broad and inclusive

concept of future reward is quite abstract and intangible (as would

be any attempt to specify the goal of life). However, as in

reinforcement learning, the nervous system predicts future reward

by predicting concrete physical stimuli that are themselves

predictive of future reward. These stimuli would include every

aspect of the world (internal and external) that can be sensed by

the nervous system. For example, this would include generally

weak predictors of future reward such as light intensity, as well as

strong predictors such as the sight or taste of food. For a neuron in

the ‘‘motor’’ system, the reward-predictive stimulus could

correspond roughly to a ‘‘plan for action.’’ To use the language

of animal learning theory, every stimulus can be thought of as a

‘‘conditioned stimulus,’’ although in some cases the ‘‘conditioning’’

has occurred over evolutionary timescales (in which case a stimulus

would be genetically ‘‘hard-wired’’ and could be described as

‘‘unconditioned’’ with respect to the lifetime of an individual).

Thus the concept of future reward, and the generality of the

present theory, depend upon viewing the nervous system within

the wider context of evolutionary biology.

Just as a neuron may select which points in space and time are

most informative in predicting stimulus intensity, it may also select

the stimulus that is most informative about reward. A prototypical

neuron’s proximal stimulus (its excitatory receptive field center) is

defined as the glutamate concentration summed across a subset of

synapses (in principle, a neuron’s stimulus could instead be

inhibitory). Those individual synapses in which activity is predictive

of established reward predictors, such as food, should become

strong. The selection process could be aided by an explicit reward

signal. This could be provided by a neuromodulator such as

dopamine [2,3,28] or it could come from the feedback projections

that mediate selective attention in the neocortex. A reward feedback

signal could be much less sophisticated than these examples, and in

the simplest case it would be provided solely by natural selection

over generations. Thus, at least in a wider biological context, there

would always be some reward information present.

As described above, a stimulus should be selected for its

correlation with reward. However, a second criterion is that to best

predict future reward, a neuron should select the stimulus that is

the least predictable (given the neuron’s prior information). This is

similar to the principle in statistics that the greater the variance in

one parameter (e.g. light intensity), the greater its potential to

explain the variance in another parameter (e.g. availability of

water). However, even if the intensity of a stimulus has a high

variance, and it is correlated with reward, it is not useful to a

neuron if it is highly predictable, since it would merely be telling

the neuron what the neuron already knows. Thus, other things

being equal, it is the most unpredictable stimulus that would be

expected to provide the neuron with the most information about

future reward. Similarly, the most unpredictable stimulus has the

most ‘‘potential,’’ or ‘‘exploratory value.’’ This is because even if

no correlation has been identified between a stimulus and reward,

such a correlation may be identified in the future, or by

downstream neurons. For example, the selection of stimuli by

neurons in some parts of the early visual system could be neither

‘‘hard-wired’’ nor guided by a dynamic reward feedback signal. In

such cases, the selection of the least predictable stimulus would

provide downstream neurons with the best chances of identifying a

stimulus that is both correlated with a dynamic reward feedback

signal and provides ‘‘new’’ (non-redundant) information.

A stimulus that is both predictive of future reward and

unpredictable could be identified through application of a learning

rule similar to that given above (equation 3), but with a sign

change and now also including any reward information (R) that

might be available:

wtz1~wtzaRtUt Vt{hð Þ{bwt ð4Þ

If the only feedback about reward is provided by natural selection,

then R would be constant over the lifetime of the organism, and

this rule will simply tend to select the stimulus that is the least

predictable. (Although not shown up above in equation 3, reward

information may also shape the selection of inputs contributing

prior information. However, even without a direct influence of

reward in equation 3, the influence of reward in equation 4 will

insure that a neuron’s prior information is predictive of future

reward.) In Text S1, I describe how the rule envisioned above

could be implemented given our current understanding of synaptic

plasticity mechanisms [29], and I further discuss the potential

forms of the reward feedback signal. Although this rule tends to

select channels and synapses in layer 1 that maximize the errors of

layer 2 in predicting layer 1 output, it would tend to minimize the

errors in the estimates of future reward by each of the two layers.

The error-maximizing plasticity algorithm of equation 4 is a

‘‘Hebbian’’ rule. As often pointed out, this type of rule strengthens

synapses in which activity tends to be synchronous. Synchronous

activation would occur more frequently in a subset of synapses that

are driven by a recurring spatial pattern or ‘‘object’’ in the external

world. Those synapses would become strong, thereby shaping the

stimulus to which the neuron is tuned, as previously proposed [e.g.

14,30–32]. The distinct proposal of the present work is that a

Hebbian rule functions to maximize errors, and to suggest why this

is advantageous in learning to predict future reward, the ultimate

goal of the nervous system. An error-maximizing rule would help

to insure that the stimulus contributes information about reward

that the neuron does not already possess. For example, if a neuron

receives a stereotyped temporal sequence of excitatory synaptic

inputs, then the Hebbian rule will selectively strengthen the first

input in the sequence (since prior information will tend to suppress

responses to the latter excitatory inputs) (see ref. 14 for a similar

proposal). Thus the error-maximizing rule explores the external

environment to identify the best source of external information

about reward, whereas the error-minimizing rule identifies the

internal substrate that is best able to capture and hold that

information. They both function together to maximize the

neuron’s information about future reward.

Hypothesis 5: The System
A network of the neurons described above, each neuron implementing the

same types of plasticity rules, will organize itself into a system that performs the

central function of accurately predicting future reward. In a mature system, each

successive neuron leading away from the sensory periphery will have more

information (less uncertainty) about future reward.

The prediction of future reward is proposed to be the central

function of the nervous system, and I have described above how

this could be done by a single generic neuron. If each individual

neuron performs this central function, it is relatively simple to

describe how a system composed of these neurons could work

together to better predict future reward. Because each neuron is at

least roughly similar in its biophysical characteristics, we may
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presume that each neuron possesses a similar amount of

information about its stimulus. However, some stimuli are highly

informative about future reward (e.g. the sight of food), whereas

others are only weakly linked to future reward (e.g. light intensity).

Thus neurons differ in how much information they have about

reward, and this is proposed to be the critical variable at the level

of the system.

Because reward feedback contributes to the selection of each

neuron’s stimulus (equation 4), the stimulus of each successive

neuron in a series progressing from the sensory to the motor

peripheries would be more closely tied to future reward and less

closely related to the immediate sensory world. Neurons further

from the sensory periphery would therefore have more informa-

tion and less uncertainty about future reward. This phenomenon

can be illustrated by tracing a long path from the retina through

the cortex to a motor neuron. In the visual system, the stimulus of

successive neurons is transformed from small circles of light

intensity to oriented bars and eventually to faces. Higher neurons

in the parietal and prefrontal cortex are simply described as

responding to ‘‘relevant information,’’ regardless of modality

[33,34]. Further along this path, neurons continue to become

more selective for future reward, but they also become more

‘‘motor’’ by integrating proprioceptive and vestibular information

specifically related to particular limbs and muscles. As the last

neuron in the path, the stimulus predicted by a motor neuron

would be very abstract and challenging to define precisely, but it

could be described in rough psychological terms as a ‘‘plan for

action.’’ Because the cumulative effect of reward feedback at every

upstream synapse shapes the motor neuron’s stimulus, the motor

neuron would have less uncertainty about future reward than any

of its upstream neurons. Likewise, the motor neuron would render

the system’s ‘‘decision.’’

The amount of reward information possessed by a neuron and

its stimulus also varies across sensory modalities. For example,

because taste is more strongly correlated with future reward than is

light intensity, a gustatory cell in the tongue has more information

and less uncertainty about future reward than does a photorecep-

tor. Likewise, a gustatory cell is closer to motor neurons (separated

by fewer synapses) than is a photoreceptor. If a gustatory and a

visual path both converge upon the same motor neuron, then they

would both produce the same reduction in uncertainty about

future reward. However, because light intensity is a lesser

predictor of future reward, the long path of the visual system

must do more work than the short path of the gustatory system in

order to cause the same reduction in reward uncertainty.

However, in doing substantial work to extract reward information

from light intensities, the long path of the visual system achieves a

much greater reduction in uncertainty about the world in general.

A Simulation
One approach to testing the current theory would be to simulate

a network of these neurons. Previous studies have demonstrated

how Hebbian [e.g. 30] or anti-Hebbian [13,25,27] synaptic

plasticity rules could shape a network in accord with the present

theory (although the proposed combination of both rules has not

been simulated). The more novel aspect of the present theory, with

regards to plasticity, is its application of the same sorts of plasticity

rules to the selection of non-synaptic ion channels. I present here

the results of a simulation in which a single compartment, graded

potential, Hodgkin-Huxley type model neuron selected from

amongst a spectrum of non-synaptic ion channels.

The simulated neuron simultaneously selected from amongst

four subtypes of glutamate-gated cation channels in layer 1

through a Hebbian rule (equation 4), and from amongst nine

subtypes of voltage-regulated potassium channels in layer 2

through an anti-Hebbian rule (equation 3). The stimulus was

glutamate concentration, which was drawn from a Gaussian

distribution at each time point (Fig. 3A). The mean concentration

increased during two square wave pulses (the first of which was

very brief). This pattern repeated itself for a total of 20,000 cycles.

The final number of channels of each of type appeared to have

little or no dependence on the starting numbers (Table S1).

The four types of glutamate-gated channels of layer 1 differed in

their affinities for glutamate (Fig. 3C). Subtypes with intermediate

affinities were the most sensitive to the actual range of glutamate

concentrations to which the neuron was exposed. Their activity

was more variable and less predictable, and one of these was

therefore the predominant subtype selected by the Hebbian

plasticity rule (Fig. 3D). As learning progressed and higher and

lower affinity receptors were eliminated (Fig. 3B), the neuron’s

membrane potential became more sensitive to glutamate concen-

tration (Fig. 3B, compare last cycle in black to first cycle in red).

Layer 2 consisted of four ‘‘type 1’’ and five ‘‘type 2’’ K+
channels. Type 1 channels were gated by a single sensor, and thus

their predictions of membrane voltage (and glutamate concentra-

tion) were simply an exponential function of past voltages. There

were four subtypes of type 1 channels, each with a different time

constant (Fig. 3E). The anti-Hebbian rule of equation 3 selected

the type 1 channel that had the fastest kinetics, since this channel

was best suited to exploiting the correlations in voltage created by

the membrane time constant, and it was also the channel that was

able to adapt its prediction most quickly to the step changes in

mean glutamate concentration. In the absence of these patterns,

the channel with the slowest kinetics was favored, since that

channel made the best predictions by averaging over the longest

period of past voltages (not shown).

Each of the five subtypes of type 2 K+ channels was gated by

eight sensors and differed from the other subtypes in its kinetics.

The gating of each type 2 channel by multiple sensors made it

more like real channels (relative to the ‘‘one-sensor’’ type 1

channel described above). However, the rules of channel gating

(see figure 3 legend and Text S1) were chosen so that a channel

opens for a certain time period (specified by the kinetics of its

sensors) after a sufficiently large depolarizing event (Fig. 3G). Thus

a type 2 channel could use the first pulse of glutamate to predict

and counteract the depolarization caused by a second pulse of

glutamate (Fig. 3G). Indeed, the subtype of type 2 channel selected

by the anti-Hebbian rule had kinetics that roughly matched the

actual interval between the two pulses of glutamate (Fig. 3H). This

subtype was selected because it counteracted the glutamate-driven

depolarization (positive error), and in spite of the fact that it also

caused a brief hyperpolarization (or negative error) prior to the

second pulse of glutamate (Fig. 3B, data in black). Text S1

provides details of the simulation, as well as additional discussion

of the temporal predictions made by ion channels

Discussion

Perhaps the most compelling aspect of the present theory is its

simplicity. Each neuron is proposed to perform the same basic

computational function, selecting its inputs according to the same

principles in order to better predict an aspect of the world related

to future reward. However, a neuron’s information and connec-

tivity will develop differently from other neurons due to the

particular statistical pattern of inputs to which it has been exposed.

The theory is grounded in well established and universal

biophysical properties of neurons, and it is at least consistent with

what is currently known about neuronal plasticity. Beyond
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Figure 3. Selection of ion channels by plasticity rules. Hebbian (equation 4) and anti-Hebbian (equation 3) rules selected the channels of
layers 1 and 2, respectively, in a single-compartment, graded-potential, Hodgkin-Huxley-type model neuron. See Text S1 for details. Initially, there
were a total of 800 glutamate-gated non-selective cation channels in layer 1 (evenly divided among 4 subtypes) and 800 voltage-gated K+ channels
in layer 2 (evenly divided among 9 subtypes). Other simulations began with different numbers and proportions of channels (not shown). The final
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providing a plausible explanation of how the nervous system could

perform its central function, a critical measure of the theory’s

value will be its ability to predict the synaptic connectivity and

intrinsic membrane properties of neurons given knowledge of the

statistical structure of their inputs. Much of the strongest evidence

in this regard naturally comes from those parts of the nervous

system that are the best understood, the early sensory systems.

The theory suggests that some of a neuron’s inputs should be

selected in order to maximize the neuron’s prediction errors

(deviations in membrane potential), whereas other inputs should

be selected to minimize errors. In some types of neurons, the

selection could have occurred over evolutionary timescales

through natural selection. But other neurons are presumed to

exhibit plasticity that would allow them to select their inputs

according to the particular statistical patterns to which they have

been exposed. In a typical neuron, excitatory synaptic inputs

provide the neuron with current information about the stimulus to

which the neuron is tuned, and these inputs are proposed to be

selected according to a Hebbian or error-maximizing rule. This

proposal represents the mainstream view of how stimulus

specificity develops [30–32]. These inputs typically correspond to

glutamate synapses, where Hebbian plasticity is a well-established

phenomenon [29]. The present proposal builds on previous work

by suggesting why Hebbian plasticity helps neurons to perform the

system’s ultimate function of predicting future reward.

Most other inputs to a plastic neuron are proposed to be

selected through an anti-Hebbian rule. These inputs contribute

prior information, and would include (among others) inhibitory

synaptic inputs and voltage-gated potassium channels. Little is

known about the rules and mechanisms by which a neuron selects

amongst these inputs. However, although rather indirect, there is

substantial evidence for an anti-Hebbian type rule in the extensive

literature on ‘‘efficient coding,’’ which dates back approximately

50 years to the work of Attneave [35] and Barlow [9]. The basic

principle is that neurons should not signal predictable components

of the world, because it would be redundant and wasteful to tell

the system what it already knows. Obviously this requires that the

system has prior knowledge about the world, and it has previously

been proposed that an anti-Hebbian plasticity rule would function

to select the best sources of prior information [25,27]. The best

sources of prior information would be those that most effectively

counteract excitation and inhibition of a neuron so that its

membrane voltage signals only the unpredicted component of the

neuron’s stimulus. The widespread phenomena of adaptation and

surround inhibition support this model. For example, there is a

positive correlation between the light intensity of different colors,

and a particular type of retinal ganglion neuron is excited by blue

light and inhibited by red-green light, effectively signaling errors in

the prediction of blue light [21]. One would expect that, in many

cases (but not all), the retinotopic or tonotopic region that is the

best predictor of a stimulus would be similar in spatial extent to the

region that constitutes the stimulus itself, and likewise the tuning of

a neuron’s synaptic inhibition has been found to be similar to the

tuning of its excitatory stimulus [e.g. 17–20]. Furthermore, there is

evidence that the rate of adaptation and the spatial extent of the

surround can be dynamically selected to better predict and cancel

the excitatory effect of the stimulus [e.g. 13,36]. Direct evidence

that anti-Hebbian synaptic plasticity does in fact mediate the

selection process has come from work in retina [13] and in

cerebellum-like structures [12,26].

A particularly novel aspect of the present theory is the proposal

that many of a neuron’s non-synaptic, intrinsically gated ion

channels may be selected in order to minimize prediction errors,

or deviations in membrane voltage. One way this selection could

occur is through anti-Hebbian plasticity. There is a large diversity

of voltage-regulated potassium channels that differ in their kinetic

properties. By selecting amongst these channels, an anti-Hebbian

rule would be selecting those periods of the past that are the best

predictors of current stimulus intensity. If the theory is generally

applicable, then the principle of minimizing prediction errors

should be able to explain, for example, the finding that hair cells

tuned to higher frequencies of mechanical stimulation express

voltage-dependent potassium channels with faster kinetics [37]

(although this could be genetically specified in the case of hair cells,

rather than achieved through anti-Hebbian plasticity). Previous

studies have shown that the selection of channel types can be

activity dependent, and it has been proposed that this plasticity has

a homeostatic function in stabilizing membrane potential [e.g. 38–

40]. The present proposal is consistent with such past work, but

suggests a more sophisticated computational role for these

channels. Implementation of the proposed anti-Hebbian rule

would require detecting not only neuronal activity, but the

coincidence between neuronal activity and channel conformation

or conductance. Thus, as described in Text S1, the regulation of

numbers of channels were the same in all cases, regardless of the starting numbers (Table S1). A. At each time step, glutamate concentration was
drawn from a Gaussian distribution with a standard deviation of 20% of the mean. The mean concentration increased from 50 to 1000 mM for 10 time
steps starting at 2000, and again for 500 time steps starting at 2200. After 5000 time steps the pattern repeated, for a total of 20,000 cycles. B.
Membrane voltage is shown for the first and last cycles. The average membrane voltage shifted towards the null point (h= 250 mV) of the plasticity
algorithms (equations 3 and 4). The hyperpolarization starting at 2000 in the last cycle was caused by activation of ‘‘type 2’’ K+ channels (see panel G)
triggered by the first glutamate-driven depolarization. In the first cycles, these K+ channels were not activated because the first glutamate-driven
depolarization was not large enough (see legend for panel D). The increased variance in membrane voltage in the last cycle was due to a decline in
total membrane conductance together with an increased sensitivity of the glutamate-gated conductance to glutamate concentration. C. The
activities (open probabilities) of the four types of glutamate-gated channel, each of which differed in its affinity for glutamate (KD). Each channel was
gated by a single two-state glutamate sensor. D. The Hebbian rule (equation 4) selected primarily a glutamate receptor with moderate affinity
(KD = 1000 mM, shown in blue). Elimination of high affinity receptors that were always near saturation increased the sensitivity of membrane voltage
to glutamate concentration. The resulting increase in depolarization to the first pulse of glutamate allowed for activation of ‘‘type 2’’ K+ channels (see
panel G). E. Activities of ‘‘Type 1’’ K+ channels during the last cycle. Each of four channel types, differing in their kinetic properties, was gated by a
single two-state voltage sensor with a half-maximal activation at 240 mV. Maximal time constants (at 240 mV) ranged from 10 to 333 time units. F.
Of the K+ channels in panel E, the anti-Hebbian rule (equation 3) ultimately selected the one with the fastest kinetics. Initially, the number of each
type of K+ channel increased from its starting value of 89 because the membrane voltage was almost always depolarized beyond h (250 mV). G. The
activities of ‘‘type 2’’ K+ channels during the last cycle. These channels each consisted of 2 layers of 4 sensors each. The sensors of the first layer were
not modeled realistically, but instead were all ‘‘turned on’’ instantly whenever the membrane was depolarized beyond 225 mV. They then turned off
slowly. The sensors of the second layer adapted to those of the first layer with kinetics that varied across channels as shown. Each channel was open
only when at least one sensor in layer 1 was on and all sensors in layer 2 were on. H. The anti-Hebbian rule selected the type 2 K+ channel with
intermediate kinetics (t= 100). This channel was able to use the first pulse of glutamate to predict and partially cancel the effect of the second pulse
of glutamate. Initially, the numbers of all type 2 K+ channels declined because membrane voltage never exceeded the threshold necessary to activate
them.
doi:10.1371/journal.pone.0003298.g003
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these channels would require a mechanism that is similar in its

complexity and sophistication to that found postsynaptically at

glutamate synapses [29]. There is currently very little direct

evidence for or against this proposal, which could be tested by

examining the influence of different patterns of neuronal activity

on the kinetics of a neuron’s potassium channels.

The primary obstacle to confirming or rejecting the present theory,

and particularly hypotheses 3 and 4, is our ignorance of the statistical

structure of the world. Progress has been made in quantifying the

statistical patterns that are relevant to early sensory systems, and in

relating those patterns to the properties of early sensory neurons [41].

Indeed, much of the evidence for the present theory comes from early

sensory systems. However, quantifying relevant statistical patterns is a

difficult undertaking even for early sensory systems, and studies of

natural stimulus statistics have not yet provided much insight into the

function of neurons beyond primary sensory cortices. According to

the present theory, later neurons function according to the same

principles as earlier neurons. The success of the theory in accounting

for the function of early sensory systems supports its application to

neurons at later stages of processing, since there do not appear to be

substantial and consistent differences at the cellular or molecular level

between ‘‘higher’’ and ‘‘lower’’ neurons. However, it is very difficult

to characterize the statistical pattern of inputs to a neuron far from

the sensory periphery, since its external stimulus is difficult to define

precisely, and its proximal stimulus (excitation summed across a

subset of synapses) can’t be measured with present technology. As an

alternative to quantifying a neuron’s natural stimulus statistics, in vitro

experiments can provide control over the pattern of a neuron’s

inputs. Such work has focused primarily on spatial patterns (i.e.

correlations between synapses), and has provided evidence for

Hebbian and anti-Hebbian synaptic plasticity [e.g. 12,13,26,29–32].

However, very little has yet been done to manipulate the temporal

pattern of a neuron’s input in order to test whether its non-synaptic

ion channels are selected according to an anti-Hebbian rule

(hypothesis 3). Thus our lack of knowledge of the statistical structure

of a neuron’s inputs limits our ability to judge the proposed

relationship between the pattern of those inputs and their selection by

neuronal plasticity.

The present theory can be seen as a synthesis of the

fundamental principles of reinforcement learning with those of

efficient coding. The ‘‘efficient coding’’ hypothesis has been

among the most successful of all computational approaches in

explaining the function of the nervous system [6,41]. However, the

principle of efficient communication does not address the general

function of the nervous system. Through its reliance on prediction

errors, reinforcement learning also incorporates the principle of

efficiency, and unlike efficient coding, it does address the general

function of the system (although not in the mathematically precise

sense described above in hypothesis 1). However, in comparison to

efficient coding, reinforcement learning has only more recently

been applied to understanding the nervous system, and this effort

has largely been restricted to relatively high level sensorimotor

systems and behavior rather than generic single neurons and early

sensory systems. The present theory incorporates the function of

early sensory systems and principles of efficient coding within the

more general framework provided by reinforcement learning.

However, the distinct approach to information and probability

taken above in ‘hypothesis 1’ is critical to the claim that the present

theory addresses the computational goal of the nervous system. By

contrast, the literature on reinforcement learning has generally not

incorporated quantitative notions of information, and most of the

literature on efficient coding has applied a definition of probability

that cannot be used to quantify the information found within the

nervous system (Text S1).

A key question regards the generality of the proposed model.

Does the computational goal, outlined under hypothesis 1, really

apply to all neurons and all systems? I have proposed that

minimizing uncertainty about future reward is the goal of all neural

systems, and I have suggested how this could be accomplished.

‘Future reward’ is defined here (see hypothesis 4) in such a broad

and abstract sense that it should apply to all neural systems. It is

better thought of in terms of biological fitness than in terms of

concrete reward stimuli such as liquid volume. Likewise, the

relevance of the system’s information to future reward is ultimately

insured through natural selection. Hebbian and anti-Hebbian rules

are moderately sophisticated methods of selecting amongst inputs

(information sources) to achieve the goals of hypotheses 3 and 4, but

natural selection over generations could achieve a similar

computational goal. Thus the theory does not require that all

neurons display plasticity (in the usual sense of the term).

Another potential challenge to the generality of the theory

comes from the great diversity of neuronal types. Is this diversity

compatible with the proposal that all neurons share a basic

computational goal? The theory seeks to explain some aspects of

neuronal variation that are clearly relevant to computational

function. It suggests how synaptic connectivity would reflect the

spatial structure of the external world, and how a neuron’s

dynamic membrane properties would reflect the temporal

structure of the world. Thus the theory could explain how

different neurons come to have different information. However,

one can easily imagine that the theory may hold true for some

types of neurons but not others. For example, although inhibitory

neurons are fundamentally similar in most respects to excitatory

neurons, there may be important differences that are not

addressed by the present theory. Furthermore, the present theory

has largely ignored the need for reliable communication across

distances (instead treating neurons as single compartments), a need

which may explain the prevalence of axonal and dendritic action

potentials (see Text S1), and which may be a major factor in

determining cell morphology. Another important factor that has

not been addressed concerns metabolic constraints, which could,

for example, limit channel density and connectivity with distant

neurons. Finally, some aspects of neuronal variation would

presumably be irrelevant to computation, such as the specific

molecular identity of a neurotransmitter. Thus, even if the theory

proves to be general in the sense described above, it would only be

expected to account for a portion of neuronal variation.

The main focus here has been on presenting a theory of

biological nervous systems, and thus a key question is how well the

theory is able to predict the structure and function of the nervous

system given the statistical structure of its inputs. However, the

theory also suggests a computational framework that could be

useful in designing artificial neural networks. An important test of

both the biological plausibility and computational utility of the

present theory would be to examine the characteristics of an

artificial network of the proposed model neurons. If correct, a

network of generic model neurons should be able to organize itself

so as to generate ‘‘intelligent’’ or ‘‘rewarding’’ outputs. Ideally,

each neuron would initially differ only in its spatial location within

the network and in the sign of its output (excitatory or inhibitory,

or ‘‘modulatory’’ in the case of a reward signal such as dopamine).

The hypothesis is that such a system will be able to organize itself

appropriately (depending on the structure of its inputs) without

substantial additional information being ‘‘built-in’’ from the start.

(This is not to suggest that the development of real nervous systems

is entirely dependent on the environment to which the individual is

exposed, since development is clearly instructed by genetic

information as well. But if the theory is correct, then the plasticity
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rules implemented in an artificial network may converge on

solutions or architectures that are similar to those reached through

biological evolution (as well as through development and learning

within an individual).)

Although the neurons described here are certainly no more

complex than real neurons, they are quite knowledgeable and

sophisticated in comparison to the neurons of typical neural

network models. In such models, most if not all of a neuron’s

information is carried in its synaptic weights and electrical output,

whereas non-synaptic ion channels often play no role [42]. By

proposing important roles for many of the diverse types of ion

channel that are known to exist in real neurons, the model neuron

described here could be thought of as a network unto itself. Most

of the neuron’s information is in chemical form, and it is not stored

only in synaptic weights. Membrane voltage represents only the

errors in prediction, which serves to update the chemical

information of local and downstream neural elements. If the

theory is correct, then this highly efficient means of communica-

tion, together with the vast information capacity associated with a

large number and diversity of molecules, should make the single

neuron modeled here more ‘‘intelligent’’ than the typical neurons

of network models.

Beyond describing a model neuron that may have significant

computational advantages, the present theory has approached the

problem from a fundamentally different perspective. Most work on

neural networks has focused on creating networks that generate

desired outputs, with relatively little concern for what information the

network contains or how its information is organized. By contrast, the

present theory focuses on the information contained by neurons and

networks, and proposes that desirable outputs will follow in a simple

and natural manner if the system has the appropriate information.

(To understand how this is possible, recall that the system’s output

shapes its information through reward feedback.) The theory suggests

that a system’s information determines its output, and that the more

information the system has about future reward, the more

advantageous its output will be. The proposal that to predict (and

thus ‘‘understand’’) the world is virtually sufficient for selecting

appropriate outputs is based on the simple argument that the best

output is always obvious in the absence of uncertainty. Simulations of

networks of these neurons will be necessary to test whether the

abstract goal of minimizing uncertainty about future reward really is

sufficient for maximizing reward in the concrete sense that has been

the standard of most past work.

Methods

Calculation of Conditional Probability Distributions
Ion channels typically consist of several protein subunits, and

each subunit alternates between multiple configurations, or states

[22]. A protein divides its time between states according to their

relative energies, spending more time in states of lower energy (Fig.

S1). The likelihood that a protein is in a state with a given energy is

specified by the Maxwell-Boltzmann equation of statistical

mechanics [22]. If a protein has just two possible states, the

probability P2 that the protein is in state 2 depends on the energy

difference (E2–E1) between the two states,

P2~
1

1zexp E2{E1

kBT

� � ð5Þ

where kB is Boltzmann’s constant, and T is temperature in Kelvin.

If the energy difference is dependent on a quantity such as voltage

or the binding of a ligand, then the protein molecule possesses

information about that quantity and it functions as a sensor. For

simplicity, the ion channels in the simulation of figure 2 were gated

by single two-state sensors.

For a voltage sensor, the energy difference between the two

states in the Maxwell-Boltzmann equation (equation 5) is

E2{E1~ze V1=2{V
� �

ð6Þ

where z is the number of equivalent elementary charges, e is the

elementary charge in coulombs, V is voltage, and V1/2 is the

voltage required to counterbalance the inherent energy difference

between the two states so that they are equally probable. The

sensor for a chemical works in a similar but slightly different

manner. Binding of a ligand acts to stabilize state 2 of the sensor.

However, unlike the dependence of a sensor’s energy states on

voltage, the relative energies of the bound and unbound states are

independent of ligand concentration. The exponential term in

equation 5 is thus a constant (for a given temperature), and the

likelihood (P2) of a receptor being bound turns out to be

P2~
L½ �

L½ �zKD

ð7Þ

where [L] is ligand concentration and KD is the equilibrium

dissociation constant. Equations 5–7 specify the likelihood that a

single ligand or voltage sensor is in the ‘‘on’’ or ‘‘off’’ conformation

as a function of stimulus intensity, as shown in figure 2A.

Bayes’s theorem describes how information should be integrated

across multiple sensors arranged in parallel or in series, as

described in detail in Text S1. It was assumed that the sensors

function independently of one another, and thus the likelihood

functions associated with single sensors (Fig. 2A) were simply

multiplied together to derive the probability distribution condi-

tional on the whole population of sensors (Fig. 2E–H).

Simulations
See Text S1 for details. The simulations of figures 2 and 3 were

performed with Matlab and were based on a single-compartment,

graded potential, Hodgkin-Huxley type model neuron. Whereas the

simulation of figure 2 had a fixed number of ion channels, the

simulation of figure 3 implemented the plasticity algorithms of

equations 3–4 to modulate the number of ion channels of various

types. The value of h (equations 3 and 4) was chosen to be 250 mV.

Supporting Information

Text S1 Supporting Information Text

Found at: doi:10.1371/journal.pone.0003298.s001 (0.10 MB

DOC)

Figure S1 Illustration of a sensor

Found at: doi:10.1371/journal.pone.0003298.s002 (0.33 MB EPS)

Table S1 Final numbers of channels of each subtype in the

simulation shown in Figure 3.

Found at: doi:10.1371/journal.pone.0003298.s003 (0.35 MB EPS)

Acknowledgments

I would like to thank Valerio Mante, Biyu He, Dharmendra Modha,

Kwabena Boahen, and Bill Newsome for comments on the manuscript.

Author Contributions

Conceived and designed the experiments: CDF. Performed the experi-

ments: CDF. Analyzed the data: CDF. Wrote the paper: CDF.

Theory of Neural Computation

PLoS ONE | www.plosone.org 11 October 2008 | Volume 3 | Issue 10 | e3298



References

1. Marr D (1982) Vision. San Francisco, CA: WH Freeman and Co.

2. Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic

dopamine systems based on predictive Hebbian learning. J Neurosci 16:
1936–1947.

3. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and
reward. Science 275: 1593–1599.

4. Sutton RS, Barto AG (1998) Reinforcement Learning. Cambridge MA: MIT
Press.

5. von Helmholz H (1896) Concerning the perceptions in general. In: Treatise on
Physiological Optics. Reprinted in Visual Perception. Yantis S, ed. Philadelphia:

Psychology Press, 2001. pp 24–44.

6. Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W (1997) Spikes:

Exploring the Neural Code. Cambridge, MA: MIT Press.

7. Hawkins J, Blakeslee S (2004) On Intelligence. New York: Henry Holt and

Company.

8. Jaynes ET (2003) Probability Theory: The Logic of Science. Bretthorst GL, ed.

Cambridge, England: Cambridge University Press.

9. Barlow HB (1961) Possible principles underlying the transformation of sensory

messages. In: Sensory Communication. Rosenblith WA, ed. pp 217–234,
Cambridge, MA: MIT Press.

10. Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of
inhibition in the retina. Proc Roy Soc Lond B 126: 427–459.

11. Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive field effects. Nat Neurosci 2:

79–87.

12. Bell CC (2001) Memory-based expectations in electrosensory systems. Curr Op

Neurobiol 11: 481–487.

13. Hosoya T, Baccus SA, Meister M (2005) Dynamic predictive coding by the

retina. Nature 436: 71–77.

14. Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks:
expectation and prediction. Psychol Rev 88: 135–170.

15. Dickinson A (1980) Contemporary Animal Learning Theory. Cambridge,
England: Cambridge University Press.

16. Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Ann Rev
Neurosci 23: 473–500.

17. Anderson JS, Carandini M, Ferster D (2002) Orientation tuning of input
conductance, excitation, and inhibition in cat primary visual cortex.

J Neurophysiol 84: 909–926.

18. Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens

spike timing in auditory cortex. Nature 476: 442–446.

19. Zhang LI, Tan AY, Schreiner CE, Merzenich MM (2003) Topography and

synaptic shaping of direction selectivity in primary auditory cortex. Nature 424:
201–205.

20. Tao HW, Poo M (2005) Activity-dependent matching of excitatory and
inhibitory inputs during refinement of visual receptive fields. Neuron 45:

829–836.

21. Dacey DM, Lee BB (1994) The ‘blue-on’ opponent pathway in primate retina

originates from a distinct bistratified ganglion cell type. Nature 367: 731–735.

22. Hille B (2001) Ionic Channels of Excitable Membranes. Sunderland, MA:

Sinauer.
23. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional

conversion between A-type and delayed rectifier K+ channels by membrane
lipids. Science 304: 265–270.

24. Park KS, Mohapatra DP, Misonou H, Trimmer JS (2006) Graded regulation of

the Kv2.1 potassium channel by variable phosphorylation. Science 313:
976–979.

25. Barlow HB, Foldiak P (1989) Adaptation and decorrelation in the cortex. In:
The Computing Neuron. Durbin R, Miall C, Mitchison G, eds. pp 54–72,

Wokingham, England: Addison-Wesley.

26. Bell CC, Caputi A, Grant K, Serrier J (1993) Storage of a sensory pattern by
anti-Hebbian synaptic plasticity in an electric fish. Proc Natl Acad Sci USA 90:

4650–4654.
27. Palmieri F, Zhu J (1993) Anti-Hebbian learning in topologically constrained

linear networks: a tutorial. IEEE Trans Neural Networks 4: 748–761.
28. Reynolds JNJ, Wickens JR (2002) Dopamine-dependent plasticity of corticos-

triatal synapses. Neural Networks 15: 507–521.

29. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic
plasticity. Ann Rev Neurosci 25: 103–126.

30. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of
neuron selectivity: orientation and binocular specificity in visual cortex.

J Neurosci 2: 32–48.

31. Bear MF, Cooper LN, Ebner FF (1987) A physiological basis for a theory of
synapse modification. Science 237: 42–48.

32. Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for
cooperation and competition among developing retinotectal neurons. Nature

395: 37–44.
33. Rainer G, Asaad WF, Miller EK (1998) Selective representation of relevant

information by neurons in the primate prefrontal cortex. Nature 393: 577–579.

34. Toth LJ, Assad JA (2002) Dynamic coding of behaviourally relevant stimuli in
parietal cortex. Nature 415: 165–168.

35. Attneave F (1954) Some informational aspects of visual perception. Psychol Rev
61: 183–193.

36. Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2001)

Efficiency and ambiguity in an adaptive neural code. Nature 412: 787–792.
37. Fettiplace R, Fuchs PA (1999) Mechanisms of hair cell tuning. Ann Rev Physiol

61: 809–834.
38. Turrigiano G, Abbott LF, Marder E (1994) Activity-dependent changes in the

intrinsic membrane properties of cultured neurons. Science 264: 974–977.
39. Golowasch J, Abbott LF, Marder E (1999) Activity-dependent regulation of

potassium currents in an identified neuron of the stomatogastric ganglion of the

crab cancer borealis. J Neurosci 19: RC33.
40. Desai NS, Rutherford LC, Turrigiano GG (1999) Plasticity in the intrinsic

excitability of cortical pyramidal neurons. Nat Neurosci 2: 515–520.
41. Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural

representation. Ann Rev Neurosci 24: 1193–1216.

42. Dayan P, Abbott LF (2001) Theoretical Neuroscience. Cambridge, MA: MIT
Press.

Theory of Neural Computation

PLoS ONE | www.plosone.org 12 October 2008 | Volume 3 | Issue 10 | e3298


