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Abstract

Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5
(Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with
various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented
crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of
protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In
the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In
the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to
21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five
penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from
different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S)
from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular
crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was
found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data
obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or
lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose
that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-
modified Ad5 vectors.
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Introduction

In order to redirect adenovirus (Ad) virions to desired cell

targets and transform them into cell-specific vectors suitable for

biotherapy, diverse modifications of the adenoviral capsid have

been designed and tested experimentally in various laboratories.

These modifications have mainly concerned the projecting

capsomer referred to as the fiber, and more particularly its distal

globular domain (called the ‘knob’) involved in cell receptor

recognition and attachment (reviewed in [1]). However, the fiber

knob domain carries one of the signals required for trimerisation of

Ad2 and Ad5 fibers [2–5], and modifications of this domain could

have deleterious effects on the fiber structure and functions. Other

important functions at the early phase of the virus life cycle have

been assigned to the knob in addition to cell attachment, e.g. a role

in intracellular trafficking [6–10]. At the late phase of the virus life

cycle, the fiber knob-CAR interaction is considered as being

responsible for the disruption of the tight junctions between

epithelial cells [11]. The shaft domain, which governs the fiber

length and flexibility, has been shown to be essential for efficient

virus entry via the CAR-integrin pathway [12,13]. Furthermore in

the absence of available or accessible CAR molecules, Ad5 fiber

shaft has been considered as the capsid component involved in

cellular attachment through the interaction of the KKTK motif in

its third repeat with cellular heparan sulfate proteoglycans [14].

In earlier constructions of Ad5 vectors with modified cellular

tropism, we have observed that the deletion of the knob domain,

compensated for by the insertion of a nonviral trimerisation motif,
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had deleterious effects on infectivity, growth rate and even viability

of the modified viruses. This occurred despite the trimeric status of

the fibers, their normal O-glycosylation and nuclear import, and

the insertion of proper cell ligands for their binding to and

propagation in receptor-displaying host cells [15–17]. Further

investigation revealed that the fiber content of knob-deleted virions

was lower than the theoretical number of 12 copies per virus

particle, and reinsertion of the knob domain into the same fiber

construct restored the fiber content to normal or subnormal copy

number [15–17]. We recently showed that the low fiber content of

the knob-deleted virions paralleled the lower fiber content of the

virus-infected cells, compared to Ad5WTFib-infected cells, and we

identified the translation of the knobless fiber mRNA as the step of

the cell biosynthesis machinery which was altered upon knob

deletion [18]. Our results therefore indicated that the knob

domain plays a key role in the fiber content of the virion.

Furthermore, results from other studies showed that Ad fiber is

involved in the process of virus assembly and maturation : Ad5

mutants with fiber deletion or substitutions produce more empty

capsids, have impaired maturation and decreased infectivity,

compared to AdWTFib [7,19,20].

Since the nucleoplasm of Ad-infected cells is the compartment of

virion assembly [1], we investigated the Ad5 assembly process in situ,

using electron microscopy (EM), immuno-EM and immunofluores-

cence (IF) microscopy of cells infected with Ad5WT and a panel of

Ad vectors with genetic modifications in the fiber or penton base

genes. We observed profound alterations in the pattern of

intranuclear assembly of virions and viral protein inclusions in cells

infected with fiber deletion mutants : a number of particles lacked

their electron-dense core and the intranuclear crystalline inclusions

of viral proteins visible in Ad5WT-infected cells were absent or

abnormal in structure. Intranuclear protein crystals have been

already described [21–28]. Their structural parameters have been

determined in Ad2-infected KB cells [25], but their exact nature

and function, if any, have not been elucidated.

In the present study, we showed that the Ad-induced

intranuclear protein inclusions represented crystals of penton

capsomers, a hetero-oligomeric protein formed of a penton base

and a fiber moiety. Analysis of Ad5 penton base and fiber mutants

indicated that the accessible penton base RGD motifs were not

involved in crystal formation. In Ad5 fiber however, the shaft

domain comprising of repeats 17–21 and amino acid residues

489–492 within the knob domain were found to be essential for

crystal formation. Interestingly, the absence of crystalline inclu-

sions in certain Ad5-infected cells was associated with a lower fiber

content and lower infectivity of the virus progeny, suggesting that

the Ad5-induced intranuclear protein inclusions might serve as a

privileged platform for efficient fiber encapsidation, correct capsid

assembly, virus maturation and infectivity. A monoclonal antibody

(mAb) which was directed against the Ad5 fiber knob (referred to

as TB5) and cross-reacted with Ad2 and Ad3 knob but not with

Ad35, was found by IF microscopy to react with high efficiency

with the intranuclear protein crystals in situ. Thus, the IF pattern of

Ad5-infected 293 cells with TB5 could be used as a rapid screening

approach to assess viability and virion infectivity of recombinant

Ad vectors.

Results

Intranuclear assembly pattern of Ad5 vector with WT
fibers

The assembly pattern of Ad5 and nuclear alterations induced by

the viral infection was examined in situ by EM, using HEK-293

cells mock-infected or infected with Ad5WTFib. At 48 h pi, the

pattern of intranuclear viral material was the one expected from

earlier studies on WT Ad-infected cells. It consisted of virions with

their typical electron-dense core and of crystalline inclusions of

viral proteins (Fig. 1 A). These crystals have previously been

described and their structural parameters determined in Ad2-

infected KB cells [21,25]. In longitudinal and cross-sections

observed under different angles (Fig. 1 A–D), they appeared to be

formed by the regular arrangement of a pair of concentric tubules

of two different shades, a dark inner tubule surrounded by a lighter

shaded one (Fig. 1 E ; see also [25]). The diameter of the dark

inner tubule (TD) was 21.8162.69 nm (mean6standard devia-

tion, SD; n, number of independent measurements in different

areas of crystal sections = 29), and the inter-tubular distance (IT)

was 27.7062.74 (mean6SD; n = 131). In many cases, (Fig. 1 A,

arrows), there was a contiguity, and even a continuity of electron-

dense material between protein crystal elements and virions, in

particular at the tip of some tubules. Contacts between virion and

crystal material were also materialized by thin filaments

connecting the Ad capsid to tubular elements of the crystal

(Fig. 1 B, C; arrows).

Immuno-EM analysis of Ad5WTFib-induced protein
crystalline inclusions

The nature of the viral protein components of the intranuclear

crystals was investigated using immuno-EM. Ad5WTFib-infected

cell specimens were embedded in metacrylate resin, and sections

reacted with various anti-Ad antibodies followed by 10-nm

colloidal gold-tagged secondary antibody (immunogold labeling).

A mixture of three monoclonal antibodies directed towards hexon

group-specific epitopes in equal proportions, MAB8051,

MAB8043 and 4C3, failed to react with intranuclear crystals in

Ad5WTFib-infected cells (not shown). Likewise, no immunostain-

ing was observed with anti-pIIIa, anti-core V and anti-core VII

antibodies (not shown). With anti-fiber polyclonal antibody

however, immunogold labeling concentrated in the crystalline

inclusions, and in many instances the gold grains followed the

linear arrangement of the tubules in longitudinal sections of

crystals (Fig. 2 A). Antibody against penton base gave an immuno-

EM pattern similar to that of anti-fiber, with a roughly linear

arrangement of immunogold grains along the crystal tubules, as

with anti-fiber antibody (Fig. 2 B). This indicated that the

intranuclear protein inclusions observed at late times of Ad5 (or

Ad2) infection were composed of penton capsomers, a hetero-

oligomeric protein complex composed of penton base capsomer

bound to the projecting fiber.

Characterization of TB5, an anti-crystal monoclonal
antibody

In order to confirm the protein composition of the nuclear

crystals, Ad5WTFib-infected 293 cells were also studied by

conventional and confocal immunofluorescence (IF) microscopy.

A mouse monoclonal antibody, named TB5, was raised against

Ad5-infected cell lysate. TB5 was found to be directed against

native fiber, as it reacted with fiber in immunoprecipitation of

(35S)-methionine-labeled Ad5-infected Hep2 cell extracts, but not

with SDS-denatured fiber in Western blots, indicating that the

TB5 epitope is in a sensitive three-dimensional conformation (data

not shown). The reactivity to TB5 was compared between

standard 293 cells and its derivative, the fiber-expressing cell line

293-Fiber [7]. IF analysis showed an intense and diffuse

fluorescent signal in 293-Fiber cells, mainly localized in the

nucleus, whereas only background fluorescence was observed with

293 cells (data not shown). This confirmed that TB5 was a bona fide

Nuclear Crystals of Ad Penton
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anti-fiber antibody. Furthermore, nuclei of Sf9 cells infected by

recombinant baculovirus AcMNPV expressing Ad5, Ad2 or Ad3

fiber knob [29], also reacted with TB5, whereas uninfected Sf9 did

not yield a detectable signal (data not shown). This indicated that

the TB5 epitope was localised in the knob domain, and was

common to Ad2, Ad5 and Ad3 serotypes.

Figure 1. EM analysis of Ad5WTFib-infected 293 cells at 48 h pi. (A–C). Portions of cell nucleoplasm showing crystalline inclusions of viral
proteins (Cr) seen in longitudinal sections. Note the presence of virions in close contact with crystal elements. Arrows on top of panel (A) indicate
virions which seem to emerge from the edge of the crystal. Arrows on panel (B) and (C) point to filaments connecting virions to the crystal. (D),
Portion of cell nucleoplasm showing a viral protein crystalline inclusion seen in cross section. (E), Model of the crystal lattice viewed in cross section,
with its main parameters, diameter of the tubular unit (TD = 21.8) and inter-tubular distance (IT = 27.7), indicated in nm. In (F), a longitudinally
sectioned crystal showed adenovirions included within the crystal lattice. Epon-embedded specimens.
doi:10.1371/journal.pone.0002894.g001
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Ad5-infected 293 cells harvested at late times pi (48 h), fixed,

permeabilised and incubated with TB5 showed intensely-labeled

fluorescent inclusions in nuclei in conventional IF microscopy

(Fig. 3 A–D), reminiscent of the intranuclear crystals detected by

EM. Confocal microscopy confirmed the regular, rod-like

structure of these inclusions (Fig. 3 E). More importantly, the

intranuclear rod-like inclusions were simultaneously labeled with

both TB5 and anti-penton base antibody (Fig. 3 E–G). DAPI

stained the nucleoplasm in a diffuse manner and its blue

fluorescent signal was excluded from crystals (Fig. 4 D, G). This

indicated that DNA was not a constitutive element of the crystals,

confirming previous histochemical analyses [30]. When compared

to polyclonal anti-fiber antibody, the reactivity of monoclonal TB5

towards crystal sections was very weak in immuno-EM, as

expected for a single epitope-recognizing monoclonal antibody,

but some immunogold labeling was found to be associated with

crystalline inclusions (not shown).

Involvement of penton base and fiber domains in the
crystal structure

HEK-293 cells were infected at the same MOI with a panel of

recombinant Ad5 carrying penton base or fiber mutations

(schematically represented in Fig. 4), processed for EM, and

examined at 48 h pi. We reasoned that if the intranuclear protein

crystals formed at the late stage of Ad5 infection were composed of

pentons, certain mutations in one or the other domain of the

protein, penton base, fiber shaft or fiber knob, might affect the

occurrence and/or structure of the crystals and hopefully result in

structural alterations visible under the EM. The level of viral

infection was assessed under the EM by the occurrence of

numerous intranuclear virions isolated or packed in clusters (refer

to Fig. 1 and 2).

Mutant Ad5PbEGD, which carried a R-to-E substitution in the

penton base RGD motif, induced the formation of nuclear protein

crystals with WT characteristics as judged by EM (not shown) and

showed the same pattern of nuclear inclusions following

incubation with TB5 (Fig. 3 B), indicating that the formation of

the crystalline inclusions did not depend on the integrity of the

RGD motifs of penton base capsomers. However, Ad5R7Dknob, a

knob-deleted mutant carrying fibers with seven shaft repeats and

no cell-specific ligand (Fig. 4), showed a drastic change in the

crystal morphology, compared to WT crystals : crystals generated

by Ad5R7Dknob were more compact, arranged as twinned

crystals or as macles (Fig. 5 A). The dark tubules constituting

the crystals were shorter than in WT crystals, and the grey area

around them (refer to Fig. 1 D, E) was no longer visible. There was

a lower value for the inner tubule diameter (TD = 17.361.94 nm ;

n = 15) and a significantly smaller (3-fold) distance between tubules

(IT = 6.6061.59 nm; n = 28) (Fig. 5 B). When examined in

immuno-EM using penton base antibody, Ad5R7Dknob crystals

showed a positive response, but a less regular arrangement of gold

grains than in WT crystals (Fig. 5 C). This suggested that penton

base protein constituted the inner tubules of the crystals, whereas

the peripheral grey area would represent the fiber moiety of the

penton heteromeric protein. As expected, the Ad5R7Dknob-

infected cell nuclei did not show any reaction with TB5 in IF (data

not shown).

Mapping of the fiber knob region(s) implicated in the
crystal structure

In order to define the region(s) of the knob domain which were

critical for crystal assembly, we used Ad5 mutants carrying

substitutions, short deletions or insertions in their knob domain

(refer to Fig. 4 B). Most of these mutations concerned accessible

residues involved, directly or indirectly, in CAR binding of Ad5 or

Ad12 fiber, e.g. at positions 441, 442 and 508 (reviewed in [31]).

Substitution mutants Ad5V441G, Ad5K442A and Ad5H508A

showed a WT pattern of intranuclear crystalline inclusions (Fig. 3

C), as well as insertion mutant Ad5(HI)RGD4C (Fig. 3 D).

Deletion mutant Ad5DEF, which lacked residues 479–486 forming

the short double beta-strand EF [32,33], also showed TB5-stained

intranuclear crystals indistinguishable from that of WT in

fluorescence microscopy (Fig. 6 C, inset). Under the EM,

Ad5DEF-induced nuclear crystals presented overall WT features

(Fig. 6 A–C). However, closer examination at higher magnification

revealed subtle differences in certain crystal parameters compared

to those of WT crystals. The inner tubule diameter was similar in

size to that of WT (TD = 23.2063.69 nm; n = 20), but the

intertubular distance was slightly shorter, IT = 23.5163.29

(n = 20), instead of 27.762.74 nm for WT crystals (refer to Fig. 1

A–E). In contrast, the nuclei of Ad5DTAYT489-infected cells

Figure 2. EM and immuno-EM analysis of Ad5WTFib-infected
293 cells at 48 h pi. Sections of metacrylate-embedded specimens
were reacted with rabbit anti-fiber (A), or anti-penton base antibody
(b), followed by 10-nm colloidal gold-labeled anti-rabbit IgG goat
antibody. Shown are portions of nucleoplasm with protein crystalline
inclusions. In panel (A), the longitudinal section of the protein crystal
shows gold grains disposed along the lines of the tubular structures. In
(B), crystalline inclusions of virus particles and viral protein are seen in
close contact with each other, a phenomenon which is called epitaxy.
Note that fixation and staining of metacrylate-embedded specimens
was deliberately weak, in order not to interfere with the immunogold
labeling.
doi:10.1371/journal.pone.0002894.g002
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showed no detectable crystals and only amorphous inclusions were

observed (Fig. 6 D). In IF microscopy of Ad5DTAYT489-infected

cells, TB5-stained globular inclusions were observed (Fig. 6 D,

inset).

Mutant Ad5F497D was mutated in the first residue of the highly

conserved motif FMP [34]. The F-to-D substitution at position

497 has been shown to have deleterious effects on fiber

encapsidation, virus maturation and infectivity of Ad5F497D

mutant [19]. We therefore examined Ad5F497D-infected 293 cells

under the EM, and found that the structure of the intranuclear

inclusions induced by Ad5F497D was drastically different from

that of WT, both qualitatively and quantitatively. Qualitatively,

the tubules forming the crystals had a wavy aspect in longitudinal

sections (Fig. 7 A), and showed irregularly arranged rings in cross

sections (Fig. 7 B), compared to WT crystals (refer to Fig 1 D).

Quantitatively, the crystal parameters had also changed, com-

Figure 3. IF microscopy of Ad-infected 293 cells at 48 h pi. (A–D) and (H–J). Conventional IF microscopy using anti-fiber monoclonal
antibody TB5 and secondary Alexa FluorH633-labeled anti-mouse IgG. (A), Ad5WTFib; (B), Ad5PbEGD; (C), Ad5H508A; (D), Ad5(HI)RGD4C (with DAPI
counterstaining). (E–G), Confocal analysis of Ad5ßGalWTFib-infected 293 cells with TB5. (E), Sample reacted with TB5 Alexa FluorH633-labeled anti-
mouse IgG; (F), sample reacted with anti-penton base antibody and secondary FITC-labeled anti-rabbit IgG; (G), image overlay with DAPI nuclear
staining. (H–J), Kinetics of appearance of intranuclear crystals in Ad-infected cells. 293 cells infected with Ad5WTFib were harvested at different times
pi and reacted with TB5 and Alexa FluorH633-labeled anti-mouse IgG, with DAPI counterstaining. (H), 12 h pi; (I), 16 h pi; (J), 20 h pi. Note that IF
pictures are presented at low magnification to show large field of view including several crystal-containing cells (A, B ; H–J), or at higher magnification
to show the mass and number of crystals within a single nucleus (C–G).
doi:10.1371/journal.pone.0002894.g003

Nuclear Crystals of Ad Penton

PLoS ONE | www.plosone.org 5 August 2008 | Volume 3 | Issue 8 | e2894



Figure 4. (A), Schematic representation of penton base and fiber mutant constructs in Ad5 vectors. The acronyms of the recombinants
are indicated on the left side of the figure. The penton base and its RGD loops is represented by a five pointed star. The different structural domains
and ligands of the fibers are shown by various symbols, as indicated in the figure. In Ad5DR8-21 and Ad5R7DKnob fibers, the extrinsic trimerization
motif is represented by a stippled bar. On the right side of the figure, ‘Crystals’ indicates the occurrence of nuclear protein crystals : P, positive for
crystals; N, negative; A, altered in crystal lattice arrangement. The shaded areas represent the regions of the fiber knob and shaft domains which are
crucial for crystal formation. (B), Schematic representation of the Ad5 fiber knob domain and mutation positions. The end of the shaft
domain is represented by a dotted line on the left side, and the knob domain by a solid line, with the amino acid numbering starting at residue 400.
The b-strands regions are represented as open boxes, the flexible loops as hatched boxes, and the regions involved in CAR receptor binding [31] as
shaded boxes. The positions of mutations are indicated by solid bars for substitutions, by open triangles for deletions, and by a solid triangle for the
RGD4C insertion.
doi:10.1371/journal.pone.0002894.g004
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pared to those of WT : tubule diameter and intertubular distance

were both significantly smaller than to those of WT crystals,

TD = 16.8662.72 (n = 8), and IT = 21.8762.45 (n = 23), respec-

tively. In IF microscopy with TB5, no fluorescent signal was

obtained with Ad5F497D mutant (not shown).

Although these data suggested a priori that the knob region

overlapping the 489-TAYT-492 and F-497 mutations was

essential for crystal formation and/or correct lattice structure,

we envisaged the possibility that the absence of crystals, or their

aberrant structure, could be related to the amount of fiber protein

in mutant-infected cells. Whole lysates from cells infected with

Ad5F497D and Ad5DTAYT489 were therefore analyzed by SDS-

PAGE and Western blotting using anti-tail 4D2.5 mAb, and their

fiber content compared to that of Ad5WTFib and of Ad5DR8-

R21, another mutant defective in crystal formation (see below).

Penton base protein was also assayed by Western blot analysis and

used as the internal standard. Fiber production was found to be at

WT levels for Ad5DR8-R21 and Ad5DTAYT489, but barely

detectable for Ad5F497D, even at late times pi (Fig. 7 C),

suggesting a lower level of expression or/and a lower stability of

the F497D fiber protein mutant, compared to WT fiber. The low

cellular content of F497D fiber correlated with the low fiber copy

number of Ad5F497D virus progeny and the low infectivity of

virions previously observed [19]. By contrast, the penton base

production was at WT levels at 72 h pi in Ad5F497D-infected cells

(Fig. 7 C), implying that the aberrant inclusions generated by

Ad5F497D mutant contained no fiber protein and only penton

base. However, the normal fiber content of cells infected with

Ad5DTAYT489 and Ad5DR8-R21 mutants indicated that the

absence of crystals was not the direct consequence of a low level of

fiber protein expression.

Except for the fiber mutant F497D described above, and the

two knobless fibers R7Dknob and R7-ZZwt which were defective

in fiber protein synthesis [17,18], all the other fiber mutants used

in the present study were produced at levels similar to that of WT

fiber (data not shown).

Role of the fiber shaft domain in crystal formation and
structure

We next examined whether the size and nature of the fiber shaft

had any influence on the structure of the crystals. Three deletions

were made in the fiber shaft, spanning repeats 4 to 16, 4 to 19 and

8 to 21, corresponding to viruses Ad5DR4-16, Ad5DR4-19 and

Ad5DR8-21, respectively (Fig. 4). Of note, R4-R16 and R4-R19

deletions included the O-GlcNAc-serine residue at position 109

[35] in the fourth shaft repeat, but respected the 91-KKTK-94

motif in the third repeat, which contains a bend in the shaft rod-

like structure [36]. Ad5DR4-16 produced crystals, although with

different shape and dimensions, compared to WT crystals (Fig. 8

A, B) : in longitudinal sections the tubules showed a certain degree

of curvature; in transverse sections, the tubules were similar to WT

in diameter, but inter-tubular spacing was narrower than in WT

crystals. Measurements gave the following values: TD = 20.176

2.05 (n = 18), and IT = 13.1863.82 (n = 20). No crystal was

observed with Ad5DR4-19 and Ad5DR8-21, and only amorphous

inclusions could be seen under the EM (not shown). This suggested

that the shaft region overlapping repeats 17–21 was critical for

intranuclear crystallization process.

The role of the shaft domain was further analyzed using

chimeric penton and fiber capsomers. Ad5/K3 carried only the

Ad3 knob at the extremity of a serotype 5 fiber bound to serotype

5 penton base, whereas Ad5/F3 carried the Ad3 knob and shaft

domains fused to the tail of Ad5 fiber. In Ad5/F35, the virion was

pseudotyped by serotype 35 fiber knob and shaft, fused to serotype

5 tail (Fig. 4). No crystal was observed in Ad5/K3-infected 293

cells (not shown). However, Ad5/F3 produced crystals with a

particular morphology (Fig. 8 C–E) : crystalline inclusions were

generally much shorter than with Ad5WTFib or Ad5DEF

(compare with Fig. 1 A, F and Fig. 6 C). Tubular diameter was

in a similar range of values as in WT crystals (TD = 20.7461.80 ;

n = 15), but the intertubular distance was significantly smaller, ca.

3-fold (IT = 9.7160.50 ; n = 48).

Figure 5. EM (A), and immuno-EM (B) analyses of Ad5R7Dknob-
infected 293 cells at 48 h pi. In panel (A), an area of nucleoplasm
shows small and twinned protein crystals seen in longitudinal, oblique
and cross-sections. Virions are seen dispersed in the neighbourhood.
Epon-embedded specimens. In panel (B), is shown a model of the
crystal lattice derived from data obtained from as in (A). In panel (C), a
section of metacrylate-embedded specimen was reacted with rabbit
anti-penton base antibody followed by 10-nm colloidal gold-labeled
anti-rabbit IgG goat antibody. Note the accumulation of gold-labeling
in the protein crystalline inclusions. Some gold grains are also seen
associated with virion clusters.
doi:10.1371/journal.pone.0002894.g005
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The morphology of crystals produced by the pseudotyped

vector Ad5/F35 was also different from the WT crystals (Fig. 9) :

the tubular alignment was not perfectly straight as in WT crystals

(Fig. 9 A), and the tubules showed very frequent discontinuities in

longitudinal sections (Fig. 9 B). The tubule diameter was slightly

larger and the spacing narrower than those of WT:

TD = 24.3262.60 (n = 91) and IT = 9.2663.48 (n = 73).

In IF microscopy with TB5, no fluorescent signal was obtained

with the pseudotyped vector Ad5/F35, and a diffuse pattern of

fluorescence was shown by the shaft deletion mutants Ad5DR4-19

and Ad5DR8-21, as well as with the pseudotyped vector Ad5/K3

(not shown).

Occurrence of protein crystals in cells infected with dual
fiber-expressing vector Ad5/R7-ZZwt/E1:WTFib

In a previous study, we have shown that the deletion of the knob

had a negative effect on the rate of translation of the fiber mRNA,

resulting in a low cellular content of knobless fiber, compared to

WT fiber. In addition, knobless fiber Ad5 vectors have a lower

fiber encapsidation efficiency and lower infectivity than WT fiber

vectors [18]. To further examine the cellular effects of the

coexpression of two fiber proteins, WT and knobless, in the virus

assembly process, we infected 293 cells with a single fiber-

expressing or a dual fiber-expressing vector, and examined cell

sections under the EM at 48 h pi. Ad5/R7-ZZwt contained a

single fiber gene at its natural location in the L5 region of the

adenoviral genome. Its fiber gene encoded a shaft-truncated (seven

repeats; R7), knob-deleted fiber terminated by a non-viral

trimerisation motif (abbreviated NRP) and a tandem Zwt ligand

[18], abbreviated ZZwt in the present study (Fig. 4 A). Fiber

trimerization of knobless R7-ZZwt fiber was therefore achieved by

NRP, the neck region peptide from the human lung surfactant

protein D [18]. The Zwt ligand consisted of an Ig-binding domain

derived from the Staphylococcal protein A, and has been described in

previous studies [18,37,38]. In the dual fiber-expressing vector

Ad5/R7-ZZwt/E1:WTFib, the early region E1 located at the left-

end hand of the viral genome was deleted and replaced by the

gene coding for WT fiber, whereas the late region L5 encoded the

knob-deleted, shaft-truncated ZZwt-liganded fiber [18].

Ad5/R7-ZZwt-infected cells showed no protein crystalline

inclusion, and many intranuclear virus particles showed an

electroluscent center, representing empty capsids devoid of a

Figure 6. EM analysis of 293 cells infected with Ad fiber knob mutants at 48 h pi. (A–C), Ad5DEF crystals (Cr) seen in longitudinal (A, C)
and cross section (B); (C, inset), Ad5DEF-infected cells examined in IF microscopy after reaction with TB5 followed by Alexa FluorH633-labeled anti-
mouse IgG and DAPI counterstaining. (D), Ad5DTAYT489; (i), amorphous inclusion. (D, inset), Ad5DTAYT489-infected cells stained with TB5, as for
the specimen shown in the inset of panel C.
doi:10.1371/journal.pone.0002894.g006

Nuclear Crystals of Ad Penton

PLoS ONE | www.plosone.org 8 August 2008 | Volume 3 | Issue 8 | e2894



DNA-containing core (not shown). This confirmed that the fiber

knob domain, deleted in Ad5/R7-ZZwt, was not only critical for

efficient capsid assembly, but also for the formation of nuclear

protein crystals, and possibly for DNA packaging into virions. In

293 cells infected with Ad5/R7-ZZwt/E1:WTFib, two different

patterns of virus particle assembly were observed : (i) clusters of

virions with their usual shape and chromicity in close vicinity to

protein crystals (Fig. 10 A); (ii) crystal-like packings of virus

particles within the nucleoplasm at a distance from protein

crystals, many of them showing an electroluscent center, typical of

particles devoid of DNA (Fig. 10 B; arrows). The results of EM

analysis of Ad5/R7-ZZwt/E1:WTFib-infected cells suggested the

coexistence of different modes of Ad assembly in double fiber-

expressing cells, one of them involving the penton protein crystals.

Since two fiber protein species, WT and R7-ZZwt, coexisted

within the nucleoplasm, one could theoretically envisage three

modes of assembly for Ad5/R7-ZZwt/E1:WTFib virions (Fig. 11

A–C). (i) In the first mode (Fig. 11 A), there would be no

preselection of one particular fiber species, and multiple equivalent

assembly sites dispersed within the nucleoplasm would share the

stock of available WT and R7-ZZwt fiber molecules. In this case,

protein crystals would have no specific function in virus assembly,

and the resulting virus progeny would consist of a single

population of mosaic virions carrying the two fiber species in the

same ratio as the cell content (Fig. 11 A). On the opposite, penton

crystalline inclusions might play a role in the Ad morphogenic

process and would represent a privileged assembly platform : in

preselecting the WT fiber species, the crystals would provide the

virus assembly machinery with a large supply of preassembled

penton capsomers, the limiting factor in capsid assembly [39–41].

In this case, two possibilities could be considered. (ii) In the

assembly mode II, WT fibers bound to penton base would

exclusively localise in crystals, whereas the knobless fibers would

be entirely left in other assembly sites invisible to conventional

EM. This would yield a virus progeny composed of two different

populations, each one homogenous in terms of fiber composition,

WT or knobless R7-ZZwt fibers, respectively (Fig. 11 B). (iii) In the

third assembly mode, WT fibers would not exclusively locate in

crystals as penton base-bound molecules, but also be present in

other assembly sites which would contain a mixed population of

WT and R7-ZZwt fiber molecules. In this case, Ad5/R7-ZZwt/

E1:WTFib progeny would contain two types of virus particles, one

Figure 7. Occurrence of intranuclear crystals and fiber protein expression in cells infected with Ad5 fiber mutants. (A, B), EM analysis
of Ad5F497D-infected cells at 48 h pi. Cr, crystal. (C), SDS-PAGE and Western blot analysis of whole lysates from cells infected respectively with :
Ad5WTFib, Ad5DR8-R21, Ad5DTAYT489 and Ad5F497D, harvested at 48 or 72 h pi as indicated on top of the panel. Blots were reacted with anti-tail
mAb 4D2.5 followed by phosphatase-labeled anti-mouse IgG antibody, then with anti-penton base rabbit antibody and peroxidase-labeled anti-
rabbit IgG antibody. Fi, fiber polypeptide band; Pb, penton base. Symbols (+) and (2) at the bottom of the blot refer to Ad5 clones which were
positive or negative for crystal formation, respectively.
doi:10.1371/journal.pone.0002894.g007

Nuclear Crystals of Ad Penton

PLoS ONE | www.plosone.org 9 August 2008 | Volume 3 | Issue 8 | e2894



carrying only WT fibers, the other consisting of mosaic particles

carrying the two different fiber species (Fig. 11 C). Analysis of the

Ad5/R7-ZZwt/E1:WTFib progeny helped us to gain an under-

standing of the mechanism of Ad assembly within the nucleus.

Characterization of the Ad5/R7-ZZwt/E1:WTFib progeny
When analyzed by isopycnic ultracentrifugation in a CsCl self-

generating gradient, the Ad5/R7-ZZwt/E1:WTFib progeny was

found to consist of two unequal populations : a major population

(60–65% of the total virus yield, as determined by a conventional

protein assay) sedimented as a broad band at an apparent density

of r= 1.30–1.31, wheras the minor population (35–40%) banded

at r= 1.340–1.345, the density of mature, infectious virions.

Under the EM, negatively stained samples from the 1.345-band

were found to consist of a homogenous population of virions with a

typical icosahedral morphology (Fig. 11 D). By contrast, the band

at 1.30–1.31 was heterogeneous and contained rare virions with a

regular, icosahedral shape, and a majority of floppy particles

lacking a polyhedral contour (Fig. 11 E). Gaps in the capsid were

clearly observed at the expected positions of apices (Fig. 11 E;

arrows). This aspect was in line with the EM observations of Ad5/

R7-ZZwt/E1:WTFib-infected cell nuclei (refer to Fig. 10) and

implied that a large population of the virus progeny consisted of

incomplete, non-infectious particles devoid of viral genomes. This

was confirmed by the determination of the infectious titre and

DNA content, which were were about 10-fold lower in the 1.30-

particle fraction, compared to the 1.34-fraction. Interestingly, both

fractions were found to contain the two fiber species, with a WT to

R7-ZZwt ratio of about 10:1, as shown by Western blot analysis

(Fig. 11 F).

We next examined at high resolution EM the Ad5/R7-ZZwt/

E1:WTFib particles banding at 1.34-density, since these particles

showed intact apices, by contrast to 1.30-particles. EM analysis

was consistant with the Western blot data and ruled out modes I

and II. Both fiber species, WT and knobless, were found in

particles of 1.34-density, and we never observed virions carrying

solely short, knobless fibers (Fig. 11 G). Although the twelve fiber

projections are rarely seen simultaneously due to their masking by

Figure 8. EM analysis of 293 cells infected with (A, B) shaft-deleted recombinant Ad5DR4-R16, or (c–e) chimeric fiber recombinant
Ad5/F3, at 48 h pi. In panels (A) and (C, D), areas of nucleoplasm show small, twinned protein crystals seen in both longitudinal and cross-
sections. Panels (B) and (E) present models of the two types of crystal lattice.
doi:10.1371/journal.pone.0002894.g008
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the capsid, two populations of intact virions were clearly

distinguished. The major population consisted of virions with

their apical capsomers occupied by WT fibers, with their typical

shape, size, and terminal knob (Fig. 11 G; black arrows). The

minor virus population showed a mixed fiber content, with

coexistence of long, knob-carrying fibers (Fig. 11 G ; black arrows)

and short, knobless fibers on the same capsid (Fig. 11 G; red

arrow). This was in favor of the assembly mode III (Fig. 11 C).

WT and R7-ZZwt fibers could be distinguished not only by their

length and knob domain, but also by their immune reactivity.

Since the ZZwt tandem motif is a ligand of the Fc domain of IgG

[37,42], the Ad5/R7-ZZwt/E1:WTFib particles of 1.34 in density

were incubated with gold-tagged polyclonal IgG from goat, and

examined under the EM. Immunogold labeling confirmed the

heterogeneity of this virus population in terms of fiber content, as

described above. The majority of virus particles were unlabeled

and carried only WT fibers. They coexisted with another

population of virus particles which were immunogold labeled

and represented 25–30% of the total (Fig. 12 A). Most of the virus-

associated gold grains were found to localize at the apex of the

capsid (Fig. 12 B–F). Observation of isolated virus particles at

higher magnification showed the coexistence of two fiber species

on single capsids, long WT fibers terminated by the knob (Fig. 12,

Figure 9. EM analysis of 293 cells infected with chimeric fiber
recombinant Ad5/F35, at 48 h pi. Protein crystals are shown in (A,
B) longitudinal sections at low (A) and high (B) magnification, and (D)
cross-section. (C), Model and parameters of the crystal lattice.
doi:10.1371/journal.pone.0002894.g009

Figure 10. EM analysis of 293 cells infected with dual fiber-
expressing recombinant Ad5/R7-ZZwt/E1:WTFib. (A), Portion of
nucleoplasm showing adenovirions clustering around a protein crystal
(Cr) viewed in cross-section. (B), Another area of nucleoplasm showing
Ad particles packed into clusters. Note that several particles have an
electron-luscent centre (arrows).
doi:10.1371/journal.pone.0002894.g010
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Figure 11. Analysis of the Ad5/R7-ZZwt/E1:WTFib progeny. (A–C), Hypothetical modes of intranuclear assembly for Ad5/R7-ZZwt/E1:WTFib
virions. (A), Mode I : single population of mosaic fiber virions. (B), Mode II : two separate populations of virions, each carrying homogenous fiber
species, WT and R7-ZZwt fiber, respectively. (C), Mode III : two separate populations of WT fiber virions and mosaic fiber virions, respectively. (D, E),
EM analysis of Ad5/R7-ZZwt/E1:WTFib virus progeny. (D), Virus population banding at a density (r) of 1.345 in CsCl isopycnic gradient. (E), Virus
population banding at r= 1.30–1.31. White arrows point to gaps in viral capsids. (F), Fiber protein content of the virus population banding at the
densities of 1.345 and 1.31, respectively. Virions were analyzed by SDS-PAGE and Western blotting using anti-tail mAb 4D2.5 followed by (35S)-labeled
anti-mouse IgG antibody. An autoradiogram is shown. The band labeled with (*) at 48 kDa corresponds to the reaction of secondary anti-mouse IgG
antibody with core protein V. (G), High resolution EM of Ad5/R7-ZZwt/E1:WTFib progeny virions banding at r= 1.345. Black arrows point to long
shafted, WT fibers. Red arrow points to a short shafted fiber.
doi:10.1371/journal.pone.0002894.g011
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G–I; arrows), and gold-tagged R7-ZZwt fibers (Fig. 12, G–I). This

further supported the assembly mode III proposed in Fig. 11 C.

Time-course kinetics of intranuclear occurrence of
penton crystals in Ad5WTFib-infected cells

If intranuclear penton crystals represented byproducts from

viral capsid protein synthesis, one would expect that the

appearance of crystals would be delayed in Ad-infected cell

nucleus, compared to that of virus particles, and would constitute a

very late event in the virus life cycle. On the opposite, if crystals

were directly or indirectly involved in virion assembly, the timing

of their occurrence should roughly coincide with the step of

adenovirion assembly [41]. Taking advantage of the TB5

reactivity of crystals in situ, 293 cells were infected with Ad5WTFib

and samples withdrawn at regular time intervals for IF microscopy

with TB5 staining. A diffuse cytoplasmic fluorescence was

observed at 12 h pi, consistent with the start of the fiber

biosynthesis at this phase of the cycle (Fig. 3 H). Intranuclear

fluorescent dots and rod-like inclusions were seen as early as 16 h

pi in 2–5% of the infected cells (Fig. 3 I), and typical crystals were

visible at 20 h pi in 10% of the cells (Fig. 3 J). At later times pi,

more than 50% cells showed large intranuclear crystals (refer to

Fig. 3 A). This indicated that the occurrence of intranuclear cystals

was contemporary with the start of virion assembly (16–20 h pi),

and would exclude the crystals as surplus material from capsid

building. It rather suggested that crystals played a role in virus

particle morphogenesis.

Discussion

Nature of the protein crystalline inclusions observed in
Ad-infected cells

The protein composition of the crystalline inclusions induced by

Ad5 (or Ad2) in the nucleus of infected cells at late times after

infection has been long debated [21,23–27], and their role in the

Ad life cycle has not been elucidated. Their structural character-

istics and the contiguity between crystals of virions and crystals of

proteins [21,22,26], a phenomenon termed epitaxy [25], led to the

hypothesis that these crystals were constituted of the major capsid

proteins, hexon, penton base and fiber [21,25]. In line with this

hypothesis, previous investigators provided structural description

of the crystals similar to that presented in this study, and morever,

by using temperature-sensitive (ts) mutants, suggested that the

crystals were derived from fibers, with a proviso that penton base

Figure 12. EM analysis of Ad5/R7-ZZwt/E1:WTFib virus particles after immunogold labeling. Ad5/R7-ZZwt/E1:WTFib particles of 1.34 in
density were incubated with 6-nm gold-tagged polyclonal IgG from goat, and examined under the EM after negative staining with ammonium
molybdate. The short, knob-deleted fibers R7-ZZwt were visualized by 6-nm gold-tagged goat IgG binding to the tandem ZZwt motif (IgG-Fc ligand).
Long shafted WT fibers with their terminal knob are indicated by arrows.
doi:10.1371/journal.pone.0002894.g012
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might also be involved [28]. However, other studies suggested that

the crystals were formed of basic core proteins [23,24,26]. More

recent immuno-EM analyses revealed that the intranuclear

crystals reacted with anti-hexon, anti-penton base and anti-fiber

knob antibodies [43], as well as with protein kinase CK2 and

dsRNA-activated protein kinase PKR antibodies, leading to the

assumption that multiple viral and cellular proteins were

components of the crystals [44].

The reactivity of nuclear crystals with hexon antibodies was in

contradiction with two previous genetic studies. (i) In cells infected

with Ad5ts27, a mutant defective in hexon expression at the

nonpermissive temperature 38.5uC, intranuclear crystals were seen

in a significant number of cells [28]. (ii) Interserotypic recombi-

nation between a crystal-producing strain and a non-producing

strain of Ad2 has mapped the crystal-determining factor within 30

and 44 map units (m.u.) on the 100-unit Ad genome [45]. This

region overlaps the L1 and L2 blocks of genes, and includes

structural proteins IIIa (34.24 to 39.13 m.u.) and III (i.e. penton

base; 39.37 to 44.14 m.u.), but excludes the genes coding for core

proteins VII and V (44.16 to 45.82 and 46.02 to 49.10 m.u. in L2,

respectively) and for hexon (52.41 to 60.50 m.u. in L3) [46].

The reactivity of nuclear crystals with cellular protein antibodies

was also in contradiction with some basic principles of protein

biochemistry. Protein crystallisation is considered to be the best

criterion for protein purity and homogeneity, and there is no

reason for intracellular crystals being an exception to this rule. It

could not be excluded however, that some viral or host cell

proteins might be trapped in growing crystals, without being bona

fide crystal components. This was the case for Ad virions, which

were sometimes found trapped within the crystal lattice (Fig. 1 F),

a phenomenon reminiscent of baculovirus particle inclusion within

polyhedrin crystals [47,48].

In the present study, we showed that protein crystals induced by

WT Ad5 in HEK-293 cells did not react in IF or immuno-EM

with anti-hexon, anti-pIIIa, anti-core V, or anti-core VII, but only

with penton base and fiber antibodies. The crystals were highly

reactive in IF with TB5, a monoclonal antibody generated against

Ad5 fiber, and whose epitope was located in the knob domain. We

could conclude that the intranuclear crystalline inclusions

occurring in Ad-infected cells were formed of penton capsomers,

a hetero-oligomeric protein complex composed of two moieties, a

penton base homopentamer and a fiber homotrimer.

A definite demonstration of the role of penton base and fiber as

the only viral proteins responsible for crystal formation would be

the occurrence of crystals in baculovirus-infected insect cells

coexpressing these two protein partners. However, only amor-

phous inclusions were observed in the nucleus of Sf9 cells

coinfected by baculoviruses expressing Ad2 penton base and

fiber, although penton indistinguishable from penton capsomer

isolated from human cells was recovered from Sf9 cell lysates [49].

This would suggest that penton crystal formation might be

influenced by the cellular context and require cellular protein(s)

present only in mammalian cells. Alternatively and not exclusively,

viral proteins other than penton base or fiber could play a role in

the crystallogenetic process of penton crystals, e.g. in creating a

nucleation center to initiate crystallization, or in the proper folding

and conformation of intracellular penton molecules competent for

crystallization.

Protein domains required for crystallogenesis in Ad-
infected cells

In order to define which penton base or/and fiber subdomains

were involved in the formation of intranuclear protein crystals, we

examined their occurrence and structural features in cells infected

by a panel of recombinant Ad5 carrying penton base or fiber

mutations, or penton interserotypic chimeras. EM observations of

cells infected with Ad5 carrying knob-ablated fibers (Ad5R7D-
knob) confirmed that the knob domain was involved in crystal

genesis and molecular structure. In the absence of knob, the

protein crystals were different from those observed in WT Ad5-

infected cells, in that they were smaller and arranged as macles

(Fig. 5 A). They still reacted with penton base antibody,

confirming that penton base was the other protein component of

the crystals (Fig. 5 C), and their parameters were compatible with

a tubular unit formed of penton base capsomers prolonged with

knobless fibers (Fig. 13). Ad5 penton base mutant Ad5PbEGD

induced crystals with WT characteristics, excluding the RGD

motifs from a role in the crystal structure.

The fiber shaft domain was also involved in crystal genesis and

structure, as shown by the morphology of crystalline inclusions

induced by the shaft deletion mutant Ad5DR4-R16, lacking shaft

repeats 4 to 16 (Fig. 8 A, B), and the absence of crystals in

Ad5DR4-R19- and Ad5DR8-R21-infected cells. The involvement

of the shaft domain was further analyzed using Ad5 with penton

chimeras. No crystals were observed in cells infected with Ad5/

K3, carrying the Ad3 knob domain at the extremity of an Ad5

fiber shaft. However, when knob and shaft were homotypic, e.g. in

Ad5/F3, small protein crystals were observed (Fig. 8 C–E).

Likewise Ad5/F35, a chimeric vector pseudotyped with serotype 5

fiber, formed intranuclear crystals, although with discontinuities in

the tubular lattice (Fig. 9).

Further mapping of the knob region(s) implicated in crystal

formation or/and structure was performed using substitutions,

small insertions or deletions in the knob domain. The occurrence

of crystals in Ad5DEF-infected cells (Fig. 6 A–C), compared to the

absence of crystals with mutant Ad5DTAYT489 (Fig. 6 D),

indicated that the short double strand EF was dispensable for

crystal formation, but that the region immediately downstream in

the FG loop, spanning residues 489–492, was crucial for

crystallogenesis (Fig. 4 B). It is noteworthy that this region

coincides with part of the CAR-binding domain in the knob [31].

The two main regions of the shaft and knob domains of Ad5 fiber

which were identified as essential for crystal formation are

schematically represented in Fig. 4 (shaded vertical bars).

The irregular and wavy aspect of crystals induced by the

substitution mutant Ad5F497D might let suppose that the F

residue of the highly conserved motif FMP motif at position 497–

499 in Ad5 fiber was a major determinant of the crystal structure

(Fig. 7 A, B). However, the barely detectable level of fiber protein

expression in Ad5F497D-infected cells (Fig. 7 C) indicated that the

crytal-like inclusions in these cells were constituted of penton base

protein alone, and suggested that the lack of fiber projection was

responsible for the structural irregularity of the crystal lattice.

Structural model of intranuclear penton crystal
Image processing of the tubular unit of chimeric Ad5/F3

penton crystal seen in cross-section as in Fig. 8 D, showed striking

similarity in dimensions and shape with the 2D projection of Ad3

dodecahedron, i.e. penton dodecamer with its 12 short fibers

(Fig. 13 A, B). We therefore propose a model for the Ad5 penton

crystalline inclusions, in which the penton capsomers would

associate into dodecahedrons disposed in parallel rows (Fig. 13 C–

E). Although this model is based on the Ad3 dodecahedron well-

characterized structure, it has been shown that penton base of

Ad2, which has only seven amino acid differences with that of Ad5

[50], can form dodecahedrons upon certain solvent conditions

affecting the dodecamer-to-pentamer equilibrium [51]. Likewise,

recombinant Ad2 penton base mutant W119H, has been found to
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spontaneously assemble into dodecahedrons instead of accumu-

lating in the pentameric form [52]. However, we cannot exclude

another crystal model in which pentons would be arranged in

parallel tubular structures: cryotomographic analysis of crystals

might help resolving this ambiguity.

Biological function(s) of nuclear protein crystals in the Ad
life cycle: byproducts, storage or virus assembly
platform?

Theoretical considerations. The fiber protein in Ad2- or

Ad5-infected cells is in large excess compared to penton base,

which represents the limiting factor in the penton capsomer

assembly reaction in vivo [39–41] (and refer to Fig. 7 C). The

reaction of binding of fiber to penton base is the only virus

assembly step which has been reproduced in vitro so far from two

separate capsid elements, and the dissociation constant of the in

vitro assembly reaction of Ad2 WT fiber with penton base has

been estimated to be Kd = 261027 M in terms of fiber molarity

[53]. In this context, one might legitimately raise the question of

the reason(s) or/and selective advantage for the virus to

accumulate penton crystalline inclusions within the nucleoplasm

of the infected cell. A clue to the role of penton crystals in the Ad

life cycle was provided by Ad mutants defective in virus assembly.

Observations. If the intranuclear penton crystals represented

byproducts of viral capsid components synthesized in vast excess in

Ad-infected cells, Ad mutants or recombinants defective in virus

assembly should accumulate crystals in greater abundancy than in

WT Ad-infected cells, assuming equivalent levels of virus protein

synthesis. Such a pattern was never observed [54]. In the same line

of data, Ad recombinants with a low level of fiber encapsidation

efficiency and/or low infectivity failed to produce regular

crystalline inclusions of penton protein in 293 cells. This was the

case for Ad5DR4-R19 and Ad5R7Dknob, as well as for

Ad5F497D [19]. This correlation between the lack of

intranuclear penton crystals and defect in virus assembly and

viability argued against the crystals being simple byproducts from

virus protein synthesis. This was confirmed by the kinetics of

appearance of crystals within the nucleus of Ad-infected cells:

intranuclear crystals were visible as early as 16 h pi, i.e. at early

steps of the late phase of the virus life cycle (Fig. 3 I), indicating

that crystal formation was contemporary to virion assembly.

This was also confirmed by our double fiber-expressing vector

Ad5/R7-ZZwt/E1:WTFib. We have shown that the deletion of

the knob had a negative effect on the rate of translation of the

knob-deleted, short-shafted and Zwt-liganded fiber protein R7-

ZZwt in Ad5/R7-ZZwt-infected 293 cells. The same effect was

observed in cells infected with Ad5/R7-ZZwt/E1:WTFib, a

recombinant with two fiber genes, one coding for WT fiber, the

other for R7-ZZwt [18]. Both WT and R7-ZZwt fiber protein

species had the same tail domain which contained the penton base

binding site and trimerized with the same apparent efficiency, but

R7-ZZwt fiber showed a lower efficiency of encapsidation [18].

Although it could not be excluded some difference in the affinity

for penton base between WT and R7-ZZwt fibers, the most likely

explanation would be that the compartmentalization of penton

protein would be the major cellular determinant of its packaging

into virions: localization of WT penton in intranuclear crystals

Figure 13. Model of the crystal lattice of Ad penton intranuclear inclusions. (A), 2D averaging of the Ad5/F3 crystal cross-section was
generated from the crystal cross-section shown in Fig. 8 d. A total of 40 overlapping fields were cut out using the X3d program [72], and averaged
after cross-correlation. (B), 2D projection of an Ad3 penton dodecamer (dodecahedron) with its 12 fiber projections, shown at the same
magnification as in (a). The 3D map of a dodecahedron with 12 fibers was filtered to 45 Å and reprojected along its 3-fold axis using SPIDER [73]. (C),
Schematic 3D representation of a portion of penton crystal, showing its three axes (arrows). (D), Dodecahedron array, presented along the XY axes.
(E), Arrangement of the dodecahedron units along the YZ axes. The 3D isosurface representation shown in (D) and (E) was visualized using WEB [73].
doi:10.1371/journal.pone.0002894.g013
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would favor their usage as building blocks for Ad capsids, as

suggested by the pattern of virus particle assembly in the nucleus of

Ad5/R7-ZZwt/E1:WTFib-infected cells (Fig. 10), as well as the

fiber composition of the viral progeny (Fig. 11 F).

Hypothesis. The temporal and spatial relations between

penton crystals and Ad virions, e.g. the kinetics of crystal

occurrence (Fig. 3 H–J), and the intimate contacts between

intranuclear virions and crystals in Ad5WTFib-infected cells (Fig. 1

and 2), as well as the arguments developed above strongly

suggested that penton crystalline inclusions played a role in the Ad

morphogenic process. We hypothesize that penton crystals

represent a privileged assembly platform providing the virus

assembly machinery with a large supply of preassembled penton

capsomers, the major limiting factor in capsid assembly [39–41].

Alternatively, the high concentration of penton capsomers in

crystals would constitute a nucleation centre for the Ad assembly

machinery. This does not preclude the existence of other but less

efficient assembly sites within the nucleoplasm.

Crystal inclusions as a marker of Ad assembly efficiency
and viability

Our mAb TB5, which was originally raised against Ad5 fiber

and cross-reacted with Ad2 and Ad3 fibers, was found to react

with high efficiency with penton protein crystals in situ in IF

microscopy. This implied that the TB5 epitope was accessible

within the intranuclear crystalline inclusions, and not buried in

contacts between crystal components. However, precise mapping

of the TB5 epitope required further experiments, and only indirect

conclusions could be drawn from our present data. The absence of

reaction of TB5 with Ad5/F35, compared to its positive reaction

with Ad5/F3 and Ad5/F5, suggested that the TB5 epitope

corresponded to a region of the fiber knob which was in common

with two serotypes belonging to two different subgroups, i.e. C-

Ad5 and B-Ad3, but differed between two serotypes of the same

subgroup, i.e. B-Ad3 [34] and B-Ad35 [55]. Ad5DEF-,

Ad5V441G-, Ad5K442A-, Ad5H508A- and Ad5(HI)RGD4C-

infected cells reacted with TB5 with a similar intensity, and

revealed the same rod-like intranuclear inclusions as WT (Fig. 3

A–D and Fig. 6 B, inset), which excluded the regions within

residues 441–442, 479–486, histidine-508, and the HI loop as

directly involved in TB5 binding. Likewise, region 489–492 could

be excluded since amorphous nuclear inclusions reacted with TB5

in Ad5DTAYT489-infected cells (Fig. 6 D, inset). This indicated

that the TB5 epitope could also react with fiber protein in other

contexts than that of penton crystals. All the above cited residues,

except for the HI loop, were involved in CAR recognition [31],

which implied that the TB5 epitope did not belong to the CAR-

binding surface of the fiber knob.

As the absence of protein inclusions with regular structure in

Ad-infected cells correlated with a low fiber content and low

infectivity of virus progeny, Ad-induced intranuclear protein

inclusions could serve as a good criterion of proper capsid

assembly, fiber expression level and encapsidation efficiency, and

virus infectivity. Thus, we propose to use the IF pattern of Ad-

infected 293 cells with mAb TB5 as a simple and rapid prognostic

assay for the viability and productivity of fiber-modified Ad

vectors.

Methods

Cell culture
E1A-E1B-trans-complementing HEK-293 cell line (abbreviated

293; CRL 1573) and insect cell line Sf9 (CRL 1711) were obtained

from the American Type Culture Collection (Manassas, Va). The

293-derived fiber-trans-complementing cell line, abbreviated 293-

Fiber, was obtained from Transgene SA (Strasbourg, France).

Mammalian cells were cultured as monolayers in DMEM

supplemented with 10% fetal calf serum (FCS, Sigma), penicillin

(200 U/mL), and streptomycin (200 mg/mL; Gibco-Invitrogen) at

37uC and 5% CO2. For growth of 293-Fiber cells, hygromycin was

added at 350 mg/mL [6]. Insect Sf9 cells were grown as

monolayers in Grace’s medium supplemented with 10% FCS, as

described elsewhere [52].

Construction and nomenclature of recombinant Ad with
modified fiber and penton base

The construction of fiber- or penton base-modified Ad has been

described in detail in previous studies [15–17,56,57]. The choice of

acronyms for the recombinant Ad used in the present study was

determined by their penton base or fiber modification (Fig. 1),

regardless of their reporter gene, coding for GFP or beta-

galactosidase (ßGal). (i) Penton base mutant. The penton base

mutant Ad5Pb-EGD, encoding GFP and carrying a RGD-to-EGD

substitution at position 340 in the penton base coding sequence, has

been described elsewhere [57]. All the other recombinant Ads

carried modifications in their fiber genes. (ii) Fiber shaft deletion
mutants. Ad5DR4-R16 and Ad5DR4-R19, which coded for ßGal,

had a shorter fiber shaft domain resulting from the deletion of

repeats 4 to 16 and 4 to 19, respectively [58]. Ad5DR8-R21 coded

for GFP and was called Ad5/R7-knob in previous studies [15–

17,56]. The deletion in Ad5DR8-R21 overlapped the shaft repeats 8

to 21, and resulted from the junction of Ala158, the second residue

of repeat 8, to the first residue (Ile389) of repeat 22. Ad5DR8-R21

also carried an insertion of an extrinsic trimerisation signal

corresponding to the neck region peptide (NRP) from the human

lung surfactant protein D. (iii) Fiber knob deletion mutants.

Ad5R7DKnob, carrying a short shafted fiber with seven repeats and

complete deletion of the knob, has been described in detail in

previous studies [15–17,56]. Ad5DEF, had the eight amino acid

residues 479–486 deleted, resulting in the absence of the short

double beta-strand EF [32,33]. Ad5DTAYT489, which carried a

four amino acid deletion (489-TAYT-492), has been previously

charaterized [59]. (iv) Fiber knob substitution mutants. Fiber

substitutions V441G, K442A and H508A were introduced in

shuttle plasmids using standard molecular biology techniques.

Plasmid adenoviral backbones were further obtained by homolo-

gous recombination in E. coli [60] with AE18, a LacZ-encoding Ad5

backbone [59]. All plasmids were checked by restriction analysis

and DNA sequencing. Mutant Ad5F497D has been described

elsewhere [19]. (v) Fiber knob insertion mutant. Ad5(-

HI)RGD4C was a ßGal-expressing vector carrying the insertion

of a cyclic RGD motif (CDCRGDCFC, abbreviated RGD4C) in

the HI loop of the knob domain [57,61]. (vi) Chimeric pentons.

Ad5ßGal vectors carrying Ad5/Ad3 chimeric fibers consisted of

Ad5/K3, in which only the knob domain of serotype 3 fiber was

fused to the last repeat of Ad5 shaft, and Ad5/F3, in which the

serotype 3 shaft and knob domains were fused to the Ad5 fiber tail

[58]. Ad5/F35 was a GFP-expressing vector carrying the shaft and

knob domains of serotype 35 fiber fused to Ad5 fiber tail, and

reinserted into the Ad5 genome in place of the Ad5 fiber gene. A

schematic representation of these recombinant Ads is shown in

Fig. 4.

Construction of recombinant Ad5 carrying two fiber
genes

The genome of Ad5/R7-ZZwt/E1:WTFib contained two genes

coding for two different fiber proteins, WT-fiber and R7-ZZwt
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fiber. R7-ZZwt was a short-shafted (R7, seven repeats), knob-

deleted fiber carrying the trimerisation motif from the neck region

peptide (NRP) of the human lung surfactant protein D [18] and a

tandem Zwt-ligand (ZZwt). Zwt corresponded to an Ig-binding

domain derived from the Staphylococcal protein A, and has been

described in previous studies [18,37,38]. The gene encoding the

R7-ZZwt fiber was at its normal location in the L5 region of the

Ad5/R7-ZZwt/E1:WTFib genome, whereas an ectopic WT-fiber

gene was inserted into the deleted E1 region [18]. Ad5/R7-ZZwt/

E1:WTFib was constructed as follows. The gene for WT-fiber was

inserted into the E1 region of the cloning plasmid pAdTrack-

CMV [62] and recombined with pAdEasy-1. This resulted in an

Ad5 genome in which the E1 region was replaced by the WT Ad5

fiber gene driven by the immediate-early CMV promoter, and the

GFP gene driven by another CMV promoter. This genome with

two WT fiber genes was designated Ad5/WT-fiber/E1:WT-fiber.

Ad5/WT-fiber/E1:WT-fiber was then restricted with Pac I/Spe I,

and ligated to a genome with a truncated fiber gene containing the

coding sequence for a tandem Zwt ligand (R7-ZZwt fiber), as

described previously [15], thus generating the recombinant

genome Ad5/R7-ZZwt/E1:WTFib.

Insect cells and recombinant baculoviruses
Spodoptera frugiperda cells, Sf9 subclone, were maintained as

monolayers in Grace’s medium supplemented with 10% fetal

bovine serum, and infected with recombinant baculoviruses at a

multiplicity of infection (MOI) ranging from 5 to 10 PFU/cell.

The construction of recombinant baculoviruses derived from

Autographa californica MultiCapsid NucleoPolyhedrosis Virus

(AcMNPV) and expressing Ad2 fiber, Ad2, Ad5 or Ad3 fiber

knob, or Ad2 penton base under the control of the polyhedrin

promoter has been described in detail in previous studies [49,52].

Antibodies and immunological assays for fiber and
penton base

MAb anti-fiber 4D2.5 and 2A6.36 [63] were obtained from Jeff

Engler (University of Alabama at Birmingham). Polyclonal

antibody against Ad fiber (laboratory-made) was raised in rabbit

by injection of a mixture of chromatographically purified native

and SDS-denatured recombinant Ad2 fiber protein [4,64,65], and

polyclonal antibody against Ad penton base (laboratory-made) was

raised in rabbit by injection of chromatograpically purified

recombinant Ad2 penton base [49,52]. Mouse monoclonal

antibodies against hexon group-specific epitopes were purchased

from Chemicon Intl. (Temecula, CA) for MAB8051 and

MAB8043, and obtained from W.C. Russell (St Andrews

University, Scotland) for 4C3 [66]. Mouse polyclonal anti-pIIIa,

anti-core protein V and anti-core protein VII antibodies were

raised in mice by injection of the desired proteins excised from

Coomassie blue-stained gels of CsCl gradient-purified, SDS-

denatured Ad5 virions. The specificity of each antibody was

verified in Western blot analysis of SDS-denatured Ad5 virions

(data not shown).

The mouse monoclonal anti-fiber antibody TB5 was generated

by immunisation of a Balb/C mouse with whole cell extracts of

Balb/C 3T3 cells infected with Ad5. In brief, 108 Ad5-infected

3T3 cells were suspended in 0.5 ml PBS, sonicated in a probe

sonicator, emulsified with Complete Freund’s adjuvant (CFA) and

injected intra-dermally and intra-peritoneally into a 10 week-old

Balb/C mouse, followed by a boost of 26107 Ad5-infected 3T3

cells in CFA 10 days later. After a two week interval, the mouse

was given an intra-peritoneal injection of sonicated Ad5-infected

3T3 cells (36107 cells) in PBS and four days later, an identical

intravenous boost, followed by sacrifice three days later. Cell

fusion was performed using mouse splenocytes and NSO mouse

myeloma cells using standard techniques [67]. Hybridoma culture

supernatants were screened by immunoprecipitation of extracts of

(35S)-methionine-labeled Ad5-infected Hep2 cells according to the

method of Cepko et al [68]. One hybridoma cell culture (termed

TB5) was selected on the basis of specific immunoprecipitation of

the fiber protein by secreted antibody. The TB5 hybridoma cells

were cloned in soft agar, culture supernatant was harvested and

used in immunocytochemistry.

Fiber and penton base proteins were assayed in cell lysates or in

CsCl gradient-purified virion samples using SDS-PAGE and

quantitative Western blot analysis. Blots were incubated with

4D2.5 or anti-penton base primary antibodies followed by

secondary (35S)LR-labeled anti-mouse or anti-rabbit whole IgG

antibody (GE Healthcare Bio-Sciences; 2,000 Ci/mmol; 20–

30 mCi per 100 cm2 membrane), and subjected to autoradiogra-

phy (HyperfilmTM MP, GE Heathcare Bio-Sciences). Protein

bands were excised from blots and radioactivity measured in a

scintillation counter (Beckman LS-6500), as previously described

[69]. Alternatively, autoradiographs were scanned and quantitated

by densitometric analysis, using the VersaDoc image analyzer and

the Quantity One program (BioRad).

Immunofluorescence (IF) microscopy
Cell monolayers were harvested at 48 h post-infection, fixed

with 2% paraformaldehyde in phosphate buffered saline (PBS) and

permeabilized in 0.2% (v/v) Triton X-100 in PBS. Cells were

blocked with 1% BSA in PBS (PBS-BSA), and reacted with rabbit

anti-penton base or anti-fiber antibody (1:200 in PBS-BSA) and

Alexa FluorH 488-labeled goat anti-rabbit IgG (Molecular Probes,

Invitrogen), or mAb anti-fiber TB5 (1:200 in PBS-BSA) and Alexa

FluorH 633-labeled goat anti-mouse IgG antibody (Molecular

Probes, Invitrogen). Samples were treated with DAPI and

mounted on slides. For conventional fluorescence microscopy,

images were acquired using an Axiovert 135 inverted microscope

(Zeiss) equiped with an AxioCam video camera. For confocal

microscopy, samples were analyzed using a Leica TCS SP2

confocal microscope.

Electron microscopy (EM), immuno-electron microscopy
(Immuno-EM) and image processing

(i) EM analysis of cell sections. Cells were harvested at

48 h after infection, pelleted, fixed with 2% glutaraldehyde in

0.1 M sodium cacodylate buffer, pH 7.4, and post-fixed with

osmium tetroxide (1% in 0.1 M cacodylate buffer, pH 7.4). Cell

specimens were dehydrated and embedded in Epon (Epon-812;

Fulham, Latham, NY). Sections were stained with 7% uranyl

acetate in methanol, post-stained with 2.6% alkaline lead citrate in

H2O, and examined under a Jeol JEM-1400 electron microscope,

equipped with an ORIUSTM digital camera (Gatan France,

78113-Grandchamp). Measurements of crystal parameters were

made using the camera imaging software. (ii) Immuno-EM
analysis of cell sections Cell specimens were included in

metacrylate resin (LR White Resin, London Resin Company,

Reading, UK). Sections on grids were first quenched for non-

specific antibody binding as previously described [70,71], then

reacted with primary rabbit anti-fiber or anti-penton base

antibody used at a dilution of 1:50 to 1:500 in Tris-buffered

saline (TBS) containing 1% bovine serum albumin (TBS-BSA),

and incubated overnight at 4uC. After rinsing in TBS-BSA and

H2O, sections were post-incubated with 10-nm colloidal gold-

conjugated goat anti-rabbit IgG antibody (British BioCell

International, Cardiff, UK) diluted to 1:50 in TBS for 1 h at

room temperature. Alternatively, 5-nm colloidal gold-labeled
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protein A (British BioCell International) was used to detect the

primary antibody. MAb TB5 was used as undiluted supernatant of

hybridoma cell culture, and detected using 10-nm colloidal gold-

conjugated rabbit anti-mouse IgG antibody diluted as above.

Controls consisted of specimens on grids treated in the same

manner, except that primary antibodies were omitted. Specimens

were contrasted with 2% uranyl acetate in H2O, and examined

under the Jeol JEM-1400 electron microscope, as above. (iii)
Negative staining of Ad particles. Samples were applied to

the clean side of carbon on mica (carbon/mica interface) and

negatively stained with 1% ammonium molybdate, pH 7.5. A grid

was placed on top of the carbon film, and subsequently air-dried.

Micrographs were taken under low-dose conditions with a Jeol

1200-EX II microscope at 100 kV and a calibrated magnification

of 39,750 times (based on the helical pitch of Tobacco Mosaic

Virus). Selected negatives were digitalized on a Zeiss scanner

(Photoscan TD) with a pixel size of 14 mm, corresponding to 3.5 Å

at the sample scale, as given by the following calculation: 140,000

Å (scanning step size)/39,750 (microscope magnification) = 3.52 Å.

(iv) Immunogold staining of Ad particles. R7-ZZwt fibers

carried by Ad particles were labeled as follows. A 4 ml-sample of

virus suspension was deposited on top of a carbon-coated grid.

30 sec later, the excess of liquid was removed by blotting with filter

paper. 4 ml of a 100-fold diluted solution of 6-nm colloidal gold-

labeled antibody (6-nm AffiniPure goat anti-human IgG, EM

grade; Jackson ImmunoResearch) was placed on the grid and

incubated for 1 min at room temperature. The antibody solution

was then removed by filter paper adsorption, and replaced by 4 ml

of stain (2% ammonium molybdate, pH 7.4). After a further

30 sec, the grid was dried on filter paper, and examined under the

electron microscope as above. (v) Image processing and
model representation. 2D averaging of intranuclear Ad5/F3

protein crystal was performed as follows. A total of 40 overlapping

fields coming from a single crystal (as shown in Fig. 8 D) were cut

out using the X3d program [72], and averaged after cross-

correlation. The cryoelectron microscopic (cryoEM) structure of

the Ad3 dodecahedron with 12 fiber projections (dodecahedron-

fibers) was downloaded from the EM database associated with the

Macromolecular Structure Database (http://www.ebi.ac.uk/msd-

srv/emsearch/index.html). The 3D map of Ad3 dodecahedron-

fibers was filtered to 45Å and reprojected along its 3-fold axis using

the SPIDER program [73]. 3D isosurface representation was

visualized using WEB [73].
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