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Abstract

Chlamydia are obligate intracellular bacteria that cause variety of human diseases. Host cells infected with Chlamydia are
protected against many different apoptotic stimuli. The induction of apoptosis resistance is thought to be an important
immune escape mechanism allowing Chlamydia to replicate inside the host cell. Infection with C. trachomatis activates the
Raf/MEK/ERK pathway and the PI3K/AKT pathway. Here we show that inhibition of these two pathways by chemical
inhibitors sensitized C. trachomatis infected cells to granzyme B-mediated cell death. Infection leads to the Raf/MEK/ERK-
mediated up-regulation and PI3K-dependent stabilization of the anti-apoptotic Bcl-2 family member Mcl-1. Consistently,
interfering with Mcl-1 up-regulation sensitized infected cells for apoptosis induced via the TNF receptor, DNA damage,
granzyme B and stress. Our data suggest that Mcl-1 up-regulation is primarily required to maintain apoptosis resistance in C.
trachomatis-infected cells.
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Introduction

Chlamydia are obligate-intracellular gram-negative bacteria with

an innate biphasic life cycle. The infection starts with the uptake of

the metabolically inactive elementary bodies (EBs) by the

eukaryotic cell. EBs differentiate to metabolically active reticulate

bodies (RBs) which replicate in a vacuole inside the host cell. RBs

re-differentiate to EBs, which are then released from the cells to

initiate a new cycle of infection. Despite the fact that they are

strictly dependent on host eukaryotic cells for their growth,

infections with Chlamydia are the cause of several human diseases.

Among these, C. pneumoniae infection induces respiratory disorders

[1], whereas C. trachomatis has been demonstrated to be the major

causative of bacterial sexually transmitted diseases and ocular

infections leading to blindness [2].

Modulation of host cell apoptosis is an important immune

escape mechanism employed by a broad range of viral, bacterial

and parasitic pathogens. For instance, several pathogenic bacteria

like Salmonella spp. Shigella spp. and Yersinia spp. induce apoptosis in

macrophages to avoid their destruction by these powerful immune

effector cells [3]. Obligate intracellular bacteria like Rickettsia and

Chlamydia have evolved strategies to increase the resistance of their

host cells for apoptotic stimuli [4–7]. Inhibition of host cell

apoptosis may protect the replicating bacteria from the action of

cytotoxic T cells, which eliminate infected cells by the induction of

apoptosis. Moreover, an important aspect of preventing apoptosis

in infected cells is the chronic infection. Chlamydia spp. can persist

inside the infected cells and apoptosis inhibition may even prolong

the life span of the host cells [8].

The mechanisms of apoptosis induction have been worked out

in great detail. Apoptosis is primarily induced by two major

pathways namely the ‘extrinsic’ or the death receptor-mediated or

by the ‘intrinsic’ or the mitochondria-mediated pathways.

Caspases, the effector proteases are activated either by the binding

of death ligand to the receptors or by the release of pro-apoptotic

factors from the mitochondria [9]. Initiator caspases are activated

independent of cleavage by recruitment to large signaling

complexes assembled by the ligation of death receptors. For

instance, caspase-8 is activated by the Fas receptor associated death

inducing signaling complex (DISC) [10] and caspase-9 is activated by

the apoptosome triggered by cytochrome c released from

mitochondria into the cytosol [11]. Inhibitor of apoptosis proteins

(IAPs) constitute an important class of apoptosis regulators as they

can directly bind and prevent the activation of effector caspases

[12]. During apoptosis, the mitochondrial outer membrane is

permeabilized and is primarily accomplished by the activation of

‘‘pro-apoptotic’’ Bcl-2 family members Bax and Bak. Activation of

Bax and Bak can be counteracted by the anti-apoptotic Bcl-2
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family members like Bcl-2, Bcl-XL, Mcl-1 and A1. Mcl-1 was

identified as an early induction gene during myeloblastic cell

differentiation and has also been established to play a crucial role in

the survival and homeostasis of lymphocytes [13,14]. Mcl-1 has a fast

turnover rate and several growth factors modulate the expression of

Mcl-1 both at the transcriptional as well as post-translational levels

[15]. Mcl-1 has a strong binding affinity for BH3-only family

member Bim, and is localized in a complex with Bim and Bak at the

mitochondrial outer membrane. The Bim-Mcl-1 complex has been

shown to be disrupted during induction of apoptosis [16].

One of the major mechanisms by which the immune system clears

intracellular infections is by Cytotoxic T lymphocyte (CTL)-

mediated cytotoxicity. CTLs and Natural killer cells (NK) utilize

two main pathways to activate target cell death, Fas and Granzyme/

perforin. While the FAS-mediated apoptosis pathway also plays an

important role in lymphocyte homeostasis, granule-mediated killing

is vital for clearing intracellular infection, tumor surveillance and

transplant rejection [17]. Granzyme B (GrB), one of the important

and well-studied proteases of CTLs is a serine protease with an

unusual specificity to cleave substrates at aspartic residues [18]. GrB

is stored in cytoplasmic granules in the CTLs and NK cells and is

delivered to the target cells in a perforin-dependent manner. Though

GrB can directly cleave caspase-3, it is still dependent on the

permeabilisation of mitochondrial outer membrane as release of

Smac/DIABLO is required to inhibit XIAP [19]. Previous studies

have revealed that cells infected with Chlamydia resist cytochrome c

release in response to several apoptotic stimuli [5–7]. Consistently,

activation of pro-apoptotic Bcl-2 family members Bax and Bak is

blocked in infected cells [20,21]. It has been suggested that C.

trachomatis-induced apoptosis resistance is dependent on the specific

degradation of the BH3-only family members by an uncharacterized

chlamydial protease [21–23] by the recruitment of BAD and 14-3-3

proteins to the chlamydial inclusion [24] and by the stabilization of

IAP-IAP complexes [25].

This study stems from our initial search for the bacteria

modulated host effectors responsible for resistance to stress- and

GrB-mediated cell death. Contradictory to the published obser-

vations, we have failed to detect a specific degradation of the BH3

only family members in the C. trachomatis infected cells. Using

epithelial cells as infection model, we demonstrate here that C.

trachomatis infection activates both the Raf/MEK/ERK pathway

as well as the PI3K/AKT pathway to resist apoptosis induced by

GrB, stress and death receptor. Infection with C. trachomatis leads to

the MEK-dependent up-regulation of Mcl-1 mRNA and PI3K-

dependent stabilization of Mcl-1 protein levels. Depletion of Mcl-1

reverses the block in mitochondrial outer membrane permeabili-

zation and sensitizes infected cells to apoptosis induced by GrB,

stress and death receptor-mediated pathways. Our data suggest

the up-regulation and stabilization of Mcl-1 are crucial events for

the apoptosis resistance of C. trachomatis-infected cells for a broad

range of apoptotic stimuli.

Results

Mcl-1 is up-regulated in a MAPK-dependent fashion in
infected cells

Cells infected with C. trachomatis have previously been

demonstrated to resist the activation of Bax and Bak to prevent

mitochondrial outer membrane permeabilization and the release

of cytochrome c from the mitochondria [26]. Using RNA

interference screens, we identified host factors which upon

knockdown sensitized infected cells for apoptosis induced by

ligation of the TNF receptor (unpublished data). Since a dominant

role of anti- and pro-apoptotic Bcl-2 family members in regulating

mitochondrial outer membrane permeabilization is well docu-

mented, we searched for such factors among the hit list. The only

anti-apoptotic Bcl-2 family member identified by this approach

was Mcl-1. In addition, Mcl-1 has previously been demonstrated

to be significantly up-regulated in C. trachomatis-infected cells

[27,28]. To confirm the latter observations, we tested for the

mRNA and protein levels of Mcl-1 in C. trachomatis-infected cells.

Q-PCR and immunoblot analysis revealed that Mcl-1 is strongly

up-regulated in a time dependent manner in HeLa cells infected

with C. trachomatis (Fig. 1A,B). Mcl-1 was also up-regulated in

infected human primary End-1 cells (endocervical epithelial cells)

(Fig. 1B), and HEp-2 cells (data not shown), suggesting that Mcl-1

up-regulation is a general effect of C. trachomatis infection. As Mcl-1

has been shown to be profoundly regulated by MAPK signaling,

we investigated the role of MAPK pathways towards the up-

regulation of Mcl-1 and resistance to apoptosis in infected cells. To

perform these experiments, we first checked if the RAS/MAPK

cascade is activated in C. trachomatis infected cells. Previous studies

have also demonstrated that acute infection with C. trachomatis can

activate MAPK in HeLa cells [29]. Consistent with the published

observations, Ras-GTP could be pulled down from the infected

cells at 15 h post infection (Fig. 1C) and Raf, ERK and AKT were

activated as revealed by their active-phosphorylation status during

the early and late phase of infection (Fig. 1D,E). To further

analyze if MAPK pathways play any role in modulating Mcl-1

levels in the infected cells, we exploited the use of chemical

inhibitors. HeLa cells were infected in the presence or absence of

MEK-1 inhibitor U0126 or the PI3K inhibitor LY294002. While

treatment of infected cells with U0126 did not exert any significant

alteration in the chlamydial growth or cell survival, treatment with

LY294002 caused a defect in the fusion of inclusions suggesting

that PI3K pathway may play a crucial role in the fusion of

chlamydial inclusions (data not shown). Q-PCR analysis of Mcl-1

mRNA levels revealed that Mcl-1 was up-regulated in the infected

cells in a MEK-dependent fashion, while cIAP-2 levels remained

unaltered (Fig. 1F). As Mcl-1 protein levels were also shown to be

influenced by PI3K activation, we infected HeLa cells and the

protein levels of Mcl-1 were monitored after treatment with

MAPK inhibitors. Inhibition of PI3K leads to complete loss of

Mcl-1 protein levels in the control and infected cells (Fig. 1G),

suggesting a role for MEK-1 and PI3K pathways in modulating

the expression and stabilization of Mcl-1.

Mcl-1 is required to prevent apoptosis induced by
intrinsic and extrinsic pathways

As C. trachomatis infection predominantly blocks apoptosis

upstream of mitochondrial outer membrane permeabilization

and cytochrome c release, we checked if interfering with Mcl-1

expression could sensitize Chlamydia infected cells to apoptosis.

Transfection of siRNAs against Mcl-1 downregulated Mcl-1

mRNA and protein levels as was analyzed by quantitative realtime

PCR (q-PCR) and immunoblot analysis (Fig. 2A,B). As expected,

silencing of Mcl-1 using siRNAs sensitized C. trachomatis-infected

cells to TNF/CHX-induced apoptosis (Fig. 2C,D). As C. trachomatis

infection can also resist the intrinsic pathway of apoptosis

induction [30], the effect of Mcl-1 silencing on cisplatin- and

staurosporine-mediated apoptosis was tested in infected cells.

Interestingly, silencing of Mcl-1 sensitized infected cells to both

these inducers of apoptosis (Fig. 2E–F), confirming that Mcl-1 is

primarily required for apoptosis resistance in C. trachomatis infected

cells. However, sensitization to apoptosis was confined only to cells

that carry small inclusions in the range of 4 to 8 mm, while the cells

which carry inclusions larger than 10 mm still resisted apoptosis

despite the suppression of Mcl-1 (Fig. S1), suggesting that

Chlamydia Regulated Apoptosis
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Figure 1. Mcl-1 is up-regulated via MAPK pathways during C. trachomatis infection. (A,B) HeLa cells were infected with C. trachomatis (MOI
3) and the expression of Mcl-1 was determined in HeLa cells by q-PCR (A) and in HeLa and End-1 cells by immunoblot analysis, at various time points
post infection (B). (C) Infection with C. trachomatis leads to the activation of Ras in the host cells. Serum-starved HeLa cells were infected with C.
trachomatis for 15 h and active Ras GTP was pulled down as mentioned in Materials and Methods S1. Total Ras in the lysates and in the pull down
sample (PD) was monitored. (D) HeLa cells were infected with C. trachomatis (Ctr) at a MOI of 3 for 20 h and the activation of Raf, ERK and AKT was
checked by immunoblot analysis using phospho-specific antibodies. Prohibitin (PHB) was used as loading control. (E) Early time points of the
experiment described under (D). HeLa cells were infected for the indicated time points (minutes). One control with heat inactivated bacteria (900*)
was included. (F) Up-regulation of Mcl-1 mRNA is dependent on MEK-1. Cells were infected either in the presence or absence of 10 mM of U0126 or
62.5 mM of LY294002 for 20 h. The cells were then lysed and the expression of Mcl-1 and cIAP-2 was monitored by q-PCR analysis. Shown are the data
from three independent experiments. The error bars represent the 6SD of the mean. (G) MEK-1 and PI3K involved in the regulation of Mcl-1 protein
levels. Cells were infected with heat inactivated (HI) or living C. trachomatis and the MAPK inhibitors U0126 (1, 10, 100 and 500 mM) and LY294002
(0.3, 3 and 30 mM) were added. The cells were then lysed at 20 h post infection and the protein levels of Mcl-1 were monitored by immunoblot
analysis. Actin was used as a loading control.
doi:10.1371/journal.pone.0003102.g001
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Figure 2. Mcl-1 is required to resist apoptosis induced by various inducers. (A,B) Si- or shRNAs directed against luciferase (siLuc)/empty
vector (vector) and Mcl-1 (si/shMcl) were transfected into HeLa cells. The efficiency of silencing Mcl-1 was monitored by q-PCR (A) and by immunoblot
analysis (B). (C–F) Cells were then infected (Ctr) at an MOI of 3 and induced to apoptosis by the treatment with TNF/CHX (TNF; C,D), cisplatin (cis; E) or
staurosporine (STS; F) as indicated. Cells were fixed, the nuclei were stained with Hoechst (blue) and apoptotic cells were identified by the TUNEL
assay (green). For quantification, TUNEL positive cells from each sample were counted from five different fields. Shown are the data from three
independent experiments. The bars and the error bars represent the mean6SD, respectively. (G) Sensitization to TNF/CHX mediated cell death by
silencing Mcl-1 in infected cells, is confined to the early stages of infection. Control and shMcl-expressing cells were infected as mentioned above and
induced to apoptosis with TNF/CHX at various time points of infection. The cells were lysed in sample buffer and the processing of PARP was
monitored by immunoblot analysis. Chlamydial Hsp60 (cHSP60) was detected to determine the infection load and Tubulin was used as a loading
control.
doi:10.1371/journal.pone.0003102.g002
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apoptosis resistance depends on the host cell signaling machinery

only during the early stages of infection. We therefore performed

time course experiments and tested for cleaved PARP as readout

for apoptosis to further substantiate our initial finding with a

different assay at different time points. Infected HeLa cells were

protected from TNF/CHX-induced apoptosis at 24 and 48 h.

Depletion of Mcl-1 sensitized cells infected for 24 h whereas those

infected for 48 h remained resistant for TNF/CHX comparable to

the treated and infected wildtype cells (Fig. 2G). These data

demonstrated an infection cycle dependent role of Mcl-1 in the

apoptosis resistance of infected cells.

The results were further confirmed in primary End-1cells. Since

these cells were not accessible for siRNA transfection (not shown),

Mcl-1 protein levels were reduced by treatment with the PI3K

inhibitor LY294002. Under these conditions, Chlamydia-infected

END-1 cells were sensitized to staurosporine-mediated apoptosis

(Fig. S2A), suggesting that the observed effect is not confined to

transformed cells.

RAS/MAPK-Mcl-1 axis is required to resist Granzyme B-
mediated apoptosis in the infected cells

Cytotoxic T lymphocyte (CTL)-induced death triggered by the

granule exocytosis pathway involves the perforin-dependent delivery

of granzymes to the target cell. Previous studies have revealed that C.

trachomatis infection can resist granzyme B-mediated apoptosis by

blocking cytochrome c release and caspase activation [5]. Treatment

of HeLa cells with 1 mg of GrB/LV induced apoptosis efficiently as

revealed by fragmentation of chromatin (Fig. 3A). As expected, cells

infected with C. trachomatis resisted GrB/LV-mediated cell death and

pretreatment of cells with MAPK inhibitors sensitized infected cells

to killing by GrB/LV (Fig. 3A,B). In addition, we have established

permanent shRNA-mediated silencing of Mcl-1 expression. The

efficiency of knock down was validated by realtime PCR and

immunoblot analysis (Fig. 2A,B). Control and Mcl-1-silenced HeLa

cells were infected and treated with GrB/LV. In line with a role of

Mcl-1 in conferring resistance to GrB-induced apoptosis, infected

cells depleted of Mcl-1 were strongly sensitized for apoptosis

(Fig. 3C). Consistent with our previous observations, sensitization

to apoptosis was confined only to cells carrying smaller inclusions

(Fig. 3D). The difference in the susceptibility for GrB-induced

apoptosis of cells with small and large inclusions did not depend on

the shMcl cell line. HeLa cells induced at the late phase of infection,

when the cells contained mainly large inclusions, failed to respond to

GrB upon inhibition of MAPK (Fig. S2B,C), suggesting that

apoptosis resistance during the late stage of infection is independent

of MAPK and Mcl-1.

BH3-only proteins are not degraded during C.
trachomatis infection

Previous studies have demonstrated that mitochondrial outer

membrane permeabilization in cells infected with C. trachomatis is

primarily blocked by the degradation of the BH3-only proteins in

a proteasome-dependent manner [21–23]. To test if BH3-only

proteins are degraded during C. trachomatis infection under our

experimental settings, we checked for the protein levels of Bim,

Bad, Puma and Bid by immunofluorescence as well as by

immunoblot analysis (Fig. 4, S3, S4). HeLa cells were infected

with C. trachomatis and cells were lysed directly in sample buffer at

various time points post infection as mentioned in the methods. As

seen in figure 4A, the protein levels of Bad, Bim, PUMA and BID

almost remained constant during the infection time course.

Quantification of the bands was performed by densitometric

analysis (see Materials and Methods S1) and the results were

plotted (Fig. S5). Antibody specificity was once more demonstrated

by RNAi and immunoblot analysis of the respective genes (Fig. 4A).

Besides the BH3-only proteins, keratin 8 has been reported to be

cleaved in cells infected with C. trachomatis [31]. We therefore tested

the same samples for keratin 8 cleavage to rule out major

differences between our infection conditions and the published

ones. As shown in figure 4A, keratin 8 levels strongly decreased

with the onset of chlamydial growth indicated by increasing

cHSP60 levels, confirming keratin 8 as a substrate in these infected

cells. In parallel, HeLa cells grown on coverslips and infected with

C. trachomatis were fixed at various time points post infection and

stained for Bim, Bad, Bid or Puma with the respective antibodies

(for details see Materials and Methods S1). As shown in the figure

S4, despite the presence of chlamydial inclusions, the intensity of

the fluorescence did not decrease during the infection time course,

which implies that there is no degradation of these proteins. To

check if the antibodies were specific for the proteins of interest,

siRNAs were used to silence the respective genes, and the

transfected cells were used as a negative control for the

immunofluorescence studies (Fig. 4B–D). In summary, these data

suggested that degradation of BH3-only proteins cannot account

for the apoptosis resistance in our infection protocol.

Loss of Mcl-1 can rescue mitochondrial outer membrane
permeabilization and caspase activation in the infected
cells upon apoptosis induction

We have previously demonstrated that caspase activation upon

TNF/CHX-mediated apoptosis induction in C. trachomatis-infected

cells could be blocked by the up-regulation of cIAP-2 and by the

stabilization of IAP-IAP complexes [25]. As MAPK pathway may

also influence the stability of IAPs in the infected cells, we have

checked for the influence of MAPK pathway on the stabilization of

IAPs. Treatment of infected cells with both, U0126 as well as

LY294002 caused the destabilization of cIAP-2 protein without

altering the mRNA levels in the infected cells (Fig. 1F, S6),

underlining the central role of MAPK in the control of anti-

apoptotic proteins in Chlamydia-infected cells. The finding that

MAPK regulate both Mcl-1 and cIAP-2, explained why interfering

with MAPK function sensitized infected cells for the induction of

apoptosis. The question, however, remained, how interference

with apoptosis regulators acting upstream and downstream of

mitochondria like Mcl-1 and IAPs, respectively, also affected

apoptosis resistance of infected cells. To test if silencing of Mcl-1

can rescue mitochondrial outer membrane permeabilization and

release of pro-apoptotic proteins from the mitochondria of infected

cells, the release of Smac/DIABLO, a direct inhibitor of IAPs,

from the mitochondria after apoptosis induction was analyzed.

Loss of Mcl-1 led to the release of Smac in the infected cells when

induced to apoptosis with TNF/CHX (Fig. 5A,B; for enlarged

versions see Fig. S7). Statistical analysis revealed that the effect

observed in shMcl-1 cells was highly significant (P#0.0003;

Fig. 5C). In conclusion, Mcl-1 up-regulation protects the infected

cells from mitochondrial outer membrane permeabilization, which

would otherwise result in the release of Smac/DIABLO, inhibition

of IAPs and the activation of caspases (Fig. 5D).

Discussion

Chlamydia employs multiple pathways to interfere with host cell

apoptosis induced via death receptors and stress [32]. The

underlying mechanism is currently investigated intensively and

involves the activation of NFkB [33], upregulation and stabiliza-

tion of inhibitor of apoptosis proteins (IAPs) [25,33] and the prevention

of Bak and Bax activation [20,21].

Chlamydia Regulated Apoptosis
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Figure 3. MAPK activation by C. trachomatis is required to resist Granzyme B-mediated cell death. (A) Control and infected cells (Ctr)
were treated with MAPK inhibitors U0126 (U0) and LY294002 (Ly) 7 h post infection and at 20 h post infection, the cells were induced to apoptosis
with GrB/LV for 4 h. The cells were stained with Hoechst to visualize the apoptotic cells with fragmented chromatin. (B) Quantification of the
experiment shown in (A). Apoptotic and non-apoptotic cells were counted from five different fields. The bars represent the mean of three
independent experiments 6SD. (C) Control cells (pLVTHM) or Mcl-1-depleted cells (shMcl-1) were infected (Ctr) and induced to apoptosis by the
treatment with Granzyme B (GrB). (D) Sensitization to GrB-mediated cell death is confined only to cells that carry small inclusions. The cells with an
inclusion size of 8–10 mM failed to get sensitized for apoptosis despite the inhibition of MAPKs. Yellow arrows point the big inclusions and white
arrows point the small inclusions which fail to resist apoptosis. The white bars represent a length of 50 mM.
doi:10.1371/journal.pone.0003102.g003
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We observed an infection cycle-dependent sensitization profile of

infected cells for apoptotic stimuli. The initial phase of the infection

cycle, characterized by full sensitivity of the host cell for apoptotic

stimuli, is followed by a time window from about 16 to 24 hours post

infection during which apoptosis resistance depends on the

activation of host anti-apoptotic factors like IAPs and Mcl-1.

Recently it has been suggested, that apoptosis inhibition by C.

trachomatis does neither require IAPs nor Mcl-1 in cells derived from

genetically modified mice [34]. Apart from the species and cell type

specific differences, these discrepancies could also be attributed to the

stage of infection or inclusion size. Consistent with these observa-

tions, we detected that host cells are fully resistant to apoptotic

stimuli during late phase infections despite the loss of IAPs or Mcl-1

(data not shown). The mechanism underlying apoptosis resistance

during the late phase of infection is not known; it is, however,

tempting to speculate that bacterial factors then directly interfere

with the host cells’ apoptosis machinery.

It has been suggested that the block in apoptosis signaling

depends on the downregulation of BH3-only proteins in cells

infected with Chlamydia since depletion of several of these activators

of the intrinsic apoptosis pathways has been demonstrated [21–

23]. Since BH3-only proteins have been shown to inactivate BH1-

4 proteins like Mcl-1 [35], infection-induced upregulation of Mcl-1

and depletion of BH3-only proteins would nicely fit to a general

and multi-level inhibition of apoptosis upstream of mitochondria.

In contrast to these reports, we could, however, not detect

significant and long-lasting depletion of BH3-only proteins using

immunofluorescence and immunoblot techniques with carefully

validated antisera. The observed discrepancy could not be

attributed to the infection conditions as we have detected a

decrease in protein levels of keratin 8, a substrate of chlamydial

protease-like activity factor, CPAF [31], with the onset of

chlamydial growth, in our experiments. Another possibility is the

unspecific degradation of proteins in lysates of infected cells (K.R.,

Figure 4. BH3-only proteins are not degraded during C. trachomatis infection. (A) HeLa cells were either transfected with the siRNA (siRNA)
to downregulate the respective BH3-only protein or infected with C. trachomatis (Ctr) (MOI 3) for the indicated time points (h). Infected cells were
immediately lysed with sample buffer as described in experimental procedures. The proteins were separated by SDS PAGE and immunoblots are
performed to detect the protein levels of Bad, Bim, Bid and PUMA. Bacterial Hsp60 (cHSP60) was used as an infection marker and b-actin as a loading
control. Activity of chlamydial protease- like activity factor, CPAF, was checked by detecting the levels of keratin-8. Immunofluorescence analysis of
cells infected with C. trachomatis for expression of (B) BID, (C) BIM and (D) PUMA at 0 and 30 h post infection. The specificity of the antibody was
verified by staining cells transfected with validated si- or shRNAs directed against control (siLuc) and the respective genes.
doi:10.1371/journal.pone.0003102.g004

Chlamydia Regulated Apoptosis
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T.R., unpublished observations). In any case, degradation of BH3-

only proteins can not be the (only) reason for apoptosis resistance

in infected cells.

Recently, we have demonstrated that cells infected with C.

pneumoniae [33] and C. trachomatis resist TNF-induced apoptosis

primarily by the up-regulation of cIAP-2 and the stabilization of

IAP-IAP complexes to block the processing and activation of

effector caspases [25]. The resistance to TNF/CHX-induced

apoptosis at the caspase-3 level suggests that cells infected with

Chlamydia resist the release of Smac, which is indeed required

during TNF/CHX-induced apoptosis to relieve the inhibition on

caspases-3 processing and activation [36]. Here we show that the

block in the release of Smac from the mitochondria is reverted in

the infected cells upon apoptosis induction suggesting that Mcl-1 is

probably the prime block upstream of mitochondria modulating

the release of Smac in these cells. Of interest in the same lines is

also a recent study made by Mimuro et al. [37], which

demonstrates the CagA dependent upregulation of Mcl-1 in

gastric pits to prevent the replenishment of gastric epithelium and

to sustain H. pylori infection. Thus activation of MAPK and

upregulation of Mcl-1 may be a more general strategy in

combating host cell apoptosis for successful infection.

Our data show that MAPK pathways activated by C. trachomatis

play a crucial role in maintaining apoptosis resistance in the infected

cells in response to different apoptosis inducers. Most importantly,

we have investigated strategies employed by C. trachomatis to resist

GrB-mediated apoptosis, the most relevant apoptotic pathway

employed by the CTLs to clear intracellular infections. Mitochon-

dria play a crucial role during several pathways of apoptosis

induction including the GrB pathway. Viruses and bacteria have

evolved strategies to modulate mitochondrial outer membrane

permeabilization either by regulating the levels of host Bcl-2 family

proteins or by the release of effector proteins to host cell cytosol to

directly influence mitochondrial outer membrane permeabilization

Figure 5. Mcl-1 is primarily required to resist mitochondrial outer membrane permeabilization and caspases activation in C.
trachomatis infected cells. (A,B) Mcl-1 is required for preventing the release of Smac from the mitochondria of C. trachomatis infected cells upon
TNF/CHX induction. Control (HeLa cells with empty vector) (A) and shMcl cells (B) were infected at an MOI of 5 and treated with TNF/CHX as
mentioned in Experimental procedures. Shown are images from one representative experiment. Smac was stained in green and nuclei in blue. The
arrows point to chlamydial inclusions (C) Quantification of cells with released Smac (for details see Experimental procedures). Shown are the data
from three independent experiments. Error bars represent the 6SD of the mean. (D) Model of signaling cascades involved in apoptosis inhibition
during the early phase of Chlamydia infection. Infection induces the activation of MAPK pathways resulting in the upregulation and stabilization of
Mcl-1 and IAP. Mcl-1 upregulation prevents the mitochondrial outer membrane permeabilization and the release of the IAP inhibitor Smac/DIABLO.
IAPs prevent the activation of caspases, particularly the conversion of the caspases-3 inactive p19 fragment to the active p17 fragment.
doi:10.1371/journal.pone.0003102.g005
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[38]. Recent studies have revealed the important role of Mcl-1 in

modulating mitochondrial outer membrane permeabilization as

destabilizing Mcl-1 can induce the release of cytochrome c from the

mitochondria [39]. Thus, the strong up-regulation and stabilization

of Mcl-1 during acute and persistent infections explains the previous

observation of a complete block of mitochondrial outer membrane

permeabilization in the C. trachomatis infected cells.

C. trachomatis infection activates Ras which in turn can activate

the Raf/MEK/ERK pathway and the PI3K/AKT pathway. We

found that active MEK-1 is responsible for the upregulation of

Mcl-1 mRNA while an active PI3K pathway is required for the

stabilization of Mcl-1 protein levels. Interestingly, we have

detected that the Raf/MEK/ERK and the PI3K/AKT pathway

are also required for the infection-induced stabilization of cIAP-2

protein (Fig. S6). This may explain why inhibition of either of

these MAPK pathways sensitized infected cells to GrB-, stress- and

death receptor-mediated induction of apoptosis (Fig. 3 and data

not shown). We therefore propose the following model for

apoptosis resistance in C. trachomatis-infected cells (Fig. 5E): During

the early phase of infection, Mcl-1 and IAPs are upregulated and

stabilized in a MAPK-dependent manner. Infection-induced

upregulation of Mcl-1 prevents the release of the IAP antagonist

Smac/DIABLO whereas IAP upregulation directly prevents the

activation of caspases-3. In this model, interference with MAPK

signaling affects both branches of apoptosis inhibition up- and

down-stream of mitochondria (Fig. 5E). Depletion of Mcl-1

sensitizes infected cells for the release of the strong IAP antagonist

Smac/DIABLO whereas downregulation of IAPs may allow the

activation of caspases in the absence of significant cytosolic levels

of Smac/DIABLO.

Materials and Methods

Propagation of Chlamydia
C. trachomatis LGV serovar L2 was propagated in HEp-2 cells

and purified as described previously [40]. Shortly, HEp-2 cells

infected with C. trachomatis for 72 h were harvested with a rubber

policeman followed by a low speed centrifugation at 5006g at 4uC
for 10 min (Hermle). Cells in the pellet were ruptured using glass

beads and the lysates were centrifuged as before. The supernatants

were removed and centrifuged at 45,0006g for 45 min at 4uC in a

SS34 rotor (Sorvall Instruments) to pellet Chlamydia. Chlamydia

were washed in SPG–buffer (0.22 M Sucrose, 10 mM Na2HPO4,

3.8 mM KH2PO4, 5 mM Glutamate, pH 7.4) and stored at

275uC. Fresh stocks were used for each experiment.

Cell culture and infection with Chlamydia trachomatis
HeLa and HEp-2 cells were cultured in RPMI-1640 medium

supplemented with 10% fetal calf serum (Gibco BRL) at 37uC in

5.0% CO2. End1 cells were cultured in a medium containing 1:1

mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12

medium containing 10% fetal bovine serum. HeLa cells were

infected in the presence or absence of MAPK inhibitors U0126

(Cell Signaling Technology) at a final concentration of 10 mM, LY

294002 (Calbiochem) at a final concentration of 65 mM. Cells

were infected with C. trachomatis with an MOI of 3–5 in RPMI with

5% FCS at 35uC for 2.5 h. After the medium was exchanged for

fresh medium with 10% FCS, infected cells were incubated for

22 h at 35uC. The cells were then induced to apoptosis with

various apoptosis inducers as described below.

Transfection of siRNAs and subsequent infection
To inhibit expression of genes by siRNAs, 50,000 cells/well

were seeded in a 12-well plate at least 20 h prior to transfection.

Short interfering RNAs designed for the inhibition of the genes

under investigation and for luciferase (siLuc) as negative control

were transfected using the Transmessenger transfection kit or the

RNAiFect transfection kit (Qiagen). One day post transfection, the

nearly confluent cells were infected with C. trachomatis and 24 h

later the samples were analysed by immunoblot and apoptosis

analysis. SiRNAs targeting the following sequences were employed

in this study: siLuc- 59-AACUUACGCUGAGUACUUCGA-39,

siMcl-1 [2] 59-AAGAAACGCGGUAAUCGGACU-39, siMcl-1

[3] 59-AAGGACACACAAAGCCAATGG-39, siBim 59-CGGA-

GACGAGTTTAACGCTTA-39, siBad 59-ACGAGTTTGTG-

GACTCCTTTA-39, siPuma 59- CAGCCTGTAAGATACTG-

TATA-39, siBid 59-TAGGGACTATCTATCTTAATA-39. Note

that for silencing of Mcl-1, we have transfected both the siRNAs

together at a final concentration of 60 nM each.

Apoptosis induction
Infected and control cells were induced to apoptosis with

cisplatin (Sigma) at a final concentration of 60 mM for 15 h or with

40 ng/ml of human recombinant TNFa (Pharmingen) with 2 mg/

ml of cycloheximide (Sigma) for 4 h or with 1.5 mM of

staurosporine (Sigma) for 5 h. For induction of apoptosis with

GrB, human lymphocytes derived GrB (1 mM) was mixed with

lentiviral particles as described before [41] and then added to cells

in the presence of polybrene (Sigma). Four hours post induction,

the cells were fixed with 3% paraformaldehyde. Note that cisplatin

was added at 7 h post infection for 15 h and TNF/CHX, STS and

GrB/LV were added around 20 h post infection for 4–5 h.

TUNEL assays
Apoptotic cells were detected by the DeadEndTM Fluorometric

Terminal dUTP Nick End Labeling (TUNEL) assay according to

manufacturer’s instructions (Promega). HeLa cells were transfect-

ed and infected as described above. One day post transfection cells

were trypsinized and 50,000 cells/well were seeded in a 12 well

plate on glass coverslips. After apoptosis induction, cells were fixed

with 3% PFA for 30 min at room temperature, washed twice with

PBS and permeabilized with 0.2% Triton-X-100 in PBS for

10 min. After washing with PBS, cells were covered with 25–35 ml

of Equilibration buffer at room temperature for 10 min. Then cells

were labeled with fluorescein-12-dUTP for 60 min. The reaction

was stopped by addition of 2-fold SSC for 15 min, washed with

PBS and mounted on glass slides with Moviole. Quantification was

performed by counting TUNEL stained cells from various fields.

Approximately 500 cells were counted per sample for statistical

analysis.

Smac release assay
Control and Mcl-1 knockdown cells were grown on coverslips

and infected with C. trachomatis. 24 h post infection, apoptosis was

induced in infected and control cells with TNFa and cyclohex-

imide. After 6 h, the cells were fixed with 4% PFA. The cells were

then washed once with PBS and permeabilised with 1% Triton/

PBS for 10 min. Blocking was done using 1% BSA and 0.05%

Tween 20 in PBS, for 30 min. The samples were incubated

overnight with anti Smac antibody (BD Pharmingen) at a dilution

of 1:100, in PBS. The samples were washed twice with PBS and

the bound antibodies were detected using Anti-Mouse Cy-2

conjugated secondary antibody. The coverslips was examined by

confocal microscopy under a Leica confocal microscope with TCS

software in accordance with established methods. Five fields were

selected randomly for each sample and digitally recorded. In the

untreated cells, Smac has a mitochondrial localization which

results in a punctate staining. After mitochondrial outer mem-
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brane permeabilization, Smac localises to the cytosol resulting in a

strong reduction of punctate and total Smac staining as previously

described [42]. For each field, the latter cells were counted

manually and the percentage of such cells in the total number of

cells was calculated.

Supporting Information

Materials and Methods S1

Found at: doi:10.1371/journal.pone.0003102.s001 (0.04 MB

DOC)

Figure S1 Sensitization to apoptosis is confined only to cells

carrying small inclusions. HeLa cells were transfected with siRNAs

directed against Mcl-1, infected with C. trachomatis for 24 h and

induced to apoptosis with TNF/CHX as mentioned in Experi-

mental procedures. The chlamydial inclusions are stained in

orange and the nuclei are stained in blue with Hoechst dye and

fragmented DNA was detected by TUNEL staining (Green). The

white arrows in the cells depleted of Mcl-1 point to chlamydial

inclusions which fail to resist apoptosis.

Found at: doi:10.1371/journal.pone.0003102.s002 (2.81 MB TIF)

Figure S2 (A) Treatment with LY294002 sensitizes C. tracho-

matis infected End-1 cells to staurosporine-induced apoptosis.

End-1 cells were infected with C. trachomatis at an MOI of 3 with

or without the presence of 10 mM of LY294002. The cells were

treated with staurosporine at 24 h post infection. The cells were

lysed in sample buffer and the protein levels of cleaved PARP,

Mcl-1, pAKT were detected by immunoblot analysis. Actin was

used as a loading control and the extent of infection was monitored

by checking the Chlamydia Hsp60 levels. (B,C). Cells carrying

large inclusions (.8 mm) are not sensitized to GrB/LV-mediated

apoptosis despite the inhibition of MAPKs. HeLa cells were

infected in the presence of MAPK inhibitors at an MOI of 5 for

24 h and induced to apoptosis with GrB/LV. The cells were fixed

and stained for Hoechst 3342 to detect the chromatin. Shown are

the data from three independent experiments. The bars and error

bars represent the mean+/2SD.

Found at: doi:10.1371/journal.pone.0003102.s003 (0.73 MB TIF)

Figure S3 BH3 only proteins are not degraded during C.

trachomatis infection. HeLa cells infected with C. trachomatis for

various time points were fixed and stained with antisera directed

against BAD (A), BID (B), BIM (C) and PUMA (D). Shown are the

images obtained from one representative experiment under 206
magnification under an immunofluorescence microscope.

Found at: doi:10.1371/journal.pone.0003102.s004 (4.38 MB TIF)

Figure S4 HeLa cells were infected for 30 h and the expression

of BIM, BID, BAD and PUMA was checked by immunofluores-

cence analysis. Shown are the images from one representative field

(206). The Overlay of the green and phase contrast images

revealed that despite the presence of Chlamydial inclusions, there

is no alteration in the expression levels of these proteins.

Found at: doi:10.1371/journal.pone.0003102.s005 (6.34 MB TIF)

Figure S5 Quantification of immunoblots shown in Figure 4A.

The immunoblots of BID (A), BAD(B), BIM (C) and PUMA (D)

were quantified as described in the supporting methods. Shown

are the data from one representative experiment.

Found at: doi:10.1371/journal.pone.0003102.s006 (0.31 MB TIF)

Figure S6 MEK-1 and PI3K involved in the regulation of cIAP-

2 protein levels. Cells were infected with C. trachomatis and the

MAPK inhibitors U0126 (10 and 100 mM) and LY294002 (31, 62,

125 mM) were added. The cells were then lysed at 20 h post

infection and the protein levels of cIAP-2, active AKT and ERK

were monitored by immunoblot analysis. Prohibitin was used as a

loading control.

Found at: doi:10.1371/journal.pone.0003102.s007 (0.18 MB TIF)

Figure S7 Enlarged presentation of the Smac immunofluorens-

cence images shown in figures 5A and 5B.

Found at: doi:10.1371/journal.pone.0003102.s008 (6.51 MB TIF)
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