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Abstract

Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however,
no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are
required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than
being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro.
Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell
in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging
mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis,
demonstrating their robust biological activity in a regenerative context.
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Introduction

Wnt signals are implicated in the self-renewal and proliferation

of stem cells from a variety of adult tissues [1–3] but despite

numerous large-scale screenings [4–7], no specific small molecule

Wnt agonists have been identified. As a consequence, the

therapeutic application of Wnt proteins - of which there are

potentially many [8–10] - has been severely hampered. We

exploited a unique and essential feature of Wnt proteins, their

covalent modification by several lipids, to package the purified

proteins in a manner that both stabilizes and enhances their in vivo

biological activity. Palmitoylation is essential for Wnt activity

[1,11]; therefore we reasoned that liposomes might serve as an

ideal delivery vehicle for such a hydrophobic molecule.

Liposomes are spherical nanovesicles consisting of an aqueous

core enclosed in one or more phospholipid layers (reviewed in

[12]). Initially, liposomes were developed in an attempt to improve

the pharmacokinetics and tissue distribution of chemotherapeutic

agents [13–15]. Consequently, bioengineers and chemical engi-

neers have invested considerable time and effort into manufac-

turing liposomes that retain the drug or molecule of interest and

prevent its degradation. Such preparations would ideally effec-

tively evade detection by the reticuloendothelial system; could be

targeted to the tissue of interest; and could be induced to release

the drug/molecule when required. For example, the addition of

polyethylene glycol (PEG) can prolong the circulatory half-life of

liposomes, perhaps acting through steric hindrance ([14–16];

reviewed in [17]).

At present, the primary application for liposome technology is

for the treatment of cancers (reviewed in [14,15,18]). In this

clinical scenario, the objective is to deliver cytotoxic drugs to a

tumor whilst simultaneously preserving cell viability in the rest of

the body. Our objective differed slightly: we wanted to develop a

method to deliver Wnts to a tissue that simultaneously preserved

biological activity and restricted diffusion of the protein.

Materials and Methods

Purification of Wnt3a liposomes
Mouse Wnt3a protein was purified as described [1], without the

heparin purification step. The product, containing approximately

equal amounts of Wnt3a and bovine serum albumin, was

concentrated further to 250 ng/ml in PBS with 1% CHAPS.

Generating Wnt3a liposomes
Many different lipid compositions were attempted. In all cases,

14 mmol of lipid were added; when multiple lipids were used, they

were added in a 90:10:4 molar ratio as indicated. 1,2-Dipalmitoyl-
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sn-Glycero-3-Phosphocholine (DPPC)(cat#: 850355C), 1-

Myristoyl-2-Palmitoyl-sn-Glycero-3-Phosphocholine (MPPC)(cat#:

850445C), 1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-

[PDP(Polyethylene-Glycol)2000] (DSPE-PEG2000)(cat#:880129C),

1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC)(cat#:

850345C), and 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine

(POPC)(cat#:850457C) were obtained from Avanti Polar Lipids, Inc.

(Alabaster, AL).

Unless otherwise indicated, 14 mmol of DMPC in chloroform

were dried to a thin film in a 10 ml round bottom flask using

nitrogen gas and were further evaporated in a vacuum overnight.

Purified Wnt3a in 1% CHAPS in 16PBS was then diluted in 16
PBS to a total concentration of 1–1.3 mg/ml. This solution was

then added to the 10 ml flask and vortexed vigorously until the

solution was cloudy and there was no lipid visible on the bottom of

the flask. The lipid solution was then extruded 40 times through a

100–200 nm polycarbonate membrane in a thermo-barrel ex-

truder held at 30–32uC (Avanti Polar Lipids, Inc).

To separate liposome-associated Wnt3a from free Wnt3a, the

extruded solution was spun in an Optima TLX Ultracentrifuge

(Beckman Coulter, Fullerton, CA) at 28,000 rpm for a minimum

of 30 minutes at 4uC. The supernatant was removed and the lipid

pellet re-suspended in 16 DMEM (Mediatech, Inc., Herndon,

VA). The liposomes, if not used immediately, were stored at 4uC.

Cell culture and activity assays for Wnt3a liposomes
Mouse LSL cells were grown at 37uC and 5% CO2 in 16

DMEM, 10% FBS, and 1% Penicillin/Streptomycin (Mediatech,

Inc., Herndon, VA). The cells were plated in 96-well plates with an

initial density of 25,000 cells/well and allowed to recover overnight.

The cells were then treated as described and incubated for an

additional 17 hours. As the LSL cells constitutively express b-

galactosidase and express luciferase in response to Tcf/Lef binding,

activity was assessed via the Dual-LightH Combined Reporter Gene

Assay System (Applied Biosystems). Relative luciferase units were

measured and normalized against b-galactosidase activity. Error

bars indicate standard deviation. All assays were done in triplicate.

Student’s T test was employed to determine statistical significance.

Determination of effective Wnt3a concentration in Wnt
liposomes

Increasing amounts of purified Wnt3a protein were added to

LSL cells, grown in 96-well plates, in order to generate an activity

gradient. In a parallel set of experiments, LSL cells were exposed

to different volumes of Wnt3a liposomes. All experiments were

performed in triplicate. Activity of the purified protein was then

determined by luciferase activity (as described above) and

liposomal Wnt3a activity was plotted on the same graph. From

these data we interpolated the concentration of active Wnt3a in a

given volume of liposomes.

Trypsin digestion of Wnt3a liposomes
Exo-liposomal Wnt3a protein was removed by subjecting

liposomes to trypsin digestion. Briefly, 75 ml of Wnt3a liposomes

were added to 405 ml of 16DMEM and 20 ml 16Trypsin solution

(Mediatech, Inc., Herndon, VA) for a final mixture containing 4.0%

trypsin. Liposomes were then incubated at 37uC for 0, 5, 10, 15, or

20 minutes. The proteolytic reaction was quenched by the addition

of 1 ml of 16 DMEM containing 10% FBS. The samples were

ultra-centrifuged at 28,000 rpm for 30 min at 4uC; the supernatant

was then removed and the lipid pellet re-suspended in 16DMEM.

The samples were then added to LSL cells in triplicate, or prepared

for standard Western blot analysis.

Isolation and characterization of Wnt antagonists
We undertook a small molecule Wnt antagonist high-through-

put screen using a mammalian cell–based reporter assay. The

reporter plasmid (Super8xTOPflash) was stably introduced into

the mouse C3H10T1/2 cell line, and the best 10T1/2 Super8-

xTOPflash clone gave ,800 fold up-regulation of luciferase

activity after 24 hour incubation with Wnt3a conditioned media.

Under these assay conditions we screened ,205,000 small

molecule compounds at a concentration of 10 mM and identified

several potential Wnt antagonists (hereafter referred to as Ant).

These antagonists were further evaluated using a luciferase

reporter driven by the SV40 large T antigen promoter (for

detecting general non-specificity) and a minimal promoter with

multimerized Gli binding sites (for detecting activity on the

Hedgehog pathway). The primary screen hit for the compound

series described in this paper was effective at inhibiting Wnt

signaling (IC50,1–2 mM) but did not function as a Hedgehog

inhibitor (IC50.20 mM) and showed no inhibitory effect on SV40

promoter driven luciferase reporter at concentrations up to

30 mM. In the derivative Ant 1.4, either a bromide or a chlorine

atom was substituted in the ortho position to enhance activity over

the unsubstituted molecule.

Evaluation of Wnt antagonist activity in autocrine and
paracrine cultures

C3H10T1/2 cells were transfected with a Super8xTOPflash

luciferase reporter plasmid (Upstate Cell Signaling Solutions). PA-

1 cells (ATCC) were transfected with a TOPflash (Upstate Cell

Signaling Solutions) luciferase reporter plasmid. Both cell lines

were maintained using standard tissue culture protocols.

PA-1 cells exhibit autocrine Wnt signaling [19]; to monitor the

ability of antagonists to block autocrine Wnt activity, cells were

plated in 96-well plates at 20,000 cells/well in growth medium;

24 hrs later, the cells were changed to fresh growth medium and

the antagonists were added in the presence of 20% Wnt3a

condition medium, or 0.1 mg/ml purified Wnt3a protein. After

24 hrs, plates were assayed for luciferase activity with the LucLite

kit (Packard).

To test the ability of the antagonists to block an exogenous Wnt

signal and autocrine Wnt signal simultaneously, PA-1 cells

transfected with Super8xTOPflash reporter were plated as

described above; 24 hrs later, the cells were changed to fresh

growth medium and the antagonists were added in the presence of

20% Wnt3a condition medium, or 0.1 mg/ml purified Wnt3a

protein. After 24 hrs, plates were assayed for luciferase activity

with the LucLite kit (Packard).

To test the ability of the antagonists to block paracrine Wnt

signaling, we co-cultured 10T1/2 Super8xTOPflash reporter cells

with L cells stably expressing Wnt 3a protein. In all assays, hFzd8

CRD, an antagonist of Wnt signaling [19], served as a positive

control for Wnt inhibition.

Wnt antagonist activity: liposomal preparation
Wnt antagonist (Ant) 1.4Cl was diluted from 20 mM in DMSO

to final concentrations of 2 mM or 20 mM in 16 DMEM. LSL

cells were treated with 15 mL of Wnt3a liposomes or 15 mL of

purified Wnt3a protein and varying concentrations of Ant 1.4Cl

ranging from 0.01 mM to 10 mM and allowed to incubate

overnight. The activity assay was conducted as previously

mentioned and was conducted in triplicates. Percent inhibition

values are relative to non-antagonist treated Wnt3a liposome or

free Wnt3a protein activity as appropriate.

Liposomal Packaging of Wnt3a
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Animal studies
All experiments were performed in accordance with Stanford

University Animal Care and Use Committee guidelines. Six three-

week old, male CD-1 mice were purchased from Charles River

Laboratories, Inc. (Wilmington, MA). Animals were housed in a

light- and temperature-controlled environment and given food and

water ad libitum.

Before subcutaneous injection of Wnt3a/PBS liposomes, the

back of the mice was shaved and cleansed with antiseptic Betadine.

Two regions, each 1 cm in diameter, were marked approximately

5 mm lateral from the midline. Mice received subcutaneous

injections of either 20 ml Wnt3a liposomes or PBS liposomes every

other day. Tissues were harvested after 14 days (7 injections) and

fixed in 4% Paraformaldehyde overnight. Samples were processed

for paraffin embedding, sectioned at 8 mm thickness and stained

with H&E for histological evaluation.

Results

Our first goal was to determine if liposomal packaging affected

the activity of Wnt3a protein. We generated Wnt3a liposomes and

compared their activity to purified soluble Wnt3a protein using the

Figure 1. Active Wnt3a protein is associated with the exo-liposomal surface. (A) Western analyses indicated that ,70% of Wnt3a protein
added during synthesis was incorporated into the liposomes; the remaining 30% remained in the supernatant. (B) Trypsin removed liposomal Wnt3a
activity as measured in an in vitro dual-reporter assay (n = 3, mean+standard deviation). (C) Western analyses demonstrated that ,20% of Wnt3a
protein incorporated into the liposomal preparation still remained following trypsin digestion. This portion (,20%) was localized to the endo-
liposomal surface where it was inactive.
doi:10.1371/journal.pone.0002930.g001

Liposomal Packaging of Wnt3a
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LSL dual-reporter cell assay [20]. These cells show robust, dose-

dependent expression of luciferase in response to Wnt3a treatment

(Fig. S1).

In our initial formulation of Wnt liposomes we first tested the

activity of Wnt protein associated with a liposome. The liposomal

preparation of Wnt3a was made by combining 1.0 mg/ml of

Wnt3a protein with lipids to generate a solution with an estimated

concentration of 0.5 mg/ml. Instead of being distributed equiva-

lently in the supernatant and the pellet, however, Western blot

analyses indicated that the lipid pellet contained the majority of

the Wnt3a protein (Fig. 1A). This lipid-associated Wnt3a exhibited

activity using the same luciferase assay (Fig. 1A).

Because of its lipid modifications, we speculated that Wnt3a

protein would associate with the lipid bilayer in such a way that Wnt

positioned on the exo-liposomal surface would be available for

receptor binding but Wnt positioned in the endo-liposomal surface

would not. To test this hypothesis we subjected the Wnt3a liposomes

to trypsin digestion to remove protein on the exo-liposomal surface.

Trypsin digestion completely inactivated the Wnt3a liposomes

(Fig. 1B). The ,20% of the Wnt3a protein remained associated

with the liposomal fraction where it did not elicit any activity (Fig. 1C).

We therefore conclude that the majority (80%) of Wnt3a is positioned

on the exo-liposomal surface where it exhibits biological activity,

while a small percentage remains localized to the endo-liposomal

environment where it is unavailable for signaling (Fig. 1C).

Liposomal packaging enhances Wnt3a activity
During fabrication of Wnt3a liposomes, we calculated that

,55% of the input protein is incorporated in a manner that

exhibits biological activity, while the remaining 45% is either lost

in the supernatant, or is sequestered in the endo-liposomal space.

Does the liposomal presentation of Wnt3a affect its biological

activity? We compared the activity of Wnt3a protein against

Wnt3a liposomes containing the same concentration of active

Wnt3a on the exo-liposomal surface (Fig. 2A). Based on the use of

equivalent concentrations of active Wnt3a, we calculate that the

liposomal preparation of Wnt3a exhibits a 5-fold increase in

biological activity compared to the isolated protein (Fig. 2A).

Figure 2. Liposomal packaging of Wnt3a potentiates its biological activity. (A) Equivalent concentrations of Wnt3a and liposomal Wnt3a
were tested for their ability to stimulate luciferase activity in LSL cells. DMEM and PBS exhibited baseline activity. Wnt3a protein elicited volume-
dependent activity. An equivalent concentration of liposome-packaged Wnt3a exhibited substantially greater activity. (B) Liposomal packaging
sustained Wnt3a-dependent activity. The same volume of Wnt3a and Wnt3a liposomes elicited similar levels of activity after 24 h and 48 h in vitro. At
72 h, however, liposomal Wnt3a exhibited greater activity than Wnt3a protein.
doi:10.1371/journal.pone.0002930.g002
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Liposomal packaging preserves Wnt3a activity
We also tested whether liposomal packaging preserved the

biological activity of Wnt3a over time. TOPflash cells were plated

at different cell densities in order to insure that cells were in the

exponential growth phase throughout the experiment. Cells were

treated with various concentrations of Wnt3a protein, or Wnt3a

liposomes that were normalized for having similar activity.

Reporter activity was determined at each time point and

normalized against cell number. We found that Wnt3a and

Wnt3a liposomes exhibited similar biological activity after 24 and

48 h in culture but Wnt3a liposomes showed significantly higher

activity after 72 h in comparison to Wnt3a protein (Fig. 2B).

Therefore, Wnt3a positioned on the exo-liposomal surface is

active, and this packaging scheme potentiates and stabilizes the

activity of Wnt3a in vitro.

We examined whether DMPC could be replaced by other lipids

with varying carbon side chain lengths (i.e. DPPC has a fourteen

carbon backbone whereas DMPC has a twelve carbon backbone).

We found that lipid formulations considerably influenced the activity

of the liposomes, with DMPC being optimal (Fig. 3), despite the fact

that Western analyses indicated that a similar amount of total protein

was incorporated into each liposomal preparation (Fig. 3).

Identification of Wnt antagonists by high through-put
screening

In parallel series of experiments, we sought to identify molecules

that were effective at inhibiting Wnt signaling. In our initial

screening we used 10T1/2 cells transfected with the Super8-

xTOPflash Wnt reporter construct, and treated the cells with

soluble Wnt3a. We focused on a molecule that blocked Wnt-

induced reporter activity (Fig. 4) and also repressed Axin2 expression

in 10T1/2 cells and SAX1 and GAD1 expression in teratocarcinoma

cells induced with exogenous Wnt3a (data not shown).

In an effort to improve potency of the antagonists we

synthesized over 200 derivatives and tested these derivatives in

the 10T1/2 Super8xTOPflash reporter assay. The most potent

antagonists had IC50s less than 1 nM, indicating over 1000-fold

enhancement in potency by chemical modification (data not

shown). Epistasis analysis indicates that this class of small-molecule

inhibitors acts upstream of b-catenin at the level of Wnt ligands or

receptors (data not shown). Of these, Ant 1.4Br and one of its

derivatives, Ant 1.4Cl, were tested further for their ability to

inhibit autocrine Wnt signaling (Fig. 4A).

Antagonists discriminate between an autocrine and an
exogenous Wnt signal

The ability of Ant 1.4Br and Ant 1.4Cl to block autocrine Wnt

signaling was tested in three separate cell lines (NCCIT, NTera2,

and PA-1) all of which were transfected with a luciferase-based

Wnt reporter construct. We compared the inhibitory effects of Ant

1.4Br and Ant 1.4Cl against hFzd8CRD. In an autocrine signaling

assay, hFzd8CRD repressed luciferase activity by 50% (Fig. 4B). In

contrast, Ant 1.4Br and 1.4Cl inhibited luciferase activity by only

10% (Fig. 4B).

Ant1.4Br and 1.4Cl were also ineffective against paracrine Wnt

signaling. When cultured alone, 10T1/2 Super8xTOPflash

reporter cells showed no luciferase activity but when co-cultured

with L cells stably expressing Wnt3a protein, then luciferase

activity was increased 25-fold, which was largely inhibited by

hFzd8-CRD (Fig. 4C). Ant 1.4Br and its derivatives, however,

were largely ineffective and only repressed luciferase activity to a

maximum of 30% (Fig. 4C).

Wnt antagonists are ineffective against liposomal Wnt
Ant1.4Br and Ant 1.4Cl compounds discriminate between

purified Wnt3a, and Wnt3a secreted from cells in a paracrine/

autocrine assay. This difference was not attributable to alterations

in the protein itself either, since the paracrine Wnt signal was from

L cells and these were the same cells used to produce the purified

Wnt protein. Instead, these data imply that paracrine/autocrine

Figure 3. Wnt3a dependent activity is affected by lipid composition. Liposomes were made with various lipid compositions as indicated
(n = 3; mean+standard deviation). (A) Different lipid compositions exhibited radically different activities in vitro. (B) Western blot analysis showed that
these differences in activity were not attributable to variations in total Wnt incorporation into the liposomal membrane.
doi:10.1371/journal.pone.0002930.g003
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Figure 4. Wnt antagonists are effective against purified Wnt3a but ineffective against autocrine, paracrine, and liposomal Wnt3a.
(A) Structure of the 2-bromo 4,5-dimethoxysulfonamide analog (Ant 1.4Br) and 2-chloro 4,5-dimethoxysulfonamide analog (Ant 1.4Cl). (B) PA-1 cells
transfected with a SuperTOPflash Wnt reporter were treated with Ant 1.4Br, Ant 1.4Cl, or hFzd8CRD. Frzd8CRD (yellow line) reduced Wnt-dependent
luciferase activity. Ant 1.4Br (red) and Ant 1.4Cl (orange) were ineffective at blocking Wnt-induced activity. (C) 10T1/2 cells transfected with a TOPflash
Wnt reporter construct were co-cultured with LSL cells secreting Wnt3a. No luciferase activity was detectable in 10T1/2 cells grown alone (control,
brown line); luciferase activity was at a maximum when cells were co-cultured with LSL cells secreting Wnt3a (blue line). Fzd8CRD (yellow) inhibited
paracrine-induced Wnt reporter activity in a dose-dependent manner, to a maximum of 90%. Ant 1.4Br (red) reduced luciferase activity by less than
20%. (D) LSL cells transfected with a TOPflash Wnt reporter construct were treated with either exogenous Wnt3a or liposomal Wnt3a in the presence
of Ant 1.4Cl or hFzd8CRD. Ant 1.4Cl inhibited exogenous Wnt3a-induced reporter activity by 80% but inhibited liposomal Wnt-induced reporter
activity by only 30%. hFzd8CRD (yellow) reduced Wnt3a-induced reporter activity by 80% in Wnt3 treated cells and by 70% in liposome treated cells.
The symbols * and # reflect statistical significance (Student’s T-test, p,0.05).
doi:10.1371/journal.pone.0002930.g004
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signaling is mediated by a conformation of Wnt that differs from

the purified protein. One possibility is that Wnt secreted by cells

during autocrine/paracrine signaling is associated with a lipid raft

or vesicle that facilitates its transport [21] and that liposomal

packaging mimics this biological state.

We hypothesized that association of Wnt with a lipid vesicle,

either during autocrine/paracrine signaling or when packaged in a

liposome, might impede the activity of the antagonists. We directly

tested this hypothesis by treating LSL SuperTOPflash cells with

purified Wnt3a or liposomal Wnt3a in the presence of Ant 1.4Cl.

Ant1.4Cl blocked ,80% of exogenous Wnt3a-induced luciferase

activity, which was comparable to the inhibitory effect of hFzd8-

CRD (Fig. 4D). When we treated SuperTOPflash cells with

liposomal Wnt3a and Ant1.4Cl, we observed a significant

reduction in inhibitory potential of the antagonist. Again,

hFzd8-CRD was effective in blocking liposomal Wnt3a-induced

luciferase activity (Fig. 4D). Thus, Ant 1.4Br and Ant 1.4Cl were

potent antagonists of purified Wnt3a under a variety of assay

conditions but were ineffective against autocrine, paracrine, and

liposomal Wnt3a.

Liposomal packaging of Wnt3a potentiates its biological
activity in vivo

Secreted Wnt is different than purified Wnt, perhaps because

the former is associated with a lipid raft. Some data suggest that

Wnts are associated with a lipid membrane when they are shuttled

between cells [21–23]. If this hypothesis is true then we reasoned

that the in vivo efficacy of the purified protein would be enhanced

by packaging Wnts in liposomes.

We tested the efficacy of the Wnt3a liposomes in an in vivo

context, where genetic experiments have demonstrated a function

for b-catenin dependent Wnt signaling in hair follicle neogenesis

[24]. Wnt3a liposomes or PBS (control) liposomes were injected

subcutaneously into the dorsal surface of 6 week old Axin2LacZ/+
mice, in which the LacZ gene is under control of the endogenous

Wnt target Axin2 [25,26]. Twenty-four hours later, Xgal staining

was considerably stronger in the epidermal/dermal junction and

around hair follicles in animals treated with Wnt3a liposomes

compared to those treated with PBS liposomes (n = 6 for each

condition; Fig. 5A,B). The cellular distribution of the staining,

however, was unchanged (Fig. 5A,B).

We assessed the tissue response to Wnt3a liposomes. Sites

treated with PBS liposomes showed no discernable change from

un-injected controls on post-injection d14 (n = 6; Fig. 5C). In sharp

contrast, sites treated with Wnt3a liposomes exhibited robust hair

follicle neogenesis (n = 6; Fig. 5D). The dermal thickness was

increased by 2-fold and there were significantly more hair follicles

within that layer; in addition, the region normally containing

subcutaneous fat was filled with hair follicles (Fig. 5D).

Discussion

Liposomal packaging potentiates the effects of Wnt
proteins in vivo

Because of their potential therapeutic value, multiple large scale

screens have been conducted in an attempt to identify small

molecule agonists of the Wnt pathway [4]. Although molecules

that synergize with Wnt proteins have been uncovered, none act as

agonists in the absence of Wnts. This characteristic appears to be

unique to Wnts. Unlike other pathways regulated by lipid-

modified morphogens including Hedgehogs, Wnt signaling

requires the assembly of two receptors plus a large and complex

cytoplasmic group of molecules including Axin, Dsh, and GSK-

3b. This may indeed only by accomplished by Wnt protein in the

proper configuration and not by other molecules. Furthermore,

most assays and experiments rely on conditioned media or viral

over-expression approaches to study the effects of Wnts on cell

function, which oftentimes confounds the interpretation of

experimental results because of the inherent inability to control

the amount, duration, and activity of Wnts.

With the advent of methods to purify Wnt proteins [1,2] some

of these difficulties have been circumvented but Wnt proteins are

not stable for extended periods of time (Fig. 2). We found that

liposomal packaging enhanced and sustained the biological activity

of Wnt proteins both in vitro and in vivo (Fig. 2). Furthermore,

liposomal Wnt3a exhibited the same biological specificity as

purified Wnt3a, as demonstrated by the patterns of Xgal staining

following delivery in multiple strains of Wnt reporter mice (Fig. 5

and data not shown).

Liposomal packaging mimics biological transport
Wnt proteins contain a lipid adduct that is required for activity

([1]; reviewed in [27,28]) but precisely how this lipid modification

affects the intercellular transport of Wnt proteins is unclear. Some

evidence suggests that palmitoylation is required for Wnt secretion

[29,30]. The lipid adduct may be the method by which Wnt is

Figure 5. Wnt3a liposomes have in vivo activity. (A) Equal
volumes of PBS or Wnt3a liposomes were injected subcutaneously into
Axin2LacZ/+ reporter mice. Xgal staining at 24 h revealed reporter
activity in cells at the epidermal/dermal junction and surrounding hair
follicles (arrows). (B) Treatment with Wnt3a liposomes resulted in
stronger Xgal staining with no change in the distribution of reporter
activity. Over the intervening time period, both groups received
injections of PBS liposomes or Wnt3a liposomes every other day. On
day 14, tissues were collected. (C) Repeated injection of PBS liposomes
had no effect on dermal thickness or hair follicle number (n = 6). (D) In
contrast, repeated injections of Wnt3a liposomes resulted in dermal
thickening and a dramatic increase in the number of hair follicles at the
site of injection (n = 6). e, epidermis; d, dermis; scf, subcutaneous fat; m,
muscle.
doi:10.1371/journal.pone.0002930.g005
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tethered to a cell membrane, which in turn would restrict diffusion

and thus allow local concentration of Wnt proteins to reach a

threshold level required for biological activity [31].

A biomimetic approach for Wnt delivery in vivo
In Drosophila there is some evidence suggesting that the Wg

protein is transported over many cell diameters in small vesicular

structures [22]. These data hint at an appealing hypothesis:

liposomal packaging mimics the method by which Wnts are

normally secreted from cells. Four lines of experimental evidence

support this conclusion. First, liposomal packaging potentiates the

activity of purified Wnt3a. Second, Wnt antagonists that are

effective against purified protein and are ineffective against Wnt

secreted from cells are also ineffective against liposomal Wnt. This

selective antagonism is likely due to interactions between the

antagonists and a region of the Wnt protein that is available in its

purified state, but hidden when Wnt is secreted in a paracrine

manner or if Wnt is associated with a liposome. Third, liposomal

Wnt3a increases reporter activity in vivo but does not alter the

distribution of Wnt responsive cells. These data suggest that

liposomal Wnt3a acts similar to endogenous Wnts. Fourth, Wnt3a

liposomes exhibit robust activity in a biologically relevant model of

hair follicle neogenesis.

Therapeutic strategies to exploit liposomal Wnts
Given the role of Wnt signaling in many regenerative processes

(planaria; fish tails) the delivery of Wnt protein as a biological

reagent has obvious clinical applications. In addition to its well

described role in inducing hair development and growth [24,32],

Wnts are also implicated in the self-renewal and proliferation of

hematopoietic stem cells [2]; mesenchymal stem cells; and neural

stem cells. Wnts may also be an effective means to stimulate bone

formation after injury or in disease states such as osteoporosis [33].

Any strategy that attempts to target the Wnt pathway to augment

tissue regeneration will have to take into consideration the need to

selectively and locally activate signaling in the tissue or area of

interest, whilst simultaneously restricting Wnt signaling in other

parts of the body. Future experiments will focus on the potential to

stimulate tissue regeneration using Wnt liposome based approaches.

Supporting Information

Figure S1 Liposomal packaging does not impair Wnt activity.

(A) An in vitro Wnt3a activity gradient was generated by

measuring activity with increasing Wnt3a concentrations in the

media. (B) Different volumes of liposomal Wnt3a and purified

Wnt3a were added to LSL cells; the activity of liposomal Wnt3a

corresponded to an effective Wnt3a concentration of 1.0 mg/ml.

(n = 3; mean+standard deviation).

Found at: doi:10.1371/journal.pone.0002930.s001 (2.51 MB

DOC)

Acknowledgments

The authors would like to thank the members of the participating labs for

their help and support.

Author Contributions

Conceived and designed the experiments: NTM PL MC XMZ JAH RN.

Performed the experiments: NTM PL LZ JBK DtB KP ALC HD MZ MM

SB JG MC. Analyzed the data: NTM PL JBK DtB HD MZ MM SB JG

MC PP MC XMZ JAH RN. Contributed reagents/materials/analysis

tools: PP MC XMZ RN. Wrote the paper: PL JAH.

References

1. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, et al. (2003)

Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature

423: 448–452.

2. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, et al. (2003) A role for

Wnt signaling in self-renewal of haematopoietic stem cells. Nature 423: 409–414.

3. Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, et al. (2007) Wnt signaling

promotes regeneration in the retina of adult mammals. J Neurosci 27:

4210–4219.

4. Zhang Q, Major MB, Takanashi S, Camp ND, Nishiya N, et al. (2007) Small-

molecule synergist of the Wnt/{beta}-catenin signaling pathway. Proc Natl

Acad Sci U S A.

5. Liu J, Wu X, Mitchell B, Kintner C, Ding S, et al. (2005) A small-molecule

agonist of the Wnt signaling pathway. Angew Chem Int Ed Engl 44: 1987–1990.

6. Shan J, Shi DL, Wang J, Zheng J (2005) Identification of a specific inhibitor of

the dishevelled PDZ domain. Biochemistry 44: 15495–15503.

7. Meijer L, Flajolet M, Greengard P (2004) Pharmacological inhibitors of glycogen

synthase kinase 3. Trends Pharmacol Sci 25: 471–480.

8. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:

843–850.

9. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell

127: 469–480.

10. Luo J, Chen J, Deng ZL, Luo X, Song WX, et al. (2007) Wnt signaling and

human diseases: what are the therapeutic implications? Lab Invest 87: 97–103.

11. Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, et al. (2006)

Monounsaturated fatty acid modification of Wnt protein: its role in Wnt

secretion. Dev Cell 11: 791–801.

12. Banerjee R (2001) Liposomes: applications in medicine. J Biomater Appl 16:

3–21.

13. Schiffelers R, Storm G, Bakker-Woudenberg I (2001) Liposome-encapsulated

aminoglycosides in pre-clinical and clinical studies. J Antimicrob Chemother 48:

333–344.

14. Cattel L, Ceruti M, Dosio F (2004) From conventional to stealth liposomes: a

new Frontier in cancer chemotherapy. J Chemother 16 Suppl 4: 94–97.

15. Park JW (2002) Liposome-based drug delivery in breast cancer treatment. Breast

Cancer Res 4: 95–99.

16. Koning GA, Schiffelers RM, Wauben MH, Kok RJ, Mastrobattista E, et al.

(2006) Targeting of angiogenic endothelial cells at sites of inflammation by

dexamethasone phosphate-containing RGD peptide liposomes inhibits experi-

mental arthritis. Arthritis Rheum 54: 1198–1208.

17. Ponce AM, Wright A, Dewhirst MW, Needham D (2006) Targeted
bioavailability of drugs by triggered release from liposomes. Future Lipidology

1: 25–34.

18. Needham D, Dewhirst MW (2001) The development and testing of a new
temperature-sensitive drug delivery system for the treatment of solid tumors. Adv

Drug Deliv Rev 53: 285–305.
19. DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, et al. (2007) The

soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas
in vivo. Cancer Res 67: 5371–5379.

20. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-

catenin-TCF signaling depending on receptor context. PLoS Biol 4: e115.
21. Zhai L, Chaturvedi D, Cumberledge S (2004) Drosophila wnt-1 undergoes a

hydrophobic modification and is targeted to lipid rafts, a process that requires
porcupine. J Biol Chem 279: 33220–33227.

22. Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the

spread of morphogens through epithelia. Cell 106: 633–645.
23. Panakova D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein

particles are required for Hedgehog and Wingless signalling. Nature 435: 58–65.
24. Ito M, Yang Z, Andl T, Cui C, Kim N, et al. (2007) Wnt-dependent de novo

hair follicle regeneration in adult mouse skin after wounding. Nature 447:
316–320.

25. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, et al. (2002) Wnt/beta-

catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of
the signaling pathway. Mol Cell Biol 22: 1172–1183.

26. Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, et al. (2002) Negative
feedback loop of Wnt signaling through upregulation of conductin/axin2 in

colorectal and liver tumors. Mol Cell Biol 22: 1184–1193.

27. Nusse R (2003) Wnts and Hedgehogs: lipid-modified proteins and similarities in
signaling mechanisms at the cell surface. Development 130: 5297–5305.

28. Mann RK, Beachy PA (2004) Novel lipid modifications of secreted protein
signals. Annu Rev Biochem 73: 891–923.

29. van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R
(1993) Mutations in the segment polarity genes wingless and porcupine impair

secretion of the wingless protein. Embo J 12: 5293–5302.

30. Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N (1996) The
segment polarity gene porcupine encodes a putative multitransmembrane

protein involved in Wingless processing. Genes Dev 10: 3116–3128.
31. Miura GI, Buglino J, Alvarado D, Lemmon MA, Resh MD, et al. (2006)

Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by

restricting its diffusion. Dev Cell 10: 167–176.

Liposomal Packaging of Wnt3a

PLoS ONE | www.plosone.org 8 August 2008 | Volume 3 | Issue 8 | e2930



32. Silva-Vargas V, Lo Celso C, Giangreco A, Ofstad T, Prowse DM, et al. (2005)

Beta-catenin and Hedgehog signal strength can specify number and location of
hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell

9: 121–131.

33. Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, et al. (2007) Bone

regeneration is regulated by Wnt signaling. J Bone Miner Res 22: 1913–

1923.

Liposomal Packaging of Wnt3a

PLoS ONE | www.plosone.org 9 August 2008 | Volume 3 | Issue 8 | e2930


