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Abstract

Background: The study investigated the residual impact of eyeblinks on the electroencephalogram (EEG) after application
of different correction procedures, namely a regression method (eye movement correction procedure, EMCP) and a
component based method (Independent Component Analysis, ICA).

Methodology/Principle Findings: Real and simulated data were investigated with respect to blink-related potentials and
the residual mutual information of uncorrected vertical electrooculogram (EOG) and corrected EEG, which is a measure of
residual EOG contribution to the EEG. The results reveal an occipital positivity that peaks at about 250ms after the maximum
blink excursion following application of either correction procedure. This positivity was not observable in the simulated
data. Mutual information of vertical EOG and EEG depended on the applied regression procedure. In addition, different
correction results were obtained for real and simulated data. ICA yielded almost perfect correction in all conditions.
However, under certain conditions EMCP yielded comparable results to the ICA approach.

Conclusion: In conclusion, for EMCP the quality of correction depended on the EMCP variant used and the structure of the
data, whereas ICA always yielded almost perfect correction. However, its disadvantage is the much more complex data
processing, and that it requires a suitable amount of data.
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Introduction

Psychophysiological research requires the acquisition of small

signals. Hence a big problem in this research area is the sensitivity of

these signals for artefacts. Despite the reduction of technical artefacts

in the recent years, the impact of biological artefacts still represents a

considerable problem. Especially in the acquisition of the electroen-

cephalogram (EEG) they play an important role, since the recorded

signal is, compared to other biosignals, very low. One of greatest

nuisances are those artefacts resulting from oculomotor activity.

These artefacts are almost inevitable because subjects cannot well

control spontaneous eye movements or blinks. Further, the

instruction to inhibit eye movements or blinks may seriously distort

brain activity [1]. Several methods have been developed to cope with

the problem of ocular artefacts. The most popular approach is the

correction of ocular artefacts by means of regression analysis.

In general, in regression based approaches propagation factors

are calculated to estimate the relation between one or several EOG

channels and each recorded EEG-channel [2]. These propagation

factors are usually estimated by least squares regression. The eye

movement correction procedure [EMCP, 2] is an example for such

an approach. The rationale of the procedure is:

1. Raw averaging: averaging of all trials with respect to an event

for each EEG and EOG-channel to estimate the event related

variation for the EEG and EOG-channels

2. Raw average subtraction: subtraction of the raw averages from

every single trial to estimate the activity at an electrode site, for

each trial, that is not event related.

3. The propagation factors are computed by linear least-square

regression, whereby the EOG-data serves as the independent

variable

4. Correction: the derived propagation factors are used to correct

the raw EEG data by subtraction of the EOG-values scaled by

the propagation factors

A theoretically different approach for the correction of ocular

artefacts is based on the assumption of a component model. The

goal of these procedures is to decompose EOG and EEG into

spatial and temporal distinguishable components. After identifica-

tion of components constituting ocular artefacts, the EEG is

reconstructed without those components. The most popular

example for a component based procedure is principal component

analysis (PCA) [e.g. 3]. Another technique is the correction by

using a dipole model [4]. With this multiple source eye correction

(MSEC) method ocular artefacts are modelled by moving dipoles

of the eyes, and this activity is subtracted from the EEG.

A more recent method is Independent Component Analysis

(ICA), which is an approach for the solution of the blind source

separation (BSS) problem [5]. It is not only a correction

procedure, but a more general approach for multivariate data
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analysis. The general model of ICA is that the observed signals x

are constituted by linearly mixed (A) sources s (x = As). These are

unknown and mutually statistically independent. Since mixture

and sources are unknown, the inverse of the mixing matrix W has

to be estimated blindly. This leads to a solution u = Wx, where u are

the estimated sources. The estimation of W is based on minimizing

a cost function that enforces statistical independence.

ICA is, like PCA, a method for decorrelating data, but whereas

PCA uses only second order statistics and assumes the underlying

sources to be orthogonal, ICA uses higher order statistics.

Concerning the EEG, it is assumed that the recorded signal is a

linear mixture of unknown sources within the brain. Because the

sources and therefore the mixture are unknown, they need to be

estimated. The basic assumption of ICA, that the sources are

statistically independent while the mixture is not, is neuroana-

tomically and neurophysiologically plausible, since cortical (and

other) areas are spatially distinct and generate a specific activation,

but correlate in their flow of information [6]. Several algorithms

have been developed to solve the BSS problem. In the present

study the extended infomax [7] (infomax = information maximi-

zation) algorithm was used. Infomax had already been shown to be

a reliable method for the decomposition of multi-channel EEG

data [8–12]. The basic correction procedure with ICA is shortly

described as follows (without pre-processing steps):

1. Conduction of ICA by an appropriate algorithm

2. Identification of blink-like components (e.g .by time-course of

activity, scalp topography)

3. Removal of the blink-component and backprojection of the

remaining components by xclean = W21u [11]

Although several studies have compared different algorithms

with respect to their performance in artefact correction [13–16],

only few attempts have been made to compare the different

correction procedures concerning their impact on the event-

related-potential directly.

The present study investigated to what extent the EEG was still

contaminated by eyeblink related activity after application of

different artefact correction procedures. Since it is an open

discussion which procedure is appropriate in general for the

correction of ocular artefacts, two widely used approaches with

different theoretical background were chosen to investigate former

question. The regression based approach (EMCP, [2]), is the

classical well established algorithm. It was conducted with

(EMCPs, which is the original algorithm, [2]) and without raw

average subtraction (EMCP w/s), since omitting the subtraction is

the classical regression approach. It was likely to yield different

results as the EMCPs. The component based approach was the

extended infomax algorithm for Independent Component Analysis

[7,17,18].

To investigate the remaining artefact activity in the EEG

subsequent correction, the EEG-data was time-locked to blinks,

because this approach highlights even very small residual artefacts

[19]. Also in real experimental situations some subjects tend to

blink time locked to events; hence the approach appears to be

realistic.

The present study only dealt with spontaneous eyeblinks, since

with the approach of blink time locked data it is possible to derive

a good estimate of only blink-related activity. Hence the derived

blink-related potential is not contaminated by processes resulting

from some kind of experimental paradigm (i.e. stimuli or

responses).

One problem is the choice of an adequate measure to estimate

the residual impact of the blink artefact to the EEG. Here linear

regression, because of its simplicity in calculation appears to be the

first choice. However, linear regression requires linear dependent

and normally distributed data. This may not always be the case with

EEG and EOG data. As already mentioned blink-time locked

averages for each correction procedure were calculated. Unlike

Berg [19] not only ERPs (i.e .the residual activity at blink-time) were

compared across methods, but also the mutual information of blink-

locked data of the vertical EOG and relevant EEG-channels. This

approach was chosen to quantify if the corrected EEG still contains

information due to eyeblink activity. Compared to second order

statistics (like covariance and hence correlation) mutual information

is a more sensitive measure for the statistical independence oft two

random variables. It is a more general measure for estimating not

only linear dependencies, but also dependencies of higher order

[20]. Further it is independent of the distribution of both tested

variables. In contrast, correlation requires the variables to be

gaussian if their independence is to be tested.

However, for EEG data it has not yet been systematically tested

whether the distributions of the values in the single channels are

always gaussian. In case of non-gaussian distributions correlation,

and validation by linear regression are not appropriate measures of

independence, i.e. the contribution of the eyeblink to the corrected

EEG.

It is assumed that after correcting the EEG it should share less

information with the EOG than the raw uncorrected EEG data,

since the removed blink signal carries most of the mutual

information in blink-time locked data. At first glance this seems

circular, since ICA reduces mutual information, but ICA and

correction by removal of one component must not be confused.

ICA minimizes the mutual information between the estimated

sources. The correction is done by the former described

backprojection x clean = W21 u, which is a linear transformation

like with the regression approach. The amount of reduction of

mutual information depends on how much information the

removed component contributed. If it was high, the data would

be less correlated, and hence the mutual information between

EOG and EEG reduced. But this is also true for the regression

approach: The propagation factor depends on the correlation

between EEG and EOG. A high propagation factor means that

EEG and EOG share much variance. Hence by subtraction of the

weighted proportion of the EOG from the EEG, they would be

also de-correlated.

Since the final goal of a correction procedure is not to make

EEG and EOG independent, but rather to eliminate eye blink

activity from the EEG, it is necessary to additionally have a look at

the time courses of activations in the EEG following correction.

With respect to this, less blink-related EEG activity, i.e. transient(s)

showing a similar time-course as the eye blink data, should be

visible at the selected electrode positions. In summary, mutual

information and blink-related activity was used to assess residual

blink-related activity after application of different correction

procedures on real data. The applied procedures were EMCP

with raw average subtraction (EMCPs), EMCP without raw

average subtraction (EMCP w/s) and an algorithm for Indepen-

dent Component Analysis (extended infomax).

Additionally, simulated data were contaminated with eye blink

artefacts and subsequently corrected to assess the residual activity

remaining following correction. This simulation was added since

with empirical data, the ‘‘true’’ sources are not known, and hence

the goodness of correction can only be estimated by an indirect

measure. In the case of the present study this was done by

estimating mutual information. However, this provides only an

indirect approach and the ground truth is unknown. This is not

true for a data simulation. Here the clean, uncontaminated data

Correction of Ocular Artefacts
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are known and it is possible to estimate precisely the correction

error of the procedures. Moreover, a simulation provides the

advantage that it can be tested whether hypothetical occurring

residual activity after correction is due to over-correction or not.

Since it is not desirable to benefit one correction procedure by the

type of model used for simulation, two models were used for the

present study: One model that generated eyeblinks by assuming a

component model, and a model that generated eyeblinks by means

of regression (i.e. propagation).

Results

Real data
The mean blink rate of the participants was 4.19/min (s = 3.89).

The average blink amplitude was 215.28 mV (s = 40.29) at SO2.

The blink amplitude and its variance correlated significantly with

the mean mutual information prior to correction (r = .71; p,.01

and r = .65; p,.01 respectively). Independent Component Anal-

ysis revealed, for every participant, blink related components

showing the typical time-course and projection to frontal electrode

positions of blink related activity that is observable in the

uncorrected EEG (Figure 1). For every subject a full dimensional

ICA decomposition was conducted (i.e. without PCA preprocess-

ing). The k-means procedure as implemented in EEGLAB

clustered the components clearly into blink components and other

activity. On average the blink components accounted for 99.58%

variance in the time window from 250 to 50 ms around the

maximum blink excursion. For one subject ICA yielded two blink

related components (Figure 1).

Mean mutual information. With respect to the mutual

information the overall repeated measures ANOVA with the

factors correction procedure (extended infomax, EMCPs, EMCP

w/s, raw data) and electrode (FPz, FCz, C3, C4, PO7, PO8, Pz,

Oz) revealed a main effect of procedure (F(3,45) = 191.95; p,.001;

e = .72), a main effect of electrode (F(7,105) = 3.91; p = .006;

e = 0.61) and an interaction of procedure and electrode

(F(21,315) = 5.58; p,.001; e = .249).

The contrast of extended infomax vs. EMCPs revealed a

significant main effect (F(1,15) = 13.248; p = .002), showing that

mutual information was higher for EMCPs than for infomax. There

was no significant effect of electrode position (F(7,105) = 1.269;

p = .294; e = .51) nor a significant interaction of procedure and

electrode position( F(7,105) = 2.39; p = .07; e = .52).

The contrast extended infomax vs. EMCP w/s revealed a

significant main effect of procedure (F(1,15) = 11.75; p = .004)

showing that the mean mutual information was higher for infomax

than for EMCP w/s, and a significant interaction of procedure

and electrode position (F(7,105) = 4.01; p = .005; e = .6), showing

that the effect of procedure varied with the electrode position,

being higher at frontal positions and lower at occipital positions

(Figure 2). The effect of electrode position showed a tendency to

significance (F(7,105) = 2.59; p = .06; e = .491).

Further the mean mutual information was significantly lower

after EMCP w/s than after EMCPs (F(1,15) = 26.59; p,.001).

There was no significant effect of electrode position

(F(7,105) = 1.13; p = .35; e = .74) or interaction of procedure and

electrode position (F(7,105) = .32; p = .82; e = .44).

In summary the mean mutual information of vertical (uncor-

rected) EOG and corrected EEG-channels was significant lower

following application of extended infomax and EMCP w/s than

after EMCPs (Figure 2). Further it differed significantly between

extended infomax and EMCP w/s. Mutual information varied with

electrode position, being larger at frontal and occipital positions,

and smaller at more central and lateral positions (Figure 2).

Residual activity. A blink-related positivity was observable

(Figure 3), that peaked at about 250 ms after the blink maximum.

This positivity was observable after application of either correction

procedure (infomax: t(15) = 8.62; p,.001; EMCP w/s:

t(15) = 7.08; p,.001; EMCPs: t(15) = 7.20; p,.001). It did not

Figure 1. Topographic maps of the projection of blink
components. Upper left: Grand average of activation of the blink-
components back-projected to FPz. Right: Scalp topographies of the
blink components (ic) for each subject (s). Note that ICA revealed for
one subject (s6) two blink related components. The colour-map legend
does not contain values since the ICA topographies represent arbitrary
values.
doi:10.1371/journal.pone.0003004.g001

Figure 2. Real data: Mean mutual information of corrected
EEG-channels and uncorrected vertical EOG. Mutual information
(1 nat<.44?1/(log 2) bits) is highest for uncorrected data, lower for
EMCPs, and lowest for Infomax and EMCP w/s corrected data.
Infomax = extended infomax.
doi:10.1371/journal.pone.0003004.g002
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differ significantly between the different correction procedures

(F(2,30) = 1.34; p = .27; e = .57).

Figure 3 and Animation S1 (suppl. material) show the blink-

related potentials and the corresponding topographic maps. The

topographic maps support the results of the mean mutual

information analysis, revealing residual positive activation at the

former blink-maximum after either correction procedure.

Simulated data
The results indicate a differential impact of the tested

procedures on the simulated and real data. With respect to the

eyeblinks simulated by the component model, the results are

almost in line with those from the real data. The residual activity

at the former maximum blink excursion was largest for the data

corrected by EMCPs, while ICA-corrected data as well as data

corrected by EMCP w/s resemble almost perfectly the time course

of the clean uncontaminated data. Figure 4 shows the blink-time

locked averages for the clean (i.e. uncontaminated) data and data

corrected by extended infomax, EMCPs and EMCP w/s.

This is supported by the correlations between the clean,

uncontaminated data and corrected data (Figure 5).

As regards the data contaminated by the propagation model,
the results show that the residual activity at the blink time

Figure 3. Blink-time locked grand averages of corrected data. Upper figure: Grand averages of activation (mV) of data corrected by Infomax,
EMCPs and EMCP w/s. Lower figure: Topographic maps (spherical spline interpolation) of the activation subsequent correction at the time point of
maximum blink excursion (0 ms) and 250 ms after it. Infomax = extended infomax. vEOG = (|SO2|-|IO2|)/2
doi:10.1371/journal.pone.0003004.g003
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maximum was larger for both EMCP procedures than for ICA-

corrected data. ICA corrected data resemble almost perfectly the

time course of the clean uncontaminated data.

This pattern was present in simulated blinks with randomly

varying amplitude (Figure 6) and in blinks with constant amplitude

(Figure 7). The former revealed remarkable residual activity for

the data corrected with EMCP w/s.

With respect to the correlation between corrected and clean

data this data pattern was also present: It was largest ICA

corrected data, smaller for EMCP w/s and even smaller for

EMCPs (Figure 5).

Discussion

The present study shows that after application of methods for

the correction of ocular artefacts there still remains activity at the

time point of the eyeblink artefact in real data. This activity shows

an occipital topography that peaks at about 250 ms after the blink

maximum excursion. This result replicates the findings of Berg

[19]. The residual cannot simply be explained by some kind of

overcorrection by the correction procedure, since it remains after

application of either procedure, and it is not visible in the

simulated data. Further mutual information of vertical EOG and

EEG as well as the residual activity at the maximum blink

excursion shows differential effects with respect to the applied

correction procedure and electrode site. These effects were also

present in the simulated data.

Real data
With respect to the mean mutual information extended infomax

and the regression approach without raw average subtraction

(EMCP w/s) yielded almost the same results. However, though

there was a significant difference between extended infomax and

EMCP w/s. But though this difference was statistically significant,

the difference was, in terms of absolute values (Figure 2 & 3, suppl.

Animation 1), quite marginal. It could be interpreted as a result of

the different number of eyeblinks of the subjects. Since ICA is a

statistical procedure, it requires a source to show frequent

activation, if should be reliably extracted. An alternate interpre-

tation could be that EMCP w/s lead to an overcorrection of

frontal and occipital channels. Another possibility is that extended

infomax only removed the pure blink activity, while there

remained activity accounting for muscle or vertical eye movements

accompanying the reopening of the eye. This would increase the

difficulty to identify components accounting for ocular artefacts of

this type, since only blinks are unambiguously identifiable. For the

regression approach with raw average subtraction (EMCPs) the

Figure 4. Component model. Averages time-locked to the maximum blink excursion (x-axis: time (ms); y-axis: mV). Only two channels are plotted
(left and right column respectively). Red lines: clean, uncontaminated data; Blue lines: corrected data. Note the difference in the scaling for the
EMCPs-corrected data. Also note that the real names (like ‘‘FCz’’) are not informative, since they don’t have spatial information. The reason is that the
components were selected randomly for the mixing, as well as the values for the mixing matrix.
doi:10.1371/journal.pone.0003004.g004
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residual mean mutual information was higher, and it was highest

for uncorrected data. After application of EMCPs the blink-related

averages and topographic maps of the activity at the former blink

maximum showed large residual activity. Interestingly, for one

subject ICA yielded two components accounting for blink activity

(Figure 1, s6). This indicates that under certain circumstances ICA

Figure 5. Correlation of clean uncontaminated data and corrected data. The figure shows the correlation between clean, uncontaminated
data channels and corrected data channels for each simulation type.
doi:10.1371/journal.pone.0003004.g005

Figure 6. Propagation model with randomly varying blink amplitude. Averages time-locked to the maximum blink excursion (x-axis: time
(ms); y-axis: mV). Only two channels are plotted (left and right column respectively). Red lines: clean, uncontaminated data; Blue lines: corrected data.
Note the difference in the scaling for the EMCPs-corrected data. Also note that the channels for the propagation model have been chosen randomly,
as well as the propagation factors used for simulation of blinks. Hence the real names (like ‘‘FCz’’) are not informative, since they don’t have spatial
information anymore.
doi:10.1371/journal.pone.0003004.g006
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might result in a higher dimensional decomposition for a

component in the EEG as predicted. This has to be object of

further investigations. Following either correction procedure a large

positivity in the time-window at about 250 ms after blink maximum

was observable. This replicates the findings of Berg [19]. He

suggested that this residual has physiological origins and results from

the re-opening of the eye, that induces a strong change of the visual

input and hence a visual evoked ERP. As a conclusion, this residual

should be taken into account if the EEG is corrected by any kind of

correction algorithm. In further studies it should be investigated to

what extent this residual contributes to the estimated ERP, and

whether it can be removed by ICA as well.

Simulated data
Correlation and residual activity varied differentially between

the different correction procedures. For ICA the procedure yielded

the same results for both models (i.e. propagation model,

component model): It showed almost the same residual activity

like the uncontaminated clean simulation data. Also the corrected

data correlated highly with the clean uncontaminated data. This

was also true for EMCP w/s. However, this was not the case for

EMCPs. Correlation (Figure 5) and residual activity (Figures 4, 6,

7) were always higher than for ICA and EMCP w/s and EMCPs.

In the case of a constant blink amplitude EMCPs seemed to fail,

since the blink-related average still showed the same time-course of

activity like the uncorrected data. The correction was better for the

component model, and also if the blink amplitude varied. This was

the case either for the component model and one propagation model.

EMCP w/s showed comparable results to ICA, if a component

model was assumed and if the blink amplitude did not vary strongly

in the propagation model. However, with varying simulated blink

amplitude even EMCP w/s was slightly inferior to ICA.

Finally, following correction by either correction procedure

there was no positivity following the blink maximum. This

indicates indeed that this potential is a physiological potential

resulting from the re-opening of the eye.

The results may be due to the fact that if the blinks do not vary

in their amplitude and duration, the vertical EOG at blink time

point represents a good estimate of the ‘‘true’’ blink signal. If they

vary, the estimation by linear regression can be a rather imprecise

approximation. This may be an explanation why EMCP w/s and

ICA lead to analogous results in the real data: Spontaneous blinks

usually do not vary strongly in amplitude and duration, As a

consequence the regression error is small. Hence, the question

arises which simulation represents an appropriate model. With

respect to the data of the present study it seems as if the

Figure 7. Propagation model with constant blink amplitude. Averages time-locked to the maximum blink excursion (x-axis: time (ms); y-axis:
mV). Only two channels are plotted (left and right column respectively). Red lines: clean, uncontaminated data; Blue lines: corrected data. Note the
difference in the scaling for the EMCPs-corrected data. Also note that the channels for the propagation model have been chosen randomly, as well as
the propagation factors used for simulation of blinks. Hence the real names (like ‘‘FCz’’) are not informative, since they don’t have spatial information
anymore.
doi:10.1371/journal.pone.0003004.g007
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component model fitted better, since the results of the correction

procedures was quite analogous for simulated and real data.

In summary the data simulations support the findings in the real

data. The impact of the ICA procedure was equivalent in the

propagation model as well as in the component model. In both

cases the ICA-corrected data resembled almost perfectly the time

course of the clean uncontaminated data. This was not the case for

EMCP-corrected data. While a large residual activity appeared in

both models (i.e. blinks realized by a component model and those

constructed by a propagation model) the simulations reveal also,

that the residual varies with the variation of the blink amplitude.

Interestingly the results for the mean mutual information

correspond with the results of the simulation. This supports the

idea that mutual information can be used as an evaluation

criterion. Its advantage is the independence of the distribution

parameters of the electrical activity of EEG and EOG.

It may be argued that the paradigm of blink-time-locked data is

artificial. However, in EEG experiments participants often blink in a

regular pace shortly after a response or a stimulus. Further the blink

rate varies with different cognitive or activation states and between

participants. Based on the data of the present study, it could be stated

that the conduction of EMCPs is always obsolete, but this conclusion

cannot be generalized. The present study did not test the impact of

either correction procedure on other event-related potentials. Here,

one question is, what happens if EMCP w/s is applied to data in

which eyeblinks occur temporally close to event-related potentials.

This is why Gratton et al. [2] developed the procedure with raw

average subtraction: it should avoid the distortion of the ERP by

subtraction of the ERP prior calculation of the propagation factors. In

conclusion it seems, as if there were optimal conditions for both

options for calculating the EMCP. However, it is desirable that a

correction procedure should produce adequate results irrespective of

blink rate, time-course, or time-point of blinks relative to the

experimental event or reaction. Hence further investigation is

necessary (e.g. by variation of blink frequency, blink-time point) to

disentangle the ‘‘optimal’’ conditions for each of the two variants.

The researcher has hence to decide which regression approach

is the adequate solution for his data. The data structure, e.g. the

relation of blinks to events, may be different across subjects and

conditions, hence different regression procedures may be adequate

for different subjects and conditions. This raises the problem of the

appropriateness of conducting two different correction procedures

within one analysis framework. This can only be approved if both

procedures lead to mathematical equivalent results.

In contrast to the regression approach used in the present study,

ICA has the advantage that only few assumptions about the

underlying structure of the data have to be made [21]. Regardless

of the blink structure, ICA seemed to yield almost perfect

correction, which is a strong argument for conducting ICA.

However, there are also some drawbacks concerning the

computation of ICA. On the technical side, compared to regression

procedures, the computational load is very high. Depending on

hardware, data length, and number of channels, the computational

time is certainly much longer than for regression analysis. Also there

are some mathematical constraints to the application of ICA. The

sources are assumed to be statistically independent. This means, in

terms of EEG, that it is assumed that spatially static sources generate

temporally dissociable time-courses of activation. However, neural

networks are often overlapping, but they might generate different

patterns of activations. Thus, with EEG data temporal ICA is mostly

conducted. Further, ICA requires at least as many simultaneously

recorded signal mixtures (e.g. sensors) as there are signal sources (e.g.

voices, neural networks). Third, there must not be more than one

gaussian source. And finally, the influence of random noise has to be

kept as low as possible, since the basic ICA model, which is also

assumed by infomax, assumes no noise. For data with additional

noise other algorithms have been developed [22]. Also a minimum

of data points is required to estimate a stable (i.e. reliable)

decomposition. Since ICA is a statistical procedure it is sensitive to

random noise. If there are only few artefacts of one kind it is possible

that the decomposition fails. This is what is indicated by the

significant difference between extended infomax and EMCP w/s.

Hence it follows, what sounds at first glance counterintuitive, that the

decomposition is the better, the higher the number of blink artefacts.

Finally there are many possible solutions (i.e. algorithms) for the

BSS problem; the choice of an algorithm depends on the data and

the assumptions about its underlying factors. Up to now it has not

been tested systematically which algorithm may be the most

appropriate one for EEG data.

Another drawback is that the identification of blink-components

is usually done by visual inspection, i.e. it may suffer from a

subjective bias. However, in the present study the blink

components were not only identified by visual inspection, but by

cluster analysis and the percent of variance the components

accounted for in a defined time-window around the maximum

blink excursion. The blink-components, that showed blink-like

topographies and time-courses, accounted for about 99% of

variance. Further the k-means procedure was able to combine

these components into one cluster.

In conclusion the results show that extended infomax and EMCP

w/s may lead to an almost analogous impact on mutual information

of vertical EOG and EEG channels as well as the residual activity

that remains at blink time maximum. However, while the optimum

use of EMCP appears to depend on the variance of blink activity,

ICA is independent of a certain data structure and, what is more

important, it is not restricted to the removal of blink artefacts. It

provides a general framework for artefact removal and analysis of

EEG-data. Furthermore, what is most important, the performance

of ICA seems to be independent of the model that is assumed about

the generation or propagation of the eyeblink signal. Another

important result is the late blink related positivity that was

observable after either correction procedure.

However, the present results cannot be extended as a general

conclusion against regression based approaches. It has to be stated

that a limitation of the study is the restriction to eyeblinks. Further

investigations are necessary with respect to vertical and horizontal

eye movements. There are several regression methods that have been

shown to lead good results [23–26]. However, aim of the present

study was not to evaluate regression procedures in general, but rather

to evaluate the impact of the EOG on the EEG after correction with

two common used procedures. Nevertheless, further research is

necessary to evaluate systematically the performance of different

correction procedures (i.e. component models, regression approach-

es), since the discussion about that topic has not been settled.

Another constraint, however, is the residual activity after the

blink maximum: If only components accounting for blink activity

are subtracted, there might remain activity in the EEG that is blink

related and therefore can be defined as artefactual. Hence, the

correction of ocular artefacts with ICA should not focus solely on

components accounting for eyeblinks or horizontal eye move-

ments. ICA, because of its power in the decomposition of

multivariate data, may be a suitable tool to remove the mentioned

positivity as well. This has to be topic of further investigations,

since it is an important issue: If conducting ICA it might be (e.g.

due to data quality or violating the basic assumptions of ICA) that

during conduction of ICA activity that is temporal correlated with

the blink component is removed as well since the decomposition

might not have been perfect. However, the present results indicate
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indeed that ICA decomposes a pure ‘‘blink signal’’ which is

independent of the residual, since the residual does not occur in

the corrected simulation data.

Here further investigation is necessary to reveal the components

corresponding with ocular artefacts. Also more detailed investiga-

tions of the dynamics of different kinds of ocular activity are

necessary. Spontaneous, voluntary and reflectory eyeblinks differ

in their neural sources and the factors inducing them [27] , for

example activation, cognitive load, intention, physical irritation or

pathological reasons (e.g. blepharospasm). ICA may be a powerful

tool to disentangle the different sources in those different blink

conditions. It cannot simply be regarded as a correction

procedure. Because the components accounting for artefacts and

those accounting for neural activity are independent of each other,

a correction of the EEG would be obsolete, if the focus was on the

functional significance of the derived independent components.

Finally, our conclusion is that ICA is a powerful tool for the

correction of blink artefacts. However, there exist several possible

algorithms for conduction of ICA. The performance of these

algorithms has yet systematically to be tested. Also previous studies

have shown that besides EMCP, there exist a couple of powerful

correction procedures, as well as regression based, and component

based approaches. Here a systematic re-evaluation is necessary to

evaluate the gain of new (i.e. ICA) correction procedures.

Materials and Methods

Subjects
Seventeen subjects (10 females) aged from 19 to 30 years

(m = 22.7, s = 3.6) participated in the study. Participants were

healthy undergraduate students who received course credits for

their participation in any psychological experiment, which is part

of the curriculum in the German academic studies of psychology.

No grading was assigned. Participation was absolutely voluntary.

All participants were right-handed and gave written informed

consent before participation. The study was approved by the ethics

committee of the Institute for Occupational Physiology at the

University of Dortmund. Participants had normal or corrected to

normal vision. The data of one participant had to be rejected

because of too many artefacts.

Stimuli and procedure
Participants were seated in a light and sound dimmed room in

front of a standard CRT monitor. The distance of participant and

monitor was about one meter. Their task was simply to focus a

white fixation cross presented in the centre of the monitor. This

was necessary in order to minimize eye-movements; furthermore

this is a common procedure in experiments in which the EEG is

acquired during a reaction-time task. The participants were

instructed not to move if possible; they were not instructed to avoid

eyeblinks. After ten minutes the EEG acquisition was stopped.

EEG-recording
EEG was recorded from 57 channels relative to average

reference using a QuickAmp 72 (Brain Products). Channels (FPz,

FP1, FP2, AFz, AF7, AF3, AF4, AF8, Fz, F7, F3, F4, F8, FCz,

FT9, FC5, FC3, FC1, FC2, FC4, FC6, FT1, T7, C5, C3, C1, C2,

C4, C6, T8, CPz, CP5, CP3, CP1, CP2, CP4, CP6, Pz, P7, P3,

P1, P2, P4, P8, Oz, PO9, PO7, PO3, PO4, PO8, PO1, Oz, O1,

O2, I1, I2, Cz) were positioned following the 10-20-system (Jasper,

1958). Additional electrodes were positioned at the mastoids (M1,

M2) and four electrodes were used to record the electrooculogram

(EOG) from positions below (IO2) and above the right eye (SO2)

and from the outer canthi (LO1, LO2). All channels (EEG,EOG)

were recorded with respect to the same reference (average

reference). Impedances were kept below 10 kOhm. Sampling rate

was 500 Hz (no highpass, lowpass 135 Hz).

Analysis
Preprocessing. Data analysis was conducted offline using the

Brain Vision Analyser software (v1.05, Brain Products) for pre-

processing and implementation of the eye movement correction

procedure [EMCP, 2]. Matlab (The Mathworks) and EEGLAB

v5.03 [28] were used for further processing and ICA. After

importing the data into the Vision Analyzer software, raw data

were band-pass filtered (0.5–30 Hz) using a phase-shift free

butterworth filter (12 dB/Octave). Subsequently a threshold

algorithm was conducted to detect eyeblinks, and the data were

segmented time-locked to the maximum blink excursion (2800:

1000 ms). Following this a baseline correction was made

(2800:2500 ms). Finally, the continuous raw data were cleaned

from occasional non blink-related artefacts by visual inspection.

Ocular Correction. Regression analysis. For the calculation of

the EMCP vertical and horizontal EOG (SO2, IO2, LO1, LO2)

were used and the regression was calculated with (EMCPs) and

without raw average subtraction (EMCP w/s). For the simulated

data only the simulated vertical EOG channel was used since only

blinks were simulated.

Independent Component Analysis. For the ICA procedure the filtered

continuous raw data and blink-related uncorrected segments were

exported to EEGLAB.

ICA was conducted using extended infomax [7] as implemented

in EEGLAB (default parameters, except: maximum number of

iterations = 800) and the derived weight matrices (i.e. unmixing

matrices, W) were applied to the blink-time locked data. All data

(EEG and EOG) were included in ICA. Subsequently the derived

independent components were clustered (k-means) using their

topography and blink-time-locked averages of activity. Two main

clusters (i.e. components accounting for blink-and EEG-activity)

were assumed and defined for clustering. Components represent-

ing blink artefacts were identified by visual inspection of

component activations, projections of the components to the scalp

(inverse weight matrix for the component) and by the variance

accounted for [8,13] in the time window from 250 to 50 ms

around the maximum blink excursion. It was assumed that

independent components accounting for blink artefacts show the

typical blink-like time-course and topography and account for the

most variance in the EEG data in the time window from 250 to

50 ms around the maximum blink excursion. Finally, the

components representing blink artefacts were removed and the

remaining independent components projected back.

Artefact processing. Prior removal of blink components a

semi-automated artefact rejection procedure was applied as

implemented in EEGLAB to remove residual artefacts not detected

by visual inspection. These procedures are highly efficient in detecting

linear trends and improbable data segments [29]. From the EMCP-

corrected data the same segments were removed as from the ICA-

corrected data. Hence the segments used for further averaging and

statistical analysis were the same for both procedures.

Dependent variables. Mutual information. For each subject

mean mutual information was calculated between the uncorrected

vertical EOG and each predefined corrected EEG-channel (FPz,

FCz, C3, C4, PO7, PO8, Pz, Oz). These channels were chosen

because they are the most frequently used channels for EEG

research, and because they cover the nearest and most remote

scalp positions relative to the eyes. Also the mean mutual

information of the uncorrected vertical EOG and the uncorrected

EEG-channels was calculated.
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Residual activity. The residual transient activity in the time

window from 200–300 ms after the blink maximum was detected

by a peak detection algorithm.

Statistics
Initially an overall factorial analysis of variance with repeated

measures was calculated for the mean mutual information. Factors

were electrode position (Fpz, Cz, C3, C4, PO7, PO8, Pz, Oz) and

correction procedure (EMCPs, EMCP w/s, extended infomax,

raw data).

One dependent variable was the mean mutual information for

each uncorrected vertical EOG and corrected EEG-channel pair.

For the raw data the uncorrected EEG and uncorrected vertical

EOG pairs were used. Two factorial analyses with repeated

measures were calculated to compare both regression variants with

extended infomax.

Finally paired t-tests were conducted with respect to residual

EEG activity that hypothetically occurs in the time window from

200–300 ms after the blink maximum (according to Berg, 1988).

Greenhouse-Geisser adjustment to the degrees of freedom was

performed for effects with df .1. In that case Greenhouse-Geisser

epsilon, uncorrected F-values, and corrected p-values are reported.

Simulation
For simulation of eyeblinks in EEG-data two models were used.

The first model simulated blinks by means of linear regression, and

the second model simulated blinks by a component model. For

both simulations the same data pool as in the real data analysis was

used. One problem with the simulation of eyeblinks is the choice of

an appropriate model for construction. Since it is not desirable to

favour a particular correction by the type of calculations that are

necessary for the simulation, blinks were both realized by a

component model (i.e. assuming a linear mixture of statistically

independent components) and a propagation model (i.e. adding

blinks to clean data by linear regression). Both types of simulated

data were analysed with respect to the correlation between clean,

uncontaminated data and corrected data.
Propagation model. For the propagation model one subject

was chosen randomly. From this subject the vertical EOG and eight

randomly chosen channels were used for simulation. As first step,

eyeblinks were detected by a threshold algorithm, and the vertical

EOG was averaged time-locked to the maximum blink excursion to

receive a blink template (temp). Subsequently eight random numbers

in the range from 21:21 were defined as propagation factors (p).

The propagation factor for the vertical EOG channel (channel 9) was

set to one, that yields a vertical EOG-channel showing typical blink

artefacts. Next, the channels were manually cleaned from real eye

blink activity. This was done by manually inspecting and removing all

time points of blink activity. This dataset was now contaminated with

eyeblinks by calculating back the eye blink by linear regression. This

was done by multiplying the propagation factors (p) with the blink

template (temp) and adding it to the cleaned EEG for each channel c

and time point t:

blinkct~EEGctztempt
:pc

This procedure simulates eyeblinks with almost identical

amplitude and duration. However, in real data spontaneous

eyeblink amplitudes usually vary due to factors like eye dryness,

fatigue, or cognitive load. Hence for a more realistic simulation a

second regression simulation was conducted in which the

simulated blinks had a randomly varying amplitude. This was

realized by randomly enhancing the activity in the blink template

in a range between 70 and 280 mV. These values were chosen

since they resemble the variation in the real data (average blink

amplitude real data: 215.28 mV; s = 40.29).

Component Model. The component-based simulation was

conducted in several steps. Here also nine channels were

simulated. At first a subset of nine subjects was chosen randomly

without replacement from the 17 subjects. For simulation of

cerebral sources, from each of eight subjects one independent

component activation was chosen randomly. For simulation of a

blink source the component resembling a typical blink artefact was

chosen from the remaining subject. This leads to truly

independent components. To simulate eyeblink contaminated

signals these activations (cerebral, blink) were now mixed by a

random square matrix (i.e. backprojection, the blink component

was projected to one channel with a mixing coefficient of .95, this

results in a channel representing a vertical EOG channel). To

receive blink free reference data, the component representing the

eyeblink artefact was set to zero according to the procedure

described in the introduction. For each simulation 50 eyeblinks

were simulated (average blink amplitude: 228.25 mV; s = 83,76).

Both data sets consisted of 105 data points, respectively. Finally

both correction procedures were applied to the simulations and

the clean, blink-free data was compared with the corrected data.

Here the same measures were calculated as with the real data: The

ERPs were time-locked to the maximum blink excursion, and the

correlation between clean, uncontaminated data and corrected

data was estimated (after normalization of the data).

Supporting Information

Animation S1 Average devolution of activity during eye

blinking subsequent application of EMCPs, EMCP w/s and

extended infomax. Top: Topographic maps (spherical spline

interpolation). Bottom: Blink-related vertical EOG. Note the large

residual activity for EMCPs at time-point zero and the positivity

occurring at about 250 ms following the maximum blink

excursion. The vertical line indicates the current time-point.

Found at: doi:10.1371/journal.pone.0003004.s001 (0.87 MB

MPG)
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