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Abstract

Background: Practice can have a profound effect on performance and brain activity, especially if a task can be automated.
Tasks that allow for automatization typically involve repeated encoding of information that is paired with a constant
response. Much remains unknown about the effects of practice on encoding and response selection in an automated task.

Methodology: To investigate function-specific effects of automatization we employed a variant of a Sternberg task with
optimized separation of activity associated with encoding and response selection by means of m-sequences. This optimized
randomized event-related design allows for model free measurement of BOLD signals over the course of practice. Brain
activity was measured at six consecutive runs of practice and compared to brain activity in a novel task.

Principal Findings: Prompt reductions were found in the entire cortical network involved in encoding after a single run of
practice. Changes in the network associated with response selection were less robust and were present only after the third
run of practice.

Conclusions/Significance: This study shows that automatization causes heterogeneous decreases in brain activity across
functional regions that do not strictly track performance improvement. This suggests that cognitive performance is
supported by a dynamic allocation of multiple resources in a distributed network. Our findings may bear importance in
understanding the role of automatization in complex cognitive performance, as increased encoding efficiency in early
stages of practice possibly increases the capacity to otherwise interfering information.
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Introduction

Practice can have a profound effect on performance and

underlying brain activity especially if a task can be automated.

Tasks that allow for automatization typically involve repeated

encoding of information that is paired with a constant response [1].

While previous studies have demonstrated the profound effects of

automatization on working memory [2–4], much remains unknown

about how automatization affects function-specific effects related to

encoding and response selection in an automated task.

Decreases in working memory activity after practice have been

reported in a wide range of cognitive tasks; such as verb generation

[5], mirror reading [6,7], delayed response tasks [4,8] and motor

sequence learning [9,10] and have been interpreted in terms of

reduced demands on domain-general cognitive control resources

that support early learning or novel task performance [2,11]. It has

also been shown that practice-induced activity decreases are

closely related to one’s capacity to concurrently perform an

additional cognitive task [3]. Better understanding of the

mechanism behind automatization may explain how automatiza-

tion can contribute to complex cognitive performance such as dual

tasking.

To investigate function-specific effects of automatization we

build upon our previous work in which we examined automati-

zation by means of a Sternberg Task [12]. Performance of this task

involves an encoding phase during which information is presented

that is briefly memorized, and a response phase including a probe

stimulus that requires a decision whether it matches the previously

presented information or not. The blocked design we employed in

our previous studies [3,4] did not allow investigation of function-

specific changes in brain activity associated with encoding and

response selection. In addition, it was not possible to assess changes

in brain activity over the course of practice. To investigate

function-specific changes in brain activity as a result of practice we

used a pseudo-random event-related design in which encoding and

response phases in a Sternberg task were controlled by means of

m-sequences [13]. This is a novel method that allows for model-

free measurement of BOLD signals and optimal separation of
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BOLD signals of rapidly displayed stimuli. Brain activity was

measured at six consecutive runs of practice to measure changes in

activity during encoding and response selection over the course of

practice. Based on current theories of practice we hypothesize that

the course of activity decreases in brain areas associated with

working memory function is the same for encoding and response

selection, while both functions may show independent courses in

activity changes in function-specific networks.

Methods

Participants
Eleven right-handed subjects (M/F 6/5, mean age 33.0 (62.9))

participated in the study. Before the functional MRI (fMRI) session,

all subjects gave written informed consent to participate in the study,

which was approved by the Intramural Review Board (IRB) of the

National Institute of Neurological Disorders and Stroke at the

National Institutes of Health under protocol #00-N-0082. Partic-

ipants were provided with earplugs to protect their hearing from the

acoustic noise generated by the MRI gradient system.

Task
We based the task used in our study on a Sternberg task-paradigm

[12] (figure 1). This task has been used extensively in fMRI studies

and it has been shown to reliably activate regions associated with

working memory [4,14–22]. It allows for trial-by-trial measurement

of the level of performance (reaction time (RT) and error rate) to

verify that subjects are executing the task as required.

In our experiment participants were instructed to memorize

either one or five letters that were visually presented (memory set).

To increase similarity between stimuli, all of the letters used in the

task were consonants. The memory set was followed by

presentation of a probe stimulus. Participants were instructed to

decide as fast as possible whether the probe belonged to the

memory-set (target) or not (non-target).

Tasks were presented in eight runs of approximately five

minutes with each run containing 68 trials of 4000 ms duration.

Each trial started with an encoding phase during which the

memory set was presented for 1500 ms. This was followed by a

delay period of 1500 ms in which a fixation cross was displayed.

The brief delay was followed by the response phase, which

involved the presentation of a probe stimulus for 500 ms followed

by another fixation-cross for 500 ms (figure 1).

In the first two runs, the memory sets for each trial were

randomly generated out of ten consonants. Because memory sets

were novel in each trial these runs are denoted ‘‘novel task’’ (NT1

and NT2). In the following six runs all trials used the same fixed

memory set. These runs are denoted ‘‘practiced task’’ (PT1–PT6).

The constant stimulus-response associations in PT are thus

practiced in six runs allowing automatization to be established

over time. The stimuli in PT were chosen from a different set of

consonants than NT to prevent interference.

The first NT run was used to select regions of interest (ROI)

representing brain areas involved with encoding and response

phases. The second NT run was used to establish signal level for

NT performance in the ROI’s, which was used as reference for

comparison of activity during PT.

The M-sequence
A 63 element binary m-sequence consisting of 32 positive and

31 negative bits was used to control the timing of the presentation

of the task stimuli [13]. The primary sequence was used to control

the encoding phase. Each bit of the sequence belonged to one trial.

If the sequence was negative then a one-letter memory set was

presented (baseline condition for encoding phase). If the sequence

was positive a five-letter memory set was presented. The sequence

Figure 1. Cognitive Paradigm. The timeline is shown for the cognitive experiment. Two m-sequences (m.seq.) of 63 bits control the encoding
phase (1) and the response phase (2). Each trial starts with the encoding phase followed by a brief delay and the response phase. Where bits are 0
(baseline); memory sets with 1 letter (MS1) are presented during the encoding phase and blank trials are presented during the response phase.
Where bits are 1; 5-letter memory sets (MS5) are presented during the encoding phase and a probe stimulus during the response phase. In the novel
task the letters presented during the encoding phase were different in each MS1 and MS5 trial. In the practiced task, the same five letters were
repeated in each MS5 trial.
doi:10.1371/journal.pone.0003270.g001
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was shifted nine bits to create an independent but related sequence

to control the response phase. If this sequence was negative no

stimulus was presented (baseline condition for the response phase).

If this sequence was positive a probe letter was presented. The m-

sequence was extended by inserting a replica of the last five bits at

the beginning of the sequence to allow removal of the initial

BOLD transient, yielding an extended sequence of 68 bits. The

uneven runs used the primary versions of the sequence, while the

even runs used an inverted version (positive and negative bits

switched).

Functional MRI
Data was acquired on a 3T GE MR system. Image signal-to-

noise ratio (SNR) was boosted by employing multi-channel MRI

with a custom-built helmet-type 16- channel receive array that fits

tightly around the head [23], connected to a custom-built 16-

channel MRI receiver [24]. A single-shot rate-2 sensitivity-

encoded (SENSE) [25] echo-planar imaging (EPI) [27] was

employed for fMRI acquisition. The EPI matrix size was 96 by

72, and the field of view (FOV) 224 mm2, leading to a nominal in

plane resolution of 2.3 mm2. Slice thickness was 2.0 mm, with a

slice gap of 0.3. Echo time (TE) was 32 ms, repetition time (TR)

was 2000 ms, and flip angle 90 degrees. Tasks were presented in

three runs of 290 functional scans with approximately one-minute

period in between. A video projector presented stimuli on a small

screen attached to the head-coil in the scanner. Participants could

see the screen via a mirror also attached to the head-coil. Subjects

were instructed to respond to each probe as quickly as possible by

ion of the pushing a button with the index finger of the right hand

to targets or with the middle finger of the right hand to non-

targets.

Data preprocessing and statistical analysis
All fMRI data were analyzed off-line on a multimode Linux/PC

reconstruction cluster using IDLTM. Image reconstruction was

performed as described previously and included direct Fourier

transform of the ramp-sampled data, EPI ghost correction using a

navigator echo [26] and SENSE unfolding as well as image

intensity correction based on coil sensitivity reference maps

derived from the array data itself [27].

First and second order trends were removed from the fMRI

signal per voxel. After this, an outlier test was performed, which

removed all time points larger than three standard deviations away

from the mean. Trend correction for first and second order was

repeated after outlier correction. The input function (primary m-

sequence) was balanced to have a mean of zero. Because there

were two scans per trial, the sequence was interleaved with zeros in

order to have a sequence length equal to the number of scans.

Analysis of brain activation was performed by calculating the

cross-covariance of this input function with the image intensity on

a voxel by voxel basis, for all 63 temporal shifts [13] by

multiplication in Fourier domain. Covariance values were

transformed into t-values by dividing each value by an estimate

of the temporal noise level. The temporal noise value in the fMRI

signal was estimated by calculating the temporal standard

deviation in covariance values over shifts 20 to 63, where no

covariance peaks related to our experimental paradigm were

present. Subsequently, the correlation maps for ten shifts (or a 20 s

period) following the expected correlation peak were spatially

normalized to the MNI305 standard brain, as it was expected that

the BOLD curve would be fully covered by this segment. These

maps were transformed into group activity maps by testing the

value in each voxel against zero over all subjects. Two covariance

peaks were expected: The first peak related to the encoding phase

with an onset at shift zero, the second peak related to the response

phase with an onset at shift nine.

Regions of interest (ROI) for encoding phase and response

phase were created by combining neighboring voxels that reached

a threshold of t.3.71 (p,0.0001 uncorrected) in the group map of

the NT1, at shift 2 and at shift 11 (corresponding to the fMRI

signal at 4000ms after PS presentation). These signals were

analyzed using multivariate analysis (repeated measurements

(executed with SPSS TM 11.0)).

Results

Performance
We examined the behavioral effect of practice for changes in

performance over all practice runs and by comparison of each

practice run with NT2. Overall task performance was averaged

over responses in one-letter memory set (MS1) and five-letter

memory set (MS5) trials and for the difference in performance

between responses in MS1 trials and responses in MS5 trials. For

reaction time (RT) there was a significant performance improve-

ment over all runs (F = 5.40, p,0.01). Practice runs three through

six showed a significant improvement compared to the novel task

(see table 1 and figure 2). There was also a significant overall

improvement in error rate (F = 2.91, p,0.05) and a significant

improvement in the sixth run of practice compared to NT

(F = 5.91, p,0.04). The differences between MS5 and MS1 in RT

and error rate were not significantly changed by practice (see

table 1 and figure 2).

Table 1. Practice and Performance

a. overall difference

reaction time (MS1 and MS5) (MS1 vs MS5)

contrast F(1,10) p F(1,10) p

multivariate 5.40* ,0.01 1.67** 0.17

NT-PT1 3.02 0.11 0.06 0.46

NT-PT2 3.16 0.11 2.33 0.16

NT-PT3 17.5 ,0.01 0.25 0.63

NT-PT4 6.37 0.03 4.68 0.06

NT-PT5 11.6 ,0.01 2.39 0.15

NT-PT6 15.7 ,0.01 4.16 0.07

* df = (2.8,28.4) ** df = (4.3, 43.2) (Huynh-Feldt corrected)

b. overall difference

error rate (MS1 and MS5) (MS1 vs MS5)

contrast F(1,10) p F(1,10) p

multivariate 2.91* 0.05 0.008** 0.93

NT-PT1 0.08 0.78 2.67 0.14

NT-PT2 1.23 0.30 0.79 0.40

NT-PT3 0.01 0.94 0.41 0.54

NT-PT4 3.10 0.11 1.59 0.24

NT-PT5 1.23 0.30 0.82 0.39

NT-PT6 5.91 0.04 0.09 0.77

* df = (2.8,28.4) ** df = (4.3, 43.2) (Huynh-Feldt corrected)

a. reaction time (top) and b. error rate (bottom). Measures were tested over all
runs (1st row) and between novel task (NT) and each practice run (PT), across
one-letter (MS1) and five-letter (MS5) memory set trials (1st column) and for
MS1 trials vs. MS5 trials (2nd column). Significant results are displayed in bold.
doi:10.1371/journal.pone.0003270.t001
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Overview of regions of interest
Encoding and response selection activated distinct cortical

networks with limited overlap (see figure 3). Encoding ROIs are

described in table 2 and figure 4. Response selection ROIs are

listed in table 3 and figure 5.

Encoding. During the encoding phase bilateral regions in the

occipital cortex and superior parietal cortex and the dorsal part of

the anterior cingulate cortex were activated. In addition, there was

activity in the left dorsolateral prefrontal cortex and the putamen.

Response selection. During the response phase there was also

bilateral activity in the occipital cortex, but closer to the extrastriate

and middle occipital gyrus, the DLPFC, the ACC, the operculum and

the thalamus. In addition, ROIs were identified in the left primary

sensorimotor cortex and the cuneus. In the right hemisphere we

Figure 2. Performance. a. reaction time in milliseconds (left) and b. % error rate (right) for trials with one-letter memory sets and five-letter memory
sets. Performance measures are displayed for novel task (NT) and each practice run (PT1-PT6)
doi:10.1371/journal.pone.0003270.g002

Figure 3. Heterogeneous effect of practice on regions activated by both encoding and response selection. Example of bold activity
(arbitrary units) in regions activated by both phases: a. left DLPFC (top) and b. anterior cingulate cortex (bottom) during the novel task (left), after one
practice run (middle) and six practice runs (right); showing the heterogeneous effects of practice for encoding and response selection.
doi:10.1371/journal.pone.0003270.g003
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identified ROIs in the ventrolateral prefrontal cortex, the postcentral

gyrus, the precentral gyrus and the superior parietal cortex.

Changes in activity related to practice
To examine function-specific effects of practice we tested

activity averaged over all ROIs in the encoding and response

selection networks (table 4 and figure 6) and in each individual

ROI of the separate encoding network (table 5) and response

selection network (table 6) for changes in activity across all practice

runs and between each PT run compared to NT.

Effects of practice on encoding activity. The multivariate

test for changes in activity (averaged over all encoding ROIs)

shows a significant effect of practice across all six practice runs

(table 5). Tests for changes in activity compared to the novel task

show a significant decrease in all practice runs (p,0.01) (table 5).

Separate tests for each ROI show significant decreases in bilateral

visual cortex (E1 and E2) and left DLPFC (E3). Bilateral SPC (E4

and E5) and SMA (E6) show significant decreases in activity for all

but the third practice run. Left PUT (E7) show a significant

decrease for all practice runs, except runs three and five (table 5).

Effects of practice on response selection activity. The

multivariate test for changes in activity (averaged over all response

selection ROIs) across all practice runs was not significant (table 6).

In addition, there was no significant change in activity from the

novel task at any practice run (table 6). In tests of separate ROIs

(table 6), we found a significant decrease in signal compared to the

novel task in the lPSMC (RS2) in practice run 5, in the lDLPFC

(RS3) in runs 5 and 6, in the ACC (RS4) in runs 4, 5 and 6, in

lOCC (RS5) in practice run 5, rDLPFC (RS8) in practice run 4

and 5, in lOPER (RS10) in practice run 5, and in rPCG (RS11) in

practice run 4, 5 and 6.

In summary, practice reduced activity in function-specific

regions associated with encoding and response selection. However,

signal in encoding areas was reduced in all regions of the network

after the first practice run, while in the response selection areas

practice decreased activity only after the third practice run, and

only in a subset of regions.

Heterogeneous effect of practice on encoding and

response selection activity. Figure 3 illustrates the distinct

effect that practice has on the encoding and response phase

activity by showing the complete BOLD curves for left DLPFC

and ACC. During the encoding phase, BOLD activity was

practically absent in the first runs of practice in both regions (3a,

3b; red lines). For the response phase, BOLD activity is still

visually detectable in lDLPFC (3a, blue line), and ACC (3b, blue

line), up to the last run of practice.

Figure 4. Encoding ROI’s. ROIs showing activity related to encoding.
The numbers in the color bar refer to the encoding phase ROIs (E1–E7)
in table 2.
doi:10.1371/journal.pone.0003270.g004

Figure 5. Response Selection ROI’s. ROIs showing activity related to
the response selection. The numbers in the color bar refer to the
response selection ROIs (RS1–RS14) in table 3.
doi:10.1371/journal.pone.0003270.g005

Table 2. Encoding ROI’s

ROI Region abbr. BA NV x y z tmax

E1 right calcarine sulcus Rcalc 18 2886 14 294 2 12.87

E2 left calcarine sulcus Lcalc 18 2334 212 294 22 12.75

E3 dorsolateral prefrontal cortex Ldlpfc 9 1044 256 22 42 6.94

E4 left superior parietal cortex Lspc 7 693 224 258 46 6.46

E5 right superior parietal cortex Rspc 7 475 24 250 46 4.06

E6 Anterior cingulate cortex SMA 24 472 24 2 58 8.36

E7 left putamen Lput Na 112 222 2 22 3.53

Description of ROIs showing activity correlated with encoding phase.
(Abbreviations: E = encoding; BA = Brodmann Area; NV = number of voxels in
ROI (size of ROI); x, y, z = MNI coordinates of voxel with highest t-value in ROI;
tmax: maximum t-value in ROI).
doi:10.1371/journal.pone.0003270.t002

Table 3. Response Selection ROI’s

ROI Region abbr. BA NV x y z tmax

RS1 right occipital cortex Rocc 18/19 4054 18 264 8 7.42

RS2 left primary
sensorimotor cortex

Lpsmc 4 3723 238 222 54 11.84

RS3 left dorsolateral
prefrontal cortex

Ldlpfc 9/46 2527 252 2 14 8.05

RS4 anterior cingulate cortex ACC 32 2105 24 24 56 10.11

RS5 left occipital cortex Locc 19 1457 252 268 6 6.8

RS6 Thalamus thal Na 874 214 226 2 6.21

RS7 right operculum Roper 45 348 30 20 0 5.03

RS8 right dorsolateral
prefrontal cortex

Rldpfc 46 152 52 2 38 5.49

RS9 right ventrolateral
prefrontal cortex

Rvpfc 47 149 40 30 20 3.94

RS10 left operculum Loper 45 132 240 12 4 5.54

RS11 right precentral gyrus Rpcg 6 99 28 22 54 6.48

RS12 right postcentral gyrus Rpocg 2 96 54 224 40 5.85

RS13 left cuneus Lcun 19 95 224 276 30 6.06

RS14 right superior parietal
cortex

Rspc 7 81 30 258 48 4.13

Description of ROIs showing activity correlated with response phase.
Abbreviations: RS = response selection; BA = Brodmann Area; NV = number of
voxels in ROI (size of ROI); x, y, z = MNI coordinates of voxel with highest t-value
in ROI; tmax: maximum t-value in ROI).
doi:10.1371/journal.pone.0003270.t003
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Discussion

Summary
This study examined the effect of practice on brain activity

associated with encoding and response selection. We used an

optimized pseudo-random event-related design that isolated effects

of practice in the encoding phase and response phase of a Sternberg

task, at six runs of practice. Performance and brain activity at each

practice run were compared to that of a similar task with novel

stimuli. Our behavioral results show that practice gradually but

significantly improved performance, confirming automatization of

task performance [1]. Practice promptly reduced activity across the

entire regional network involved in encoding at the first run of

practice, before response selection activity and performance were

affected. Changes in response selection activity emerged at the third

run of practice and were not present in all regions, but specific for

ACC, left and right DLPFC, lPSMC, lOCC, rPCG and lOPER.

Our results indicate that automatization can induce independent

changes in function-specific brain regions over the course of practice.

Heterogeneous effects of practice on encoding and
response selection

In the novel task, encoding and response selection activated

regions associated with working memory in left DLPFC, and

SMA/ACC and right superior parietal cortex. This common

activation of the working memory network during different phases

of novel Sternberg performance supports the notion of a

scaffolding system that contributes to novel task performance

[2]. However, practice induced different courses of activity

reductions in working memory activity for the encoding and the

response selection. Practice immediately reduced activity in the

encoding network at the first run of practice in left DLPFC and

ACC. In sharp contrast, response selection activity in these regions

did not show any effect of practice over the course of three runs

Figure 6. Practice and brain activity. a. activity in arbitrary units during encoding averaged over encoding phase ROIs (left) and b. activity during
response selection averaged over response selection ROIs (right). Activity is displayed for novel task (NT) and each practice run (PT1–PT6).
doi:10.1371/journal.pone.0003270.g006

Table 4. Practice and Brain Activity

encoding response selection

contrast F(1,10) p F(1,10) p

multivariate 7.96* ,0.01 1.19** 0.32

NT-PT1 31.97 ,0.01 0.38 0.55

NT-PT2 19.67 ,0.01 0.30 0.16

NT-PT3 18.23 ,0.01 2.48 0.15

NT-PT4 18.51 ,0.01 3.59 0.09

NT-PT5 14.24 ,0.01 4.97 0.05

NT-PT6 36.39 ,0.01 2.99 0.11

* df = (6,60) ** df = (6,60) Huynh-Feldt corrected

Tests for significant effects of practice on encoding activity averaged over all
encoding ROIs and response selection activity averaged over all response
selection ROIs. Signals were tested over all runs (1st row) and between novel
task (NT) and each practice run (PT). Significant results are displayed in bold.
doi:10.1371/journal.pone.0003270.t004

Table 5. Practice and Encoding Activity

multi-variate NT-PT1 NT-PT2 NT-PT3 NT-PT4 NT-PT5 NT-PT6

F p F p F p F p F p F p F p

Rcalc (E1) 4.93 ,.01 17.0 0.00 10.6 0.01 19.5 ,.01 14.6 ,.01 9.56 0.01 21.3 ,.01

Lcalc (E2) 7.29 ,.01 27.9 0.00 12.7 0.01 28.7 ,.01 13.7 ,.01 20.5 0.00 31.9 ,.01

Ldlpfc (E3) 6.16 ,.01 15.8 0.00 15.2 ,.01 6.88 0.03 19.7 ,.01 10.1 0.01 23.7 ,.01

Lspc (E4) 4.81 ,.01 20.5 0.00 13.9 0.00 3.86 0.08 10.7 0.01 10.4 0.01 22.9 ,.01

Rspc (E5) 3.62 ,.01 11.0 0.01 12.5 0.01 3.13 0.11 6.33 0.03 11.1 0.01 12.6 0.01

SMA (E6) 7.46 ,.01 10.2 0.01 12.5 0.01 3.48 0.09 12.7 0.01 6.61 0.03 18.8 ,.01

Lput (E7) 3.14 0.01 6.3 0.03 10.3 0.01 0.64 0.44 5.13 0.05 0.96 0.35 6.7 0.03

Multivariate tests for signals in ROIs related to encoding. Signals were tested over all runs (1st column) and between novel task (NT) and each practice run (PT).
Significant results are displayed in bold. (For abbreviations see table 2).
doi:10.1371/journal.pone.0003270.t005
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with repeated memory sets. This indicates that DLPFC and ACC

were activated to an extent specifically needed for each phase at

the different runs of practice. This divergent pattern of activity

changes for encoding and response selection does not support the

notion that domain-general control resources are reduced as the

need to ‘‘scaffold’’ task performance decreases with practice [2].

Consequently, these findings do not seem to support our

hypothesis based on this idea. Our findings are more in line with

the idea of decentralized theories of working memory function

[28–30]. From this perspective practice may independently reduce

working memory contributions to different phases of cognitive

performance depending on the level of control necessary for each

phase. The immediate reductions in activity associated with

encoding possibly indicate that practice promptly reduces the need

for working memory to support the transformation of visually

presented stimuli into a neural representation that facilitates

temporary storage of information during the delay [31–35]. In

addition, the current data shows that a similar amount of practice

can only marginally reduce working memory contributions to the

response selection phase. This suggests that early in practice,

working memory remains engaged to guide response selection

based on earlier presented information [15,34].

The ability to automate task performance has been shown to be

important for complex cognitive performance such as the capacity to

perform multiple tasks at once [1,3,36,37]. Our results suggest that

early in practice reduced demands on encoding may increase one’s

capacity to process otherwise interfering information. However,

performance of an additional task also deteriorates automated

performance to some extent [3,37]. Our results indicate that this

could be induced by conflicts at the level of response selection.

Automatization vs. other effects of practice on brain
activity

Our findings are similar to other studies that have reported

reductions in brain activity as a result of practice, representing

increased efficiency of information processing [38,39]. However it

should be noted that practice-induced activity changes in those

studies were either not accompanied with improved performance

[39], or selectively involved response selection [38]. Differences with

our design are the type of stimuli used [39], and more importantly

that stimulus-response associations in those studies changed over

trials, which makes it difficult to compare with our findings.

Neuroimaging findings of practice effects on brain activity have been

inconsistent across studies [40]. The different effects of practice on

brain function have been interpreted in terms of reorganization vs.

redistribution of activity [40], changes in skill or strategy underlying

task performance [41], item-specific or task-skill effects [42], or

improved task proficiency [22,43,44]. We propose an alternative but

important distinction between tasks that allow for automatization

and those that cannot be automated, because stimulus-response

associations continuously change over the course of practice. Here

we show that automatization predominantly affects encoding early in

practice even before performance improves.

Independent encoding and response phase networks
Our finding of distinct networks activated by encoding and

response selection is in line with previous studies. The encoding

phase in our study activated bilateral SPC. Many other studies

have found this region to be activated by visual perception of

stimuli in verbal working memory tasks [19,21,45–47]. It has been

postulated that this region is important for encoding and

temporary maintenance of information [48]. Response selection

activated parts of the prefrontal-striatal-thalamic circuitry (thala-

mus, left VLPFC and right DLPFC) [49] that is involved in motor

response modulation. These regions have been reported to be

active during the response phase in delayed response tasks before

[15,45].

We have designated the cognitive functions that we examined

encoding and response selection, to emphasize the difference

between the functions present in encoding and response phases of

cognitive performance that can be automated. Naturally both task

phases include many different processes. The encoding phase

requires visual perception, encoding and short-term maintenance of

the presented stimuli. The response phase also involves visual

Table 6. Practice and Response Selection Activity

multi-variate NT-PT1 NT-PT2 NT-PT3 NT-PT4 NT-PT5 NT-PT6

F p F p F p F p F p F p F p

Rocc (RS1) 0.89 0.51 0.28 0.60 2.48 0.15 0.48 0.51 0.19 0.67 0.69 0.42 1.71 0.22

Lpsmc (RS2) 1.37 0.34 0.84 0.38 1.57 0.24 3.69 0.08 3.67 0.09 7.52 0.02 1.07 0.33

Ldlpfc (RS3) 1.27 0.29 0.49 0.50 1.53 0.24 1.32 0.28 4.60 0.06 9.60 0.01 5.60 0.04

ACC (RS4) 1.49 0.20 3.47 0.09 1.14 0.31 3.27 0.10 5.01 0.05 6.78 0.03 7.20 0.02

Locc (RS5) 1.40 0.22 1.11 0.32 3.18 0.11 3.90 0.08 4.61 0.06 4.83 0.05 1.83 0.21

thal (RS6) 1.59 0.19 1.00 0.34 0.70 0.42 2.84 0.12 0.67 0.43 1.90 0.20 0.11 0.75

Roper (RS7) 0.75 0.61 0.04 0.86 0.08 0.78 0.12 0.74 1.28 0.30 0.75 0.41 0.92 0.36

Rldpfc (RS8) 1.51 0.20 1.73 0.22 2.87 0.12 2.27 0.16 7.66 0.02 8.10 0.02 3.33 0.10

Rvpfc (RS9) 0.70 0.63 0.01 0.95 0.47 0.51 0.00 0.99 2.20 0.17 0.96 0.35 1.04 0.33

Loper (RS10) 0.96 0.45 0.01 0.94 0.01 0.91 0.78 0.40 0.90 0.37 7.06 0.02 0.88 0.37

Rpcg (RS11) 2.32 0.05 2.03 0.18 1.75 0.22 2.56 0.14 7.77 0.02 14.59 0.01 5.06 0.05

Rpocg (RS12) 1.12 0.37 0.07 0.79 2.15 0.17 0.42 0.53 2.16 0.17 3.00 0.11 0.05 0.83

Lcun (RS13) 0.53 0.78 0.01 0.96 0.44 0.52 0.70 0.42 0.30 0.60 3.10 0.10 1.10 0.32

Rspc (RS14) 1.33 0.26 4.72 0.06 0.15 0.71 0.00 1.00 1.58 0.24 0.00 0.99 0.22 0.65

Multivariate tests for ROI signals related to response selection. Signals were tested over all runs (1st column) and between novel task (NT) and each practice run (PT).
Significant results are displayed in bold. (For abbreviations see table 3).
doi:10.1371/journal.pone.0003270.t006
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perception and encoding as well as response selection and execution.

Based on the current design it is not possible to distinguish any of

these processes within the current results, but we feel that the terms

used, describe the most important function associated with the

phase. We have restricted our analyses of brain activity to the

encoding phase and response phase, while other studies also included

the delay [15,19,21,47]. We decided not to separate the encoding

phase from the delay, as it is difficult to separate these phases other

than to vary the length of the delay period, which is not possible in an

m-sequence design. Notably, current emerging views are that these

phases activate the same brain systems [48]

Limitations
Due to limitations in the design practice trials with five-letter

memory sets were interleaved with novel one-letter memory sets.

This may have prevented continuous rehearsal of the practiced

memory set and consequently slowed down the effect of practice

on brain function. The period of practice in our study may

therefore have not been sufficient to establish a potential

relationship between activity and performance changes reported

in other studies [22,38]. Reaction times on baseline trials (one-

letter memory set) showed some improvement with practice.

Although this may indicate that task performance became more

proficient over time (i.e, regardless of whether stimuli were novel

or practiced) it does not affect the main conclusion. The design

used in our study yields different baselines for encoding and

response selection activity. Encoding activity was based on the

contrast between five-letter and one-letter memory sets, while

response selection activity was derived from the average of all

correct responses in one-letter and five-letter trials. This may have

affected the level of activity for the different phases. The m-

sequence analysis also provides an interaction activity map [13].

This map did not show any significant activity indicating that

interaction effects of the encoding and response phase were small.

Conclusion
This study demonstrates that practice in a visually delivered

cognitive task predominantly increases efficiency of encoding in

primary visual, prefrontal and parietal cortex. Changes in the

cortical network related to response selection as well as

performance improvement occur at a later state of practice. Our

results indicate that automatization causes decreases in brain

activity that are heterogeneous across functional regions and do

not strictly track performance improvement. This suggests that

cognitive performance is supported by a dynamic allocation of

multiple resources in a distributed network. Our findings may

further bear importance in understanding the role of automatiza-

tion in complex cognitive performance, as increased encoding

efficiency in early stages of practice possibly increases the capacity

to otherwise interfering information.
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