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Abstract

The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early
age-related macular degeneration (AMD). Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke
in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde
and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2%
paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE) by 8-oxo-7,8-dihydro-29-
deoxyguanosine (8-OHdG) immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had
immunolabeling for 8-OHdG in 8563.7% of RPE cells counted compared to 9.563.9% in controls (p,0.00001). Bruch
membrane was thicker in mice exposed to smoke (10866332 nm) than those raised in air (5436132 nm; p = 0.0069). The
two most pronounced ultrastructural changes (severity grading scale from 0–3) seen were a loss of basal infoldings (mean
difference in grade = 1.98; p,0.0001), and an increase in intracellular vacuoles (mean difference in grade = 1.7; p,0.0001).
Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently
demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference
in grade = 0.54; p,0.0001), increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002), and
increased basal laminar deposit continuity (mean difference in grade = 0.4; p,0.0001). TUNEL assay showed a higher
percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.061.1%) than room air (average 060%;
p = 0.043). Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural
degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the
mechanism of smoke induced changes during early AMD.
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Introduction

Age-Related Macular Degeneration (AMD) is the leading cause

of blindness among the elderly in the United States. Due to the

aging population, the number of people with advanced AMD will

increase from 1.75 million now, to 3 million by 2020 [1]. The

impact to the individual and the general public is devastating. In a

value-based medical analysis, the deleterious effect of AMD on

quality of life is markedly underestimated by both physicians and

the public [2]. For example, the decrease in quantifiable quality of

life from early AMD is equivalent to a patient with symptomatic

human immunodeficiency virus infection or moderate cardiac

angina. Currently, there is no effective preventive or treatment for

early, non-neovascular AMD.

Oxidative stress has long been hypothesized to play a substantive

role in the development of AMD due to the high oxidative stress

environment of the fundus. The Age Related Eye Disease (ARED)

study showed that high dose antioxidant vitamin therapy reduced

the advancement of intermediate non-neovascular AMD, and that

this benefit was associated with a reduction in plasma glutathione

and cysteine oxidation [3]. While the genetic variations of several

complement factors have been associated with AMD susceptibility,

different studies also have identified a susceptibility locus for AMD

may be located in or near the hypothetical LOC387715 gene [4,5].

Kanda et al have confirmed that this locus was the susceptibility

locus for AMD, and that this gene encodes a mitochondrial protein

[6]. Interestingly, this locus may be associated with smoking, and the

combination of the LOC387715 polymorphism and smoking confers

a higher risk for AMD than either factor alone [7]. This finding,

along with its identification as a mitochondrial protein, raises

suspicion for a role of the oxidative defense response in this disease.

Further evidence for genetic susceptibility related to oxidative stress

has been provided by Canter et al, who have correlated the

mitochondrial DNA polymorphism A4917G with AMD [8] and

Kimura et al, who showed that a polymorphism in superoxide

dismutase 2 (SOD2) is associated with AMD in a small subset of

patients [9]. Cigarette smoke, which can be considered a strong

chemical oxidant, has the strongest epidemiological link with AMD

[10]. However, experimental evidence is lacking for injury to the

retinal pigmented epithelium (RPE), a principal cell type involved in
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AMD. Critical host factors that protect the RPE from oxidative

injury may determine its susceptibility to tissue destruction or modify

the intensity of inflammatory reaction associated with AMD.

RPE cell apoptosis and basal deposits, or accumulations of

heterogeneous debris in Bruch membrane (BrM), are two critical

histopathologic changes that are well recognized to occur during

the development of early AMD [11–24]. We used these

established changes as endpoints for a study designed to determine

if cigarette smoke induces evidence of changes associated with

AMD. Mice were exposed to 6 months of cigarette smoke in a

chamber that produces emphysema with evidence of oxidative

damage [25]. In this manuscript, we explored whether mice

exposed to cigarette smoke developed these two cardinal features

of early AMD using this protocol.

Results

Evidence of Increased Oxidative Stress in the RPE of Mice
Exposed to Cigarette Smoke for 6 Months

Immunohistochemical staining with an anti-8OHdG antibody

was used to assess evidence of oxidative damage in the RPE of

mice exposed to air or cigarette smoke. This antibody is highly

specific for 8-OHdG, and our laboratory has previously used this

antibody to identify oxidative DNA damage [26,27].We quantified

the nuclei that were immunostained per 100 RPE cell nuclei. In

mice housed in filtered room air (n = 5), 9.563.9% of RPE cell

nuclei exhibited staining for 8-OHdG, whereas significantly more

(8563.7%; p,0.00001) stained nuclei were observed in mice

exposed to cigarette smoke (n = 5; Figure 1).

Ultrastructural Injury to the RPE and Bruch Membrane in
Mice Exposed to Cigarette Smoke

The RPE of 8 mo old mice raised in air appeared healthy with

normal basolateral infoldings (Figure 2A). Bruch membrane

maintained a pentalaminar structure composed of the RPE

basement membrane, inner collagenous layer, middle elastic layer,

outer collagenous layer, and basement membrane. The chorio-

capillaris endothelium appeared healthy with fenestrations. We

chose RPE basolateral infoldings and cytoplasmic vacuoles as

indicators of RPE cell degeneration because loss of basal infoldings

is a marker of epithelial injury [28–30] and cytoplasmic vacuoles

have been identified in RPE that overlie drusen deposits [13].

Figure 2 also shows an 8 mo old mouse that has been exposed to

chronic cigarette smoke exhibiting ultrastructural injury to the

RPE-Bruch membrane. The RPE basolateral infoldings are

dilated and fewer in number, and contain large cytoplasmic

vacuoles. Bruch membrane shows an outer collagenous layer

deposit while the choriocapillaris has focal loss of fenestrations.

Bruch membrane thickens with aging. We therefore measured

Bruch membrane thickness, and found that Bruch membrane was

thicker in mice exposed to smoke (n = 10, 10866332 nm) than

those raised in air (n = 10, 5436132 nm; p = 0.0069). Part of this

thickness is due to outer collagenous layer deposits and basal

laminar deposits, as shown in Figure 3.

The severity of ultrastructural changes to the RPE-Bruch

membrane-choroid was rated using a scale of 0 (no change) to 3

(most severe changes)according to our previously published

protocol based on Cousins et al, and semi-quantified using

regression analysis [31]. For each ultrastructural outcome

Figure 1. Immunohistochemistry of 8-OHdG nuclear labeling of the RPE. 8 month C57Bl6 mouse exposed to smoke for 6 months showing
A. DAPI labeled nuclei (arrows); B. 8-OHdG labeled RPE nuclei (arrows); C. Merged image of A and B with the Brightfield image showing violet nuclei
(arrows); D. Merged image of DAPI and IgG1 control image with Brightfield image overlay. 8 month old C57Bl6 mouse raised in air showing DAPI
labeled RPE nuclei in E and 8-OHdG immunostaining in F; G. Merged DAPI and 8-OHdG immunostained image with Brightfield image overlay showing
blue nuclei in H. Brightfield image. RPE, retinal pigmented epithelium; Ch, choroid. Bar = 15 mm. Figure shows representative images from N = 10 mice
(50 samples/mouse).
doi:10.1371/journal.pone.0003119.g001

Smoking Causes RPE Apoptosis

PLoS ONE | www.plosone.org 2 September 2008 | Volume 3 | Issue 9 | e3119



considered, cigarette-exposed mice (n = 10) demonstrated signifi-

cantly higher severity grades, consistent with more severe injury

than mice raised in air (n = 10). By regression analysis, the two

most pronounced changes were a loss of basolateral infoldings

(mean difference in grade = 1.98; p,0.0001), and an increase in

intracellular vacuoles (mean difference in grade = 1.7; p,0.0001).

Other ultrastructural changes were smaller in magnitude, but

consistently demonstrated significantly higher grade injury in

cigarette-exposed mice. For example, cigarette-exposed mice had

greater thickness and change in heterogeneous content of basal

laminar deposits (mean difference in grade = 0.54; p,0.0001),

increased outer collagenous layer deposits (mean difference in

grade = 0.59; p = 0.002), and increased continuity (mean differ-

ence in grade = 0.4; p,0.0001). The choriocapillaris basement

membrane was thicker in mice exposed to smoke than those

reared in room air. Finally, the choriocapillaris endothelium

showed mild loss of fenestrations with smoke exposure (mean

difference in grade = 0.52; p,0.0001).

RPE Apoptosis is Increased in Mice Exposed to Cigarette
Smoke

To determine whether chronic exposure to cigarette smoke

induced apoptosis of RPE cells in vivo, we conducted TUNEL

staining on the RPE-choroid of mice exposed to cigarette smoke and

room air. Figure 4 shows TUNEL-positive RPE cells from a mouse

exposed to cigarette smoke. TUNEL showed a higher percentage of

apoptotic RPE from mice exposed to cigarette smoke (n = 5, average

8.061.1%) than room air (n = 5, average 0.060%; p = 0.043).

Discussion

In this study, we observed injury to the RPE and Bruch

membrane of mice after chronic exposure to cigarette smoke. The

RPE had specific ultrastructural changes that are associated with

injury that have been observed in AMD. RPE apoptosis is an

established change in aging, early AMD, and later stages of AMD

such as geographic atrophy [11,12]. The results from this study

suggest that cigarette smoke plays a role in RPE changes

associated with AMD. Increased oxidative damage, as assessed

by DNA adduct formation, were measured in the RPE of mice

exposed to cigarette smoke with immunostaining for 8-OHdG.

These results implicate a role for oxidative damage to the RPE

during this process. We also identified Bruch membrane

thickening and mild basal deposits. Basal deposits and Bruch

membrane thickening are hallmark changes of aging. The mild

severity of basal deposits falls short of changes associated with

AMD. Cigarette smoke had a greater impact on the RPE than

Figure 2. Transmission electron microscopy of the RPE-Bruch membrane-choriocapillaris of mice exposed to air (A) or cigarette
smoke (B-D). A. The RPE has normal cytoplasm and regular basal infoldings (BI) Bruch membrane (BrM) is unthickened and without deposits. The
choriocapillaris (CC) has regular fenestrations. B. A membranous vacuole (V) appears in the cytoplasm and the basal infoldings (BI) are fewer and
dilated in the RPE. A small outer collagenous layer (OCL) deposit is seen in Bruch membrane. C-D. More severe membranous vacuoles appear in the
cytoplasm than in B. The basal infoldings are fewer and dilated. The choriocapillaris fenestrations are fewer (arrows). D. The RPE has multiple, large
vacuoles in the cytoplasm and the basal infoldings are fewer and dilated, or absent. Thin basal laminar deposits (*) are seen where the basal
infoldings are absent. Bar = 500 nm.
doi:10.1371/journal.pone.0003119.g002

Smoking Causes RPE Apoptosis

PLoS ONE | www.plosone.org 3 September 2008 | Volume 3 | Issue 9 | e3119



Bruch membrane, which suggests that multiple factors are

involved in the development of the full blown AMD phenotype.

Cigarette smoke is the strongest environmental risk factor

associated with AMD. The epidemiologic data, such as the Beaver

Dam Eye Study, suggest that smoking induces early AMD as well

as progression of AMD, compared to nonsmokers [32]. Clemons

et al in the ARED study group also found that cigarette smoking

was associated with progression from early to advanced AMD

[33]. Khan et al showed that pack-year smoking is strongly

correlated with AMD while smoking cessation reduces the risk of

developing AMD [34]. The RPE appears to be a specific target of

cigarette smoke associated changes. Mitchell et al in the Blue

Mountains Eye Study, showed that cigarette smoke is associated

with increased risk of RPE abnormalities [35]. Likewise, in the

AREDS cohort, cigarette smoking was associated with develop-

ment of geographic atrophy, which is characterized by atrophy of

the RPE, and cell death from apoptosis.

Cigarette smoke is a strong oxidant generated by 4700 chemical

components [25]. The 8-OHdG immunohistochemical experi-

ments indicate that despite a significant anti-oxidant defense

system, the RPE developed oxidative DNA damage in mice

exposed to cigarette smoke. The most obvious ultrastructural sign

of injury to the RPE was enlargement and loss of basolateral

infoldings, which is an established marker of epithelial cell injury

from a number of etiologies including oxidative stress [28–30]. We

used vacuole formation as a second sign of RPE change because it

is known to occur in RPE cells overlying drusen deposits [13]. We

presume that the degree of oxygen free radicals generated from

cigarette smoke was involved in ultrastructural damage to the

RPE. Our TUNEL experiments showed a clear increase in RPE

cell apoptosis in mice exposed to cigarette smoke. While there can

be multiple stimuli for apoptosis of the RPE, the most likely

stimulus in this model, is oxidative stress from cigarette smoke.

Previous models of oxidative stress have shown damage to the

RPE. Gottsch et al used a mouse model of protoporphyria and

exposure to blue light to induce choriocapillaris injury and sub-

RPE basal laminar-like deposits that simulated aging-associated

changes prior to the onset of AMD [36]. Hahn et al, using a

ceruloplasmin and hephaestin double knockout mouse that

accumulates iron in the retina and RPE, developed an age-

dependent retinal pigmented epithelium hypertrophy, hyperplasia,

and death through enhanced oxidative stress [37]. Imamura et al

showed in an SOD1 deficient mouse, oxidative damage to the

RPE as well as development of drusen and thickened Bruch

membrane [38]. In fact, Ferrington et al showed that RPE cell

survival to an oxidant is tied to its ability to detoxify reactive

oxygen species [39]. However, our lab and Lu et al have shown

that the type of oxidant can result in different responses by the

RPE [40,41]. For example, Lu et al found that the antioxidant

defense system of RPE cells protects well against damage to

mitochondria and endoplasmic reticulum, but the cell is less able

to handle oxidative damage at the cell surface. These results could

explain the different phenotypes identified in the different models

of oxidative stress. Since cigarette smoke is a complex chemical

oxidant with an established epidemiologic link to AMD, it seems

logical to use this model in determining the response from the RPE

from oxidants in cigarette smoke.

Espinosa-Heidmann et al found that a shorter duration, higher

concentration of cigarette smoke in 16 month old C57Bl6 mice

induced ultrastructural changes to Bruch membrane and the

choriocapillaris endothelium that are compatible with early AMD

[42]. In their study, mice were exposed to more severe levels of

cigarette smoke over a shorter period ( i.e. 2 hours per day, 5 days/

week over 3.5 months), than the chronic experimental conditions

that we selected (5 hours/day, 5 days/week over 6 months). The

Espinosa-Heidmann et al protocol had higher levels of total

suspended particulate (250 mg/m3) and carbon monoxide (600–

750 ppm) compared to our levels of 90 mg/m3 and 350 ppm,

respectively. In addition, they used significantly older mice than in

our study. We selected our protocol based on evidence that this

model induces emphysema in mice, and that AMD lesions are

thought to develop over a long period of time [25]. The younger age

allows us to isolate the effect of cigarette smoke on the RPE from the

complex factors related to chronological aging, which remains the

most common risk factor for AMD. It is difficult to determine what

factors caused preferential injury to the RPE over Bruch membrane

in our study. Interestingly, Espinosa-Heidmann et al did not find

compelling ultrastructural evidence of RPE cell injury. However,

they did not specifically study apoptosis. Given their more acute

exposure of higher concentrations of cigarette smoke, it is possible

that cells could die before showing ultrastructural evidence of

injury. Alternatively, because of the significant anti-oxidant

capability of the RPE, a chronic exposure to the oxidants in

cigarette smoke might be necessary to cause RPE injury and

apoptosis.

While this study provides data in support of a role for chronic

cigarette smoke in RPE cell injury and apoptosis as it related to

AMD, further work is necessary to provide a causal link. It is clear

that other factors such as genetic susceptibility, the role of lipids,

and chronic inflammation are important factors in the develop-

ment of AMD. The value of this model is that each of these factors

can be studied to determine whether cigarette smoking has a

synergistic effect on important endpoints of AMD.

Figure 3. Transmission electron microscopy of Bruch mem-
brane of mice exposed to air (A) or cigarette smoke (B,C). A.
Mouse exposed to air shows regular basal infoldings (BI) of the RPE and
unthickened Bruch membrane (BrM). B. The RPE show loss of basal
infoldings. Bruch membrane is thickened due to an outer collagenous
layer deposit (OCL). C. The RPE show more severe loss of basal
infoldings than in (B). Bruch membrane contains early basal laminar
deposits (*), OCL, and choriocapillaris (CC) basement membrane
reduplication (arrows). Bar = 500 nm.
doi:10.1371/journal.pone.0003119.g003
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Materials and Methods

Animals and Care
An equal number of male and female C57Bl6 mice were fed

standard rodent chow and water ad libitum, and kept in a 12-hour

light-dark cycle. All experiments were conducted according to the

ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research, and the research was approved by the

institutional research board at Johns Hopkins Medical Institutions.

Exposure to Cigarette smoke [25]
At 8 weeks of age, mice were placed into a smoking chamber for

5 hours/day, 5 days/week for 6 months. This chamber contains a

smoking machine (Model TE-10, Teague Enterprises, Davis, CA)

that burns 5 cigarettes (2R4F reference cigarettes (2.45 mg

nicotine/cigarette; Tobacco Research Institute, University of Ky)

at a time, taking 2 second duration puffs at a flow rate of 1.05 l/

min, to provide a standard puff of 35 cm3, providing a total of 8

puffs per minute. The machine is adjusted to produce side stream

(89%) and mainstream smoke (11%). The chamber atmosphere is

monitored to maintain total suspended particulate at 90 mg/m3,

and carbon monoxide at 350 ppm. Control mice were kept in a

filtered air environment.

Tissue Preparation
After mice were sacrificed and eyes were enucleated, one eye

was fixed in 2.5% glutaraldehyde and 1% paraformaldehyde in

0.08 M cacodylate buffer in preparation for electron microscopy.

The contralateral eye was either fixed in 2% paraformaldehyde for

histochemical analysis.

Immunohistochemical Localization of 8-Oxo-7,8-Dihydro-
29-Deoxyguanosine (8OHdG)

Cryosections (8 mm) from mice exposed to air or cigarette smoke

for 6 months (n = 4 per group) were first blocked with Avidin/

Biotin blocking reagent (Vector Labs, Burlingame, CA) and then a

mouse on mouse blocking reagent (M.O.M.TM; anti-mouse IgG

blocking reagent (Vector Labs) for 1 hour at room temperature.

Sections were exposed to a monoclonal anti-8-OHdG antibody

(1:20; Japan Institute for the Control of Aging, Shizuoka, Japan) or

mouse IgG1 for 30 minutes at room temperature. The anti-8-

OHdG antibody demonstrates no cross-reactivity to 19 analogues

of 8-OHdG including guanosine (G), 7-methyl-G, 6-SH-G, 8-

bromo-G, dA, dC, dT, dI, dU, dG, O6-methyl-dG, 8-OHdA,

guanine (Gua), O6-methyl-Gua, 8-OHGua, uric acid, Urea,

creatine, creatinine. Only 8-sulfhydryl-G and 8-OHG demon-

strate minimal cross-reactivity (less than 1%) [43,44]. Sections

were then incubated with Biotinylated Anti-Mouse IgG (Vector

Labs) for 10 minutes at room temperature, and then with Texas

Red Avidin DCS (10 mg/ml, Vector Labs). Sections were

counterstained with DAPI (Vector Labs) and imaged with a

confocal microscope (Zeiss 510 META confocal microscope, Carl

Zeiss Micro Imaging, Inc., Thornwood, NY) at wavelengths 405/

460 nm for DAPI and 633/650 nm for Texas Red. The number

of nuclei positive for 8-OHdG immunostaining was counted in 5

sections per eye using the method of Dunaief et al [12]. A positive

nuclei was defined by a the red color with the TMR label and

distinguished from autofluorescent background by a violet colored

nuclei after merging the DAPI and Texas Red label. The

distribution of 8-OHdG positive cells was compared using the

nonparametric, Wilcoxon exact 2-sample test.

Figure 4. TUNEL labeling of RPE cells from mice exposed to cigarette smoke for 6 months. A. TUNEL labeled (red) RPE nuclei are indicated
by the arrows. B. Nuclei are stained with DAPI (blue), as labeled by the arrows. C. Merged image of A and B separating TUNEL from DAPI only stained
nuclei. D. Brightfield image of the RPE, choroid (Ch) and sclera (S). E. Merged image of a mouse raised in air for 6 months. Arrows point to blue DAPI
without red TUNEL labeling. Bar = 15 mm.
doi:10.1371/journal.pone.0003119.g004
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Ultrastructural Analysis
After fixing one eye for electron microscopic analysis as described

above, the central 262 mm tissue temporal to the optic nerve was

postfixed with 1% osmium tetroxide and dehydrated and embedded

in Poly/Bed 812 resin (Polysciences, Inc., Warrington, PA).

Ultrathin sections were stained with uranyl acetate and lead citrate,

and examined with a JEM-100 CX electron microscope (JEOL,

Tokyo, Japan) in the Wilmer Core Facility.

The average BrM thickness was determined from the thinnest

and thickest measurements by a masked observer, as previously

described [45]. RPE and choriocapillaris ultrastructural changes,

and BrM basal deposits including location, thickness, continuity,

and content were graded for severity. Each change was graded on

an ordinal scale from 0 to 3 using a minimum of 50 sections by a

masked observer, as previously described [31,46]. To examine the

effect of smoke on tissue ultrastructure, we used linear regression

to control for clustering of results within individual mice. Linear

regression analysis was performed using Stata Version 8

(Statacorp, College Station, TX).

TUNEL assay
TUNEL assay was performed on 8 mm cryosections. Slides were

dried at room temperature for 30 minutes. Tissue was permea-

bilized with 0.1% triton X-100 and 0.1% sodium citrate for

2 minutes on ice. TUNEL labeling was performed with an In Situ

Cell Death Detection Kit, TMR (Roche, Manheim, Germany).

Sections were incubated and covered with parafilm for 60 minutes

at 37uC. Sections were counterstained with DAPI (Vector Labs).

Positive controls were created by incubating tissue with 1 mg/ml

DNAse I in 50 mM Tris-HCl, pH 7.5, 1 mM magnesium

chloride, and 1 mg/ml bovine serum albumin for 10 minutes at

room temperature. Coverslips were mounted with Vectashield

(Vector Labs). TMR and DAPI were visualized with a confocal

microscope (Zeiss 510 META confocal microscope, Carl Zeiss

Micro Imaging, Inc., Thornwood, NY) at 543 nm and 455 nm,

respectively. The number of TUNEL-positive cells was counted in

5 sections per eye using the method of Dunaief et al [12]. A

TUNEL-positive cell was defined by a the red color with the TMR

label and distinguished from autofluorescent background by a

violet colored nuclei after merging the DAPI and TMR label. The

distribution of TUNEL-positive cells was compared using the

nonparametric, Wilcoxon exact 2-sample test.
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