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Abstract

Background: We consider the problem of assessing inter-rater agreement when there are missing data and a large number
of raters. Previous studies have shown only ‘moderate’ agreement between pathologists in grading breast cancer tumour
specimens. We analyse a large but incomplete data-set consisting of 24177 grades, on a discrete 1–3 scale, provided by 732
pathologists for 52 samples.

Methodology/Principal Findings: We review existing methods for analysing inter-rater agreement for multiple raters and
demonstrate two further methods. Firstly, we examine a simple non-chance-corrected agreement score based on the
observed proportion of agreements with the consensus for each sample, which makes no allowance for missing data.
Secondly, treating grades as lying on a continuous scale representing tumour severity, we use a Bayesian latent trait method to
model cumulative probabilities of assigning grade values as functions of the severity and clarity of the tumour and of rater-
specific parameters representing boundaries between grades 1–2 and 2–3. We simulate from the fitted model to estimate, for
each rater, the probability of agreement with the majority. Both methods suggest that there are differences between raters in
terms of rating behaviour, most often caused by consistent over- or under-estimation of the grade boundaries, and also
considerable variability in the distribution of grades assigned to many individual samples. The Bayesian model addresses the
tendency of the agreement score to be biased upwards for raters who, by chance, see a relatively ‘easy’ set of samples.

Conclusions/Significance: Latent trait models can be adapted to provide novel information about the nature of inter-rater
agreement when the number of raters is large and there are missing data. In this large study there is substantial variability
between pathologists and uncertainty in the identity of the ‘true’ grade of many of the breast cancer tumours, a fact often
ignored in clinical studies.
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Introduction

Background
The problem of assessing agreement between two or more

assessors, or raters, is ubiquitous in medical research. Some of the

many examples can be found in the fields of radiology,

epidemiology, diagnostic medicine and oncology [1].

The problem can be split into two broad categories, according to

the presence or absence of a ‘gold standard’, defined as an infallible

method for determining the quantity of interest [2]. One might

further subdivide these two cases according to whether the quantity

of interest is categorical (such as the presence of absence of a disease)

or continuous (such as a measurement of blood glucose levels).

Ordinal quantities (such as ultrasound score, measured on a 1–5

scale) can be treated either as a separate category, or analysed as if

either categorical or continuous. The case in which a gold standard

is available has been extensively studied, and appropriate statistical

methods have been developed. Often, useful summary statistics such

as sensitivity and specificity, positive and negative predictive values

and positive and negative likelihood ratios are calculated to assess

the adequacy of a diagnostic test [2,3].

In this paper we look at a particular case of the second category,

in which a gold standard measure is not available. Uebersax and

Grove [4] define three basic designs used for the analysis of inter-

rater agreement data of this type:

1. The fixed panel design, in which each sample is rated by each

rater.

2. The varying panel design, in which each sample is rated by a

different set of raters. Raters are ‘anonymous’, in the sense that
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while it might be possible for a single rater to rate more than

one sample, this event would either be unrecorded or not

considered in the analysis.

3. The replicate measurement design, in which samples are rated

on multiple occasions by each rater.

In such examples the calculation of simple summary statistics such

as sensitivity and specificity is not possible, but there is a large

literature on alternative measures such as the Kappa coefficient [5],

whose merits have been debated at length. Although multi-rater

versions of the Kappa coefficient exist, their use is not uncontroversial

and they rely on a design in which each rater provides a rating for

each sample [6]. Alternative methods focus on modelling patterns of

agreement, and log-linear models [7] and latent trait and latent class

models [8] have been widely used for this purpose.

We begin by reviewing the existing methods that have been used

to assess inter-rater reliability for ordinal or categorical outcome

variables in which there is no gold standard measure. We then

develop a new, intuitive summary statistic for a motivating example,

consisting of grading breast cancer tumour samples, in which the

number of raters is large, and there is missing rating information (i.e.

a rating is not available from each rater for each sample), our overall

aim being to summarise the extent to which individual raters agree

with the group of raters as a whole. We assess the suitability of this

simple measure by comparing results with those from a Bayesian

latent trait model for an ordered categorical response, and conclude

by summarising the usefulness of the two methods in the analysis of

this particular type of agreement data.

Motivating Example
Breast cancer is a heterogenous disease and is highly variable in

shape, size and character. However, a substantial amount of useful

prognostic information is available from the careful histopatho-

logical examination of routine breast carcinoma specimens [9].

One of the most fundamental aspects of oncological pathology,

which has undoubtedly stood the test of time, has been the

recognition that the detailed morphological structure of tumours,

i.e. histological grade, is strongly related to their degree of

malignancy. In 1928, Patey and Scarff determined that only three

factors – tubule formation, nuclear pleomorphism and hyperchro-

matism – were of importance in breast cancer grading [10]. Their

method has formed the basis of all subsequent grading systems.

The Nottingham method, outlined in Table 1, is the most widely

used method and overall grade is assigned as follows: Grade 1 - well

differentiated - 3–5 points, Grade 2 - moderately differentiated - 6–

7 points, Grade 3 - poorly differentiated - 8–9 points. It has been

validated through long-term follow up of over 3000 patients

confirming conclusively the highly significant relationship between

histological grade and prognosis; survival worsens with increasing

grade [11]. The method has now been adopted for use in the

pathological data-set of the United Kingdom National Health Service

Breast Screening Programme [12] and in the USA and Europe.

The perceived poor reproducibility and consistency of grading

systems has been improved by use of semi-objective scoring

systems and adherence to written criteria such as those provided

by the Nottingham method [13,14,15], but these studies have

highlighted the need for grading to be carried out by trained

histopathologists who work to an agreed protocol. A number of

previous authors have found ‘moderate’ agreement between

pathologists in this regard [16,17,18], and these conclusions are

typically based on studies that use a small number of pathologists

and simple methods of statistical analysis such as the Kappa

coefficient. We aim to test these findings using a much larger data-

set than those previously reported in the published literature.

Our data-set consists of grades provided by 732 pathologists

(hereafter termed ‘raters’) for histological tissue sections from 52

breast cancer tumour samples (hereafter termed ‘samples’)

circulated between 2001 and 2004, in eight twice-yearly batches.

Not every rater was sent all of the samples, but raters gave grades

to an average of 33 of the 52 samples (range 2 to 52 samples,

interquartile range 20 to 47 samples). In the terminology of

Uebersax and Grove [4], our example provides a variation on the

varying panel design. Samples are rated by different sets of raters,

assumed to have been chosen at random so as to be representative

of the underlying population of raters, but we term the raters as

‘onymous’, in the sense that which ratings belonged to which rater

can be identified in all of the samples (although in our example the

identity of the raters is not disclosed).

1367 of the 25544 individual samples submitted to raters for

grading (9%) were returned either ungraded or as ‘not assessable’.

These instances have been removed from the data-set and are

therefore treated as missing data in the same manner as samples that

were not sent to raters. Each sample was graded by between 390

(53%) and 513 (70%) raters, which leaves around 36% of all sample-

rater pairs that were ungraded and that are regarded as missing

data. The primary aims of the project are to provide information

concerning the extent of inter-rater agreement in assigning grades to

samples, and to ascertain whether there is any evidence that some

raters consistently give values different to the majority. This might

be the case if, for example, raters were to interpret aspects of the

grading scale and guidelines in different ways.

Observed marginal data from an illustrative selection of samples

and raters are shown in the first five columns of Tables 2 and 3

respectively. Table 3 gives some indication of the extent of the

variability between raters in the distribution of grades that they

assign, some raters appearing, superficially, to have a greater

tendency to give high grades than others.

Methods

In this section we discuss existing methods for analysing inter-

rater agreement data, and describe two methods that we use to

analyse the breast cancer tumour data.

Existing methods
The Kappa coefficient. One summary statistic, the roots of

which are found in the psychology literature, is particularly

Table 1. Summary of the semi-quantitative method for
assessing histological grade in breast carcinoma.

Feature Score

Tubule formation

Majority of tumour (.75%) 1

Moderate degree (10–75%) 2

Little or none (,10%) 3

Nuclear pleomorphism

Small, regular uniform cells 1

Moderate increase in size and variability 2

Marked variation 3

Mitotic counts

Dependent on microscope field area 1–3

doi:10.1371/journal.pone.0002925.t001

Multiple-Rater Agreement
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commonly used in papers reporting inter-rater agreement with a

categorical outcome: the Kappa coefficient [5].

The rationale for the Kappa coefficient and other similar

measures of agreement is that they are chance-corrected, in the

sense that they attempt to allow for the fact that for discrete or

ordinal outcomes there will be a non-zero probability pe that two

raters will agree on a sample simply by guessing, thus making the

observed probability of agreement po appear artificially high.

Given n pairs of ratings, an estimate of the true Kappa

coefficient k is given by the expression

k̂k~
p̂po{p̂pe

1{p̂pe

,

with approximate standard error

SE k̂kð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂po 1{p̂poð Þ
n 1{p̂peð Þ2

s
,

where p̂o and p̂e are estimates of the respective probabilities and n is

the number of samples. Further details of the computation of the

Kappa coefficient are given by Siegel and Castellan [19].

There are a large number of papers both advocating and

criticising the use of the Kappa coefficient for assessing inter-rater

agreement. Briefly, the main criticisms are that its interpretation is

often based on somewhat arbitrary guideline values, leading to

problems of interpretation; that it is heavily dependent on

observed marginal proportions and thus the case-mix of the

samples used; that it can be severely misleading in degenerate

cases in which one or more of the outcome categories is

uncommon; and that it lacks natural extensions when there is

more than one outcome of interest or when multiple raters are

used [6,20,21,22]. Other chance-corrected measures have also

come in for criticism [23]. Weighted versions of the Kappa

coefficient exist for the case of multiple, ordered categories

[24,25], but interpretation is clouded further by an often arbitrary

choice of weights for each category. In the context of the breast

cancer tumour data, there are additional complications: there is a

Table 2. The distribution of grades assigned to a subset of tumour samples.

Sample Observed : n (%) Simulated : % Estimated

G1 G2 G3 Ungraded G1 G2 G3 mi (s.e) li (s.e)

1 386 (93.2) 28 (6.8) 0 (0) 318 93.0 6.7 0.2 25.1 (0.6) 1.0 (0.2)

6 326 (70.1) 137 (29.5) 2 (0.4) 267 69.8 29.2 1.0 23.0 (0.1) 1.0 (0.1)

52 223 (43.4) 285 (55.6) 5 (1.0) 219 43.2 56.0 0.8 21.8 (0.1) 1.5 (0.1)

39 183 (39.3) 258 (55.3) 25 (5.4) 266 38.6 56.1 5.2 21.4 (0.1) 0.9 (0.1)

18 46 (10.1) 393 (86.1) 17 (3.7) 276 10.4 85.5 4.1 20.3 (0.1) 1.8 (0.1)

46 77 (15.6) 349 (70.6) 68 (13.8) 238 16.0 70.2 13.9 20.1 (0.1) 1.0 (0.1)

43 23 (4.8) 376 (78.3) 81 (16.9) 252 5.5 77.4 17.1 0.6 (0.1) 1.3 (0.1)

48 6 (1.2) 209 (42.1) 282 (56.7) 235 1.2 41.6 57.2 2.3 (0.1) 1.1 (0.1)

8 1 (0.2) 161 (34.4) 306 (65.4) 264 0.6 33.6 65.8 2.7 (0.1) 1.2 (0.1)

13 0 (0) 4 (0.9) 454 (99.1) 274 0 1.0 99.0 6.7 (1.5) 1.2 (0.4)

Grades (G1–G3) assigned to a selection of ten breast tumour samples by 732 pathologists, with simulated results and parameter estimates from the Bayesian latent trait
model.
doi:10.1371/journal.pone.0002925.t002

Table 3. The distribution of grades assigned by a subset of pathologists.

Rater Observed : n (%)
Agreement
Score

Simulated No. of samples in
agreement with majority (s.d.) Estimated

G1 G2 G3 Ungraded b12 (s.e) b23 (s.e)

156 20 (65) 8 (26) 3 (10) 21 0.41 27.9 (3.3) 0.8 (0.4) 5.1 (0.5)

273 22 (48) 11 (24) 13 (28) 6 0.64 39.2 (2.9) 20.6 (0.3) 2.6 (0.5)

275 18 (40) 7 (16) 20 (44) 7 0.73 41.3 (2.7) 21.4 (0.3) 1.1 (0.4)

137 20 (39) 13 (25) 18 (35) 1 0.76 41.7 (2.6) 21.2 (0.3) 2.0 (0.4)

247 5 (11) 28 (62) 12 (27) 7 0.68 41.0 (2.4) 23.5 (0.4) 2.9 (0.5)

500 14 (27) 21 (40) 17 (33) 0 0.76 43.2 (2.5) 22.1 (0.4) 2.2 (0.4)

335 7 (23) 10 (33) 13 (43) 22 0.72 42.7 (2.6) 22.0 (0.4) 1.8 (0.5)

617 13 (26) 13 (26) 24 (48) 2 0.73 41.5 (2.8) 22.3 (0.4) 0.8 (0.4)

521 1 (6) 4 (25) 11 (69) 36 0.65 38.8 (3.6) 23.3 (0.7) 0.5 (0.6)

143 0 (0) 11 (55) 9 (45) 32 0.50 35.7 (3.3) 25.0 (0.6) 0.4 (0.5)

Grades (G1–G3) assigned by a selection of ten pathologists to 52 breast cancer tumour samples, with estimated agreement scores, and simulated results and parameter
estimates from the Bayesian latent trait model.
doi:10.1371/journal.pone.0002925.t003
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large number of raters, and an onymous varying panel design,

whereas the Kappa coefficient requires a fixed panel design.

Latent trait and latent class modelling. Latent trait and

latent class modelling have become increasingly popular in recent

years for analysing inter-rater agreement data. Summaries are

provided by Langeheine and Rost [8] and a recent review journal

edition [26]. In the latent trait model, it is assumed that there exists

an unobserved, or latent, continuous variable that represents key

properties of each sample being rated. In the classical framework,

a distributional form of latent trait levels is assumed for each group

of samples (for example, for tumour samples with true grades 1, 2

and 3, or for disease cases and controls). Typically, both the

parameters that characterise these distributions, and thresholds by

which raters transform the latent variables into observed ratings,

are estimated by maximum likelihood [4]. We discuss further

details of the latent trait model later.

In latent class modelling, samples are regarded as belonging to

exactly one of c unobserved categories, and conditional probabil-

ities of a sample being assigned each particular rating value, given

its latent class, are estimated. Often the appropriate choice of c is

unknown in advance, and is estimated, or models with different

values of c are compared [27,28].

Although latent trait models have received some criticism

because the underlying trait variable lies on an arbitrary,

uninterpretable scale [1], other authors have shown how estimated

parameters are related to familiar summary statistics such as

sensitivity, specificity and predictive values [27,29]. Models of this

type have consequently been used in a number of different

applications, including inter-rater agreement [30,31].

Other methods. One major class of models that has been

used for agreement data is that of log-linear models for categorical

data, as described by Agresti [7]. Originally developed from quasi-

symmetry models for pairs of raters, these models have been

adapted to produce a global measure of agreement for multiple

raters [32]. Typically such models provide a means of assessing

departure of observed data from the diagonals of either multiple

two-dimensional contingency tables, or a single high-dimensional

table, with parameters estimated directly by maximisation of the

likelihood function. While feasible for small numbers of raters, this

procedure quickly becomes computationally prohibitive as the

number of raters increases - for example, the exceedingly sparse

single contingency table representing the breast cancer tumour

data would have dimension 3732.

Other summary statistics that have been proposed include

Yule’s Y, the odds ratio and the Phi coefficient, whose relative

merits are discussed by Feinstein and Cicchetti [6], and Cicchetti

and Feinstein [22]. Martin Andres and Femia Marzo suggest an

alternative chance-corrected coefficient, Delta [33]. These meth-

ods all require a fixed panel design. Landis and Koch [34] propose

a method based on variance partitioning in which agreement is

summarised using intra- and inter-rater correlation coefficients.

For the varying panel design, James [35] suggests an ‘impartiality

index’ as a means to identify categories in which there occur a

higher proportion of disagreements than expected given the

marginal proportions for each category. Altaye et al. [36] give

maximum likelihood estimates for relevant parameters in the fixed

panel multi-rater agreement problem, although the computation

of these maximum likelihood estimates is infeasible if the number

of raters is large or if rating data are sparse. Nelson and Pepe [1]

provide a novel graphical display as a means for preliminary

analysis for fixed panel data (a three-dimensional plot illustrating

how the marginal proportions of the response categories vary

according to the average response category across all raters). A

potential limitation of this method is the clear dependence

between the plotted quantities, and the consequent difficulty in

interpretation.

Proposed methods
We use the breast cancer tumour data to demonstrate and

compare two methods for analysing agreement data with a large

number of raters and an onymous varying panel design. Our

proposed methods are designed to reflect the extent to which the

distribution of ratings provided by individual raters agrees with

that provided by all raters.

The agreement score. An easily-computed, intuitive

summary statistic is a simple agreement score sj, which can be

calculated for each rater j and which is based on the marginal

distribution of grades given to each sample.

Let gij be the observed grade assigned to sample i by rater j, Nj be

the number of samples given a rating by rater j, and ni,g be the

observed number of raters giving grade g to sample i, for g = 1,2,3

and i = 1,…,m, where m = 52 in the example. Then the

contribution of sample i to the agreement score of rater j

(j = 1,…,732), is

ŝsij~
ni,gij

{1P3
g~1 ni,g

� �
{1

ð1Þ

The contribution is zero if j does not give a rating to i, and the

agreement score of j is estimated as

ŝsj~
1

Nj

Xm

i~1

ŝsij ð2Þ

Our initial assumptions are that different samples are independent

and that in the case of incomplete rating data no information can

be gleaned from the pattern of missing data (i.e. that there is no

preferential selection of which samples are allocated to or returned

by the various raters). In the special case that each rater gives a

rating to each sample (the fixed panel design) and the further null

assumption that all R raters are equally proficient, we can regard

the distribution of the total number of raters, say (Y1,Y2,Y3),

assigning grades 1, 2 and 3 respectively to a given sample i as a

realisation of a Multinomial (R; pi,1, pi,2, pi,3) random variable,

where pi,g denotes the probability of a randomly-chosen rater

giving grade g to sample i.

Then for any rater j, we have from standard properties of the

multinomial distribution that

E sj

� �
~

1

m

Xm

i~1

X3

g~1

p2
i,g, ð3Þ

and

Var sj

� �
~

1

m2

Xm

i~1

X3

g~1

p3
i,g{

X3

g~1

p2
i,g

 !2
2
4

3
5: ð4Þ

sj can be regarded as an estimator of the overall proportion of

raters that will agree with a given rater j on the grade of a

randomly-chosen sample. Possible values of sj therefore range from

0 to 1, with a value of 1 indicating that there was unilateral

agreement on grade for every sample, and a value of 0 indicating

that a particular rater did not give the same grade as any other

rater for any sample. Under the null hypothesis, the minimum

Multiple-Rater Agreement

PLoS ONE | www.plosone.org 4 August 2008 | Volume 3 | Issue 8 | e2925



possible value of E(sj) is 1/3, occurring only in the highly unlikely

case that pi,1 = pi,2 = pi,3 = 1/3 for each sample i. Note that the

agreement score depends on the nature of the tumour samples

being rated, so, as for most studies of inter-rater agreement,

comparison between studies with differing case-mixes of tumour

samples requires care.

Importantly, neither the mean nor the variance of the

agreement score depends on the number of raters who rate each

sample, which enables a fair comparison of agreement scores

between raters to be made in the presence of incomplete rating

data. In practice the pi,g in (3) and (4) will be unknown, and will be

replaced by maximum likelihood estimates. It should also be noted

that, for two different raters j and k, agreement scores sj and sk are

not independent: there is a small positive covariance between sj

and sk that has a negligible impact for large sample sizes. From (4),

the sampling variance of the agreement score of a given rater

decreases with the number of samples graded by the rater, a key

factor in the interpretation of the agreement score. In order to

assess the level of evidence for the hypothesis that not all raters

interpret the grading scale in the same way, we consider a graph

similar to a funnel plot [37], in which we add upper and lower

confidence ‘envelopes’ calculated by simulation under the null

assumption that pi,1 = p1, pi,2 = p2 and pi,3 = p3 for each rater i. We

use the observed marginal proportions of grades 1, 2 and 3 for

each sample g as plug-in estimates of the true population

proportions p1,g, p2,g and p3,g. The steps required to create such a

plot are:

1. Fix h#m, the number of samples graded by a hypothetical

rater.

2. Select h of the 52 samples at random, say y1,…,yh.

3. For samples y1,…,yh, simulate grades g1,…,gh from the observed

empirical distributions of grades given to the sample (i.e. for a

given sample, with probability of selecting grade j proportional

to the proportion of raters who assigned grade j to the sample).

4. Estimate the agreement score based on the simulated grades

g1,…,gh using (1) and (2).

5. Repeat steps 2–4.

We can then estimate the distribution function of the agreement

score based on a large number of replications for each h. The

upper and lower confidence envelopes can be added to a plot of

agreement score against number of samples graded, and used to

indicate raters who behave anomalously compared with the

majority. While we draw an analogy between the resulting plot

and the funnel plot used in other contexts, the two differ in the

sense that there is no pre-defined tolerance limit to which we

compare scores of individual pathologists: such a limit would

depend on the case-mix of tumour samples used. Also, note that

the envelopes are not independent of the observed data, but are

intended simply to give a visual indication of how the variability of

the agreement score changes with the number of samples rated.

Bayesian latent trait model. Using a Bayesian formulation

of the problem enables relevant parameters to be estimated

without recourse to maximising the likelihood function directly

[4], which would be impractical for our application given the large

number of raters and incomplete data structure.

We think of the categorical response variable as representing an

underlying, latent, scale (c.f. the ‘Bones’ example in [38])

indicative of the severity of the tumour. We regard the act of a

rater grading a sample as estimating its true severity as a number

on the latent scale, and comparing this position with two grade

boundaries that ‘separate’ grades 1 and 2, and 2 and 3

respectively. These grade boundaries are allowed to vary between

raters. If rater j estimates the position of a given sample on the

latent scale as xj, then he will assign grade 1 if xj,b12,j, grade 2 if

b12,j,xj,b23,j and grade 3 if xj.b23,j, where b12,j and b23,j are,

respectively, the lower and upper grade boundaries on the latent

scale according to its interpretation by rater j.

This can be represented by a cumulative logit model of the form

P Assign grade~3ð Þ~logit{1 f i,jð Þð Þ

P Assign grade§2ð Þ~logit{1 g i,jð Þð Þ

for suitably-chosen functions f and g. We choose the following

forms for f and g:

f i,jð Þ~li mi{b23,j

� �

g i,jð Þ~li mi{b12,j

� �
Our choice of these functional forms is motivated by the fact that

the parameters are easily interpretable: mi can be thought of as the

latent measure of the severity of sample i, li as the clarity of the

sample (i.e. the ease with which it can be assessed), and b12,j and

b23,j as the grade boundaries of rater j as described above.

We choose priors for the parameters as follows. We give the

average of the two boundaries b12 and b23, bav say, a Normal prior

with zero mean, and a hyperparameter for the inverse of the

variance that itself has a Normal(0,1) distribution, truncated to be

positive. We give half the distance between the two grade

boundaries, 1
2

b23{b12ð Þ, say, a Normal prior with a mean of

two, truncated to be positive to constrain the b12 boundary to lie

below the b23 boundary. The inverse of the variance of this prior is

again a hyperparameter with a Normal(0,1) distribution truncated

to be positive.

We give the tumour severity parameters m a Normal prior, with

both mean and variance set to be hyperparameters. We also give

the hyperparameter for the inverse of the variance a Normal(0,1)

distribution truncated to be positive, and that for the mean a

Normal(0,4) distribution. We assign to the tumour clarity

parameters l a truncated Normal prior with mean zero and an

inverse-variance hyperparameter that has a Normal(0,1) distribu-

tion truncated to be positive.

In order for the model to be fitted, certain conditions must hold.

Consider a bipartite graph with nodes representing samples and

raters, in which edges connect raters to the samples they saw. The

graph must be connected in order for the parameters to be

identifiable and to enable reasonable comparison between the

grade boundaries of different raters. The graph for this data-set is

2-connected, thus ensuring parameter identifiability.

Finally, we can obtain new, simulated, sets of rater/tumour

observations by repeatedly sampling from the fitted Bayesian

model. For each set of simulations, we record the number of raters

assigning grades 1, 2 and 3 to each tumour and the majority grade

for each tumour. Using data from 1250 simulations, we estimate

the probability that a given rater would agree with the majority for

a given tumour for each rater/tumour pair. The simulated data

allow the estimation of two marginal probabilities, qj and ri say, the

first giving a measure of the performance of each rater j (i.e. the

probability of the rater being in the majority for a sample chosen

at random) and the second giving a measure of the difficulty

associated with grading each sample i (i.e. the proportion of raters

giving the consensus grade for the sample).

Multiple-Rater Agreement
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The model was fitted in WinBUGS 1.4.2 [39], and other

calculations were performed using R version 2.5 [40]. Code used

for the analysis is available in supplementary Statistical analysis file

S1, S2, S3, S4, S5, S6, S7 and S8 at the journal website. A

schematic representation of the model used is shown in Figure 1.

Results

The agreement score
Calculated values of the agreement score amongst the 732 raters

range from 0.35 to 0.87 (mean 0.72). The scores from ten raters

are shown in Table 3. The theoretical mean agreement score given

the marginal proportions for each grade for each sample using (3)

is 0.73.

Figure 2 shows the funnel-type plot of the agreement scores for

all raters, with 95% and 99% confidence envelopes based on

10000 replications and the median simulated agreement score

added. 61 raters (8.3%) lie outside the 95% envelope, and 31 raters

(4.2%) outside the 99% envelope, suggesting substantial differenc-

es between raters in the way by which grades are assigned. Note

that of the raters lying outside the 99% envelope, almost all lie

below the lower bound, rather than above the upper bound. We

would not normally encourage using the funnel-type plot as a

means of picking out individuals whose discrepancies may be

attributable to chance alone, but in this example one point lies so

much further from the envelope than the rest that the

corresponding rater warrants further investigation: rater 156,

who rated 31 samples and whose agreement score is just 0.41. We

can see from Table 4 that this particular rater has a marked

tendency to underestimate grades compared to the consensus

value (the observed modal grade amongst all raters).

Bayesian latent trait model
Tables 2 and 3 contain parameter estimates and results of the

simulations from the fitted model. From simulation, the mean

proportion assigning each grade to a given sample was very similar

to the observed proportion of grades (Table 2).

The simulation results are summarised in Figure 3, in which the

estimated probabilities of each rater agreeing with each sample’s

modal grade are plotted. Red values indicate low probabilities and

green values high probabilities. The panel on the right-hand side

of Figure 3 indicates the expected proportion of ratings assigned to

each of the three grades. There are around 15 samples for which

consensus on the modal grade is unclear, which naturally leads to

relatively low probabilities of agreeing with the modal grade for

most raters. At the other extreme, some samples were regarded

almost equivocally as grades 1 or 3, while the consensus was

weaker for the samples for which grade 2 was the modal value, a

result also noted by other authors [18].

Figure 1. Schematic representation of the Bayesian latent trait model.
doi:10.1371/journal.pone.0002925.g001
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Although the estimated values of the grade boundary param-

eters b12,j and b23,j, shown for a selection of raters in Table 3, have

no direct interpretation themselves, they can be plotted to

compare rating patterns of the raters relative to one another

(Figure 4). The four quadrants of the graph indicate four types of

rater behaviour in tumour classification. The panel to the left of

the graph shows in detail, for one rater in each quadrant, the

estimated probability of the rater agreeing with the majority for

Figure 2. Estimated agreement score, with 95% and 99% confidence envelopes, for 732 pathologists. Plot of estimated agreement
score against number of samples rated, with confidence envelopes within which 95% and 99% of raters would be expected to lie if all raters were
equally proficient.
doi:10.1371/journal.pone.0002925.g002
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each sample, where the samples have been ordered by their

estimated severity. As already noted, rater 156 tends to under-

estimate grades compared to the majority, while rater 143 tends to

over-estimate. Rater 247, with a low 1–2 boundary and a high 2–3

boundary, tends to assign many grade 2s, while rater 275, with a

high 1–2 boundary and a low 2–3 boundary, tends to assign few

grade 2s. The elliptical nature of this plot, with a preponderance of

points in the first and third quadrants, suggests that relative over-

or under-estimation of the grade boundaries are the most common

patterns that leads to disagreement between raters. We note that

for computational ease we implemented the model in a manner

that will impart some small correlation on the relationship between

b12,j and b23,j, but simulations suggest that this will not be

responsible for the magnitude of correlation seen here. As

indicated by Table 3, the expected number of samples for which

a rater agrees with a consensus changes substantially only when a

rater’s rating behaviour is extremely atypical.

Figure 5 shows estimated ranks of each rater based on estimated

qj values from 625 simulations from the fitted model, plotted with

95% confidence intervals and ordered by the point estimate of the

rank. The overall impression is of very wide intervals, encompass-

ing the majority of the range of ranks, for all but the lowest-ranked

few raters. The wide intervals are a consequence of both the small

number of samples seen by many raters and the well-known

difficulty of estimating ranks precisely.

Comparison of the methods
Both the agreement score method and the Bayesian latent trait

model indicate heterogeneity between raters for our data-set. We

hypothesised that the agreement score method might give an

unduly optimistic assessment of rater performance for raters who

had seen a subset of samples that were relatively easy to grade.

Therefore, in order to compare the two methods of analysis, we

consider the estimated difference in raters’ ranks from the two

methods. We plot this against the estimate, averaged over the

samples seen by each rater, of the ri (Figure 6). The clear trend

verifies the anticipated result: raters who by chance saw ‘easy’

samples tend to have more favourable ranks by the agreement

score method, which is rectified by the latent trait model.

Discussion

We have developed and compared two methods for inter-rater

agreement analysis of data in which there is no gold standard, a large

number of onymous raters, and incomplete rating information.

Table 4. Examination of grades assigned by a single
pathologist.

Rating of rater 156 Consensus grade

G1 G2 G3

G1 8 12 0

G2 0 1 7

G3 0 0 3

Comparison of the 31 breast cancer tumour sample grades (G1–G3) given by
the single rater 156 with the consensus grade.
doi:10.1371/journal.pone.0002925.t004

Figure 3. Summary of results of the Bayesian latent trait model. The main body of the plot is a heatmap showing the probability that raters
(columns) agree with the consensus grade for each sample (rows). Raters are ordered in terms of estimated probability of agreeing with the majority,
and samples in terms of estimated latent severity. The right-hand panel shows the expected distribution of assigned grades for each sample, and the
bottom panel shows, for each rater, the marginal probability of agreeing with the consensus grade.
doi:10.1371/journal.pone.0002925.g003
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Figure 4. Comparison of grade boundaries, estimated from the Bayesian latent trait model, for 732 pathologists. Scatter-plot of
estimated grade boundaries from the Bayesian latent trait model, in which the estimated grade boundary b12,j is plotted against b23,j for each rater j.
The left-hand panel shows the estimated probability qj of agreeing with the majority for four raters, one from each quadrant of the graph, as
indicated on the main plot.
doi:10.1371/journal.pone.0002925.g004

Figure 5. Estimated ranks of 732 pathologists. Plot of the raters’ ranks, estimated from the Bayesian latent trait model, with 95% credible limits.
doi:10.1371/journal.pone.0002925.g005
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The agreement score is a simple, non-chance-corrected statistic

that can be easily calculated and potentially used in order to

provide some evidence whether there may be raters whose

behaviour is discrepant compared to that of the majority. It can

therefore be regarded as a measure of the relative agreement

between an individual rater and a population of raters. For our

data, we found strong evidence that there were certain raters

whose levels of agreement with the majority were worse than

would be expected by chance. There was no evidence that there

were raters who were better than chance, perhaps unsurprisingly -

it is easier to envisage reasons why a single rater might record an

unusually low score than an unusually high one.

Although the agreement score is dependent on the case-mix of

the samples used in a particular study, it has a straightforward

interpretation as the probability that a given rater will agree with

another randomly-chosen rater on a randomly-chosen sample,

and can be displayed graphically in a way that avoids misleading

rankings. This may be a useful tool in the preliminary analysis of

data of this type, and can be used to identify potentially discrepant

raters as a first step in determining possible reasons why they may

differ from the majority.

We have demonstrated, using the Bayesian latent trait model, a

way by which to estimate both the performance of raters, via

estimated grade boundary parameters, and the marginal distribu-

tions of ratings given to each sample. The agreement score for

particular raters may be misleading for raters who, by chance or

otherwise, have only rated a selection of samples that are unusually

easy or difficult to classify. In particular, we have shown that raters

who rated ‘easy’ samples tend to have unjustifiably high values of

the agreement score. We therefore believe that the latent trait

method is of particular value if there is missing rating information

and the number of raters is large, in which case the probability

that some raters will see an unusually difficult or easy set of

samples is increased.

In future work the method might also be developed to relax the

assumption that missing rating information is uninformative, i.e. to

test whether there was any preference on the part of the raters over

which samples they chose to rate. For our example, this might

occur if the pattern of missing data were related to the grade. The

9% of samples that were not rated most often occurred in groups

of consecutively-numbered samples in single batches sent to

certain individual raters, which in our opinion suggests that

deliberate preferential rating is unlikely. In other extensions of the

work, the method might be adapted for use with multivariate

outcomes (e.g. to analyse the three components that constitute the

grade), for ongoing rater assessment, and to deal with changes in

rater behaviour or agreement over time (e.g. rater learning, or to

check the impact of new grading guidelines). We do not anticipate

that our proposed methods, designed for the case in which the

number of raters is large, will be useful or even viable in small

studies: much previous work has focussed on methods of analysis

with fewer than ten raters (e.g. [3]). However, the precise extent to

which the preferred methodology depends on the number of

contributing raters also remains an open question.

Latent trait models have attracted some criticism because of the

lack of interpretability of model parameters, owing to the arbitrary

choice of latent scale [1]. However, by simulating from the

posterior distributions of all parameters it is possible to provide

estimates of directly interpretable quantities such as the probability

that a rater will agree with the modal class. The method

illuminates features of the raters’ patterns of behaviour that would

have not become apparent from a single-number summary such as

Figure 6. Comparison of the two analysis methods. Plot of differences in raters’ estimated ranks for the two methods against a measure of the
difficulty of the samples seen by each rater, grouped by deciles. This measure of difficulty is calculated as the average, taken over the samples seen by
each rater, of the estimated values of ri.
doi:10.1371/journal.pone.0002925.g006
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the agreement score, a point that has also been noted with regard

to the Kappa coefficient [32]. In the example considered in this

paper, both the number of raters and the proportion of missing

data were large, and therefore to find a model that could be fitted

within the limits of computational feasibility was an important

consideration.

Simulation enables ranks of raters, with plausible confidence

limits, to be estimated, which could in principle be reported back

to individuals. The wide confidence limits in our example,

however, are illustrative of the great difficulty involved in

estimating ranks precisely. Even with greater precision the

practical value of knowing one’s rank would be limited.

Conversely, knowledge of the location of one’s grade boundaries

relative to other pathologists would be of potential interest and

these measures require much less computation to obtain estimates

than do the other results.

In the context of breast cancer tumour grading, our data show

substantial variation between individual pathologists in the way in

which grades are assigned to samples. This finding is broadly

consistent with the existing literature: for example, Meyer et al.

suggest that this is because ‘the level of agreement achievable is

limited by the subjectivity of grading criteria’ [17]. This may have

implications for clinical studies that treat grade as known on the

basis of information given by just one or two raters - in many such

cases the uncertainty associated with the ‘true’ grade may be too

large to be overlooked. In summary, our modelling approach leads

to richer conclusions than simple summary statistics can provide:

for example, the most frequent source of discrepancies between

raters appears to be due to consistent over- or under-estimation of

the grade boundaries.
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