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Abstract

Copy Number Variations (CNVs) of regions of the human genome have been associated with multiple diseases. We present
an algorithm which is mathematically sound and computationally efficient to accurately analyze CNV in a DNA sample
utilizing a nanofluidic device, known as the digital array. This numerical algorithm is utilized to compute copy number
variation and the associated statistical confidence interval and is based on results from probability theory and statistics. We
also provide formulas which can be used as close approximations.
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Introduction

Digital PCR and Digital Array
Digital PCR conventionally utilizes sequential limiting dilutions

of target DNA, followed by amplification using the polymerase

chain reaction (PCR) [1,2]. As a result, it is possible to quantitate

single DNA target molecules. We utilize the digital array, which is

a novel nanofluidic biochip [2,3] where digital PCR reactions can

be performed (Figure 1) by partitioning DNA molecules, instead of

diluting them. This chip utilizes integrated channels and valves

that partition mixtures of sample and reagents into 765 nanolitre

volume reaction chambers. DNA molecules in each mixture are

randomly partitioned into the 765 chambers of each panel (the

total volume of the PCR mix in each panel: 6 nl6765 = 4.59 ml).

The chip is then thermocycled and imaged on Fluidigm’s BioMark

real-time PCR system and the positive chambers that originally

contained 1 or more molecules can be counted by the digital array

analysis software (Figure 2).

Copy number variation
Copy number variations (CNVs) are the gains or losses of

genomic regions which range from 500 bases on upwards in size.

Whole genome studies have revealed the presence of large

numbers of CNV regions in human and a broad range of genetic

diversity among the general population [4,5,6]. CNVs have been

the focus of many recent studies because of their roles in human

genetic disorders [7,8,9].

Current whole-genome scanning technologies use array-based

platforms (array-CGH and high-density SNP microarrays) to study

CNVs. They are high throughput but lack resolution and

sensitivity. Real-time PCR is a sequence-specific technique which

is easy to perform, but is limited in its discriminating power

beyond a 2-fold difference [11,12].

CNV determination on the digital array is based upon its ability

to partition DNA sequences. Given the number of molecules per

panel and the dilution factor, the concentration of the target

sequence in a DNA sample can be accurately calculated. In a

multiplex PCR reaction with 2 or more assays, multiple genes can

be quantitated simultaneously and independently, effectively

eliminating any pipetting errors if separate reactions have to be

set up for different genes. When a single copy reference gene

(RNase P in this study, [10]) is used in the reaction, the ratio of the

target gene to the reference gene would reflect the copy number

per haploid genome of the target gene.

Figure 1. A digital array has 12 panels of 765 reaction
chambers each. PCR mixes are loaded into each panel and single
DNA molecules are randomly partitioned into the chambers. The digital
array can be thermocycled, imaged on a BioMark instrument, and the
data analyzed using the Digital PCR Analysis software.
doi:10.1371/journal.pone.0002876.g001
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Primary contribution of this paper
In this paper we will show that the digital array provides a

robust and easy-to-use platform to study CNVs. We have derived

a mathematical framework to calculate the true concentration of

molecules from the observed positive reactions in a panel. We also

show how to perform statistical analysis to find the 95%

confidence intervals of the true concentrations and the ratio of

two concentrations in a CNV experiment using the digital array

with multiplex PCR.

The copy number variation problem can be stated as follows.

Given two counts h1 and h2 of positive chambers for two genes in a digital array

panel, how can one estimate a ratio of true concentrations r = l1/l2 of the two

genes and a confidence interval [rLow, rHigh] on the estimation?

Our approach is built on well-known tools and techniques from

statistics. It decomposes the problem into two parts.

1. Given a count h of positive chambers, how can one estimate the

true concentration l of target molecules in the DNA sample

and a confidence interval [lLow, lHigh] on this estimation?

Figure 2. Human genomic DNA NA10860 (left 5 panels) and the RPP30 synthetic construct (right 5 panels) were quantitated using
the RPP30 (FAM) assay on this digital array. The two bottom panels are NTC (no template control). Digital PCR Analysis software can count the
number of positive chambers in each panel. When two assays with two fluorescent dyes are used in a multiplex digital PCR reaction, two genes can
be independently quantitated. This is the basis of the CNV study using the digital array.
doi:10.1371/journal.pone.0002876.g002
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2. Given estimated true concentrations l1 and l2 of the reference

gene and the target gene, respectively, in the DNA sample and

their respective confidence intervals, how can one estimate the

ratio r = l1/l2 and a confidence interval [rLow, rHigh] on this

estimation?

It turns out that the first question can be answered by applying

sampling and estimation theories from statistics and probability,

and the second question can be answered by a numerical

algorithm based on generalization of a mathematical theorem.

For related work on answering the first question, using Bayesian

approach, see unpublished preprint by Warren et al. titled ‘‘The

Digital Array Response Curve’’ dated March 2007 at http://

thebigone.stanford.edu/papers.htm. Warren et al. assumed a

uniform probability distribution of number of molecules, with

maximum number assumed to be 4000, and using Bayesian and

combinatorial methods, presented a solution. The confidence

interval obtained using Bayesian probabilistic framework, is often

referred to as credible interval or Bayesian confidence interval which

requires one to incorporate problem-specific contextual informa-

tion from the prior distribution.

This paper differs from this prior work by Warren et al. in two

different ways. First, we consider the parameter l to be a fixed

constant, unlike having a probability distribution as in Bayesian

approach. Second, in addition to providing the answer to the first

question, we are interested in estimating the confidence interval of

the ratio of two concentrations which is new work. For difference

between credible interval and confidence interval, see [13]. Both

approaches give good results depending upon the question one is

trying to answer.

We will prove mathematical correctness of our results in this

paper and present simulation results to help the reader build useful

insight. Finally, we present actual CNV experiments on the digital

array with known ratios and show the results using the techniques

developed in this paper.

Results

DNA quantitation in the digital array is based on the

partitioning of a PCR reaction into an array of several hundreds

or even few thousands of chambers or wells. One panel of the

digital array consists of 765 chambers and one can use up to 12

panels at a time. If the concentration of the target molecules is low

in the DNA sample, most of the chambers capture either one or no

molecules and the number of positive chambers at the end point of

the PCR yields close approximation to the true concentration of

the target. However, if the number of molecules is large, then there

is greater probability of several molecules being in the same

chamber, and therefore the number of positive chambers would be

significantly lower compared with the number of molecules in the

chambers.

We are interested in estimating the true concentration of the

molecules in the DNA sample from which we extracted

6 nl6765 = 4.59 ml of sample for each panel.

Consider the universe of infinite number of the digital array

chambers filled with an infinite amount of the DNA sample where

the true concentration of the target molecules is l per chamber

(per 6 nl). The true concentration is an unknown population

parameter of this infinite DNA sample. If a chamber gets no

molecule then it constitutes failure in the sense of Bernoulli

experiment. If it gets one or more molecules, that is, if it gets a

‘‘hit’’ and is therefore positive, then it constitutes success. Let the

probability of success be p. Note that p is an unknown population

parameter. We will use the standard hat notation to denote sample

estimators of population parameters. For example, p̂ and l̂l will

denote the estimators of p and l, respectively.

Relationship between p and l
One can model K, the number of molecules in each chamber as

a Poisson process, and this gives the relationship between p and l
as follows

Prob K~0ð Þ~1{p~e{l

Alternatively, consider M molecules randomly distributed in C

chambers. The probability of any given molecule being in any

given chamber is 1
C

. So the probability p of a given chamber having

at least one molecule is

p~1{ 1{
1

C

� �M

Since M = lC, we have

1{p~ 1{
1

C

� �M

~ 1{
l

lC

� �M

~ 1{
l

M

� �M

As number of chambers becomes arbitrarily large, the above

approaches e2l. Therefore,

l~{ln 1{pð Þ

which establishes the relationship between l and p.

Confidence Intervals for estimation of p and l
A chamber getting a hit or no hit is a binomial process, same as

toss of a coin, with success probability p. Let the number of positive

chambers in the panel be H. Consider p̂p~ H
C

as an estimator of p.

It is well known that p̂ is an unbiased estimator of p and has

expectation p and standard deviation

ffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ

C

q
and its sampling

distribution f(p̂) is approximately normal for large C. See Figure 3

for illustration of the above ideas.

See [13,14,15] for extensive literature on obtaining confidence

interval for the estimation of binomial probability. It is referred to

as binomial sign test when the test statistic can be approximated

with the chi-square distribution, specifically through the use of the

chi-square goodness-of-fit. An alternative and equivalent approx-

imation is obtained by using the normal distribution and then the

test is referred to as the population proportion test, see [15].

If C is large enough, then the confidence limits are

approximately given by

p̂p+zc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p 1{p̂pð Þ

C

r

For 95% confidence interval, zc = 1.96. For the digital array, C is

an integral multiple of 765 and is comfortably large enough for the

above approximation.

Define the estimator of l as

l̂l~{ln 1{p̂pð Þ

Since the probabilities in any given differential area of a

probability density function are preserved under change of

variables, the 95% confidence interval [l̂lLow, l̂lHigh] is directly

Mathematical Analysis

PLoS ONE | www.plosone.org 3 August 2008 | Volume 3 | Issue 8 | e2876



given as follows

p̂pLow,High~p̂p+1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p 1{p̂pð Þ

C

r
,

l̂lLow~{ln 1{p̂pLowð Þ and l̂lHigh~{ln 1{p̂pHigh

� �
:

See Figure 4 for illustration.

Expectation of estimation of l
Let a random variable X have probability density function fX(x).

If h(x) is either increasing or decreasing in x, then U = h(X) has

density function given by

fU uð Þ~fX h{1 uð Þ
� � dx

du

����
����

which follows from the fact that probabilities in any given

differential area have to be invariant under change of variables,

see [16]. Furthermore,

E Uð Þ~
Ð?

{?
h xð ÞfX xð Þdx

which can be expanded using Taylor series expansion of h(x)

around the mean j = E(X), as follows

E Uð Þ~
Ð?

{?
h jð Þz h 1ð Þ jð Þ x{jð Þ

1! z
h 2ð Þ jð Þ x{jð Þ2

2! z � � �
h i

fX xð Þdx

Since in our case, we have the following

l̂l~{ln 1{p̂pð Þ

therefore, in above, we have x = p̂, u~l̂l and h(x) = 2ln(12x). Since

l̂l is a monotonically increasing function of p̂, one can get the

sampling distribution of l̂l from the sampling distribution of p̂ as

g l̂l
� �

~f p̂pð Þ dp̂p

dl̂l
~f p̂pð Þ 1{p̂pð Þ

Note that due to nonlinear relationship between l̂l and p̂, one can

not make assumptions about g. In general, g is not normal and

E l̂l
� �

={ln 1{E p̂pð Þð Þ.
Now we derive an approximation for E l̂l

� �
from the Taylor

series expansion shown above. Higher order central moments of

Gaussian function f(p̂) with mean p are

mn:E p̂p{pð Þnð Þ~
ð?

{?

p̂p{pð Þnf p̂pð Þdp̂p~
n!sn

n=2ð Þ!2n=2 , if n is even

0, if n is odd

(

For proof see [17]. Since f(p̂) has very small s due to very large

number of chambers, the higher order terms for all n.0 in the

Taylor expansion are small,

ð?
{?

h 1ð Þ pð Þ p̂p{pð Þ
1!

z
h 2ð Þ pð Þ p̂p{pð Þ2

2!
z � � �

" #
f p̂pð Þdp̂p&0

and therefore the only contributing term is when n = 0, which

Figure 3. Consider an infinite universe of chambers. A digital array panel is a finite sampling of this universe. The goal is to determine l, the
mean number of the target molecules per chamber in the DNA sample. The number of positive chambers, which have hits of one or more molecules,
shown as filled green squares in the panel with C( = 765) chambers is H.
doi:10.1371/journal.pone.0002876.g003

Figure 4. From the sampling distribution of estimation of p,
one can obtain the sampling distribution of estimation of l.
doi:10.1371/journal.pone.0002876.g004
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implies

E l̂l
� �

&
ð?

{?

h pð Þf p̂pð Þdp̂p~h pð Þ
ð?

{?

f p̂pð Þdp̂p~h pð Þ~{ln 1{pð Þ

As CR‘, E l̂l
� �

approaches the true concentration l of molecules.

Simulation Results on Estimation of p
It is informative and useful to run a simulation experiment on

the computer to see how the real-world matches with the theory

developed above. For this purpose, one can use a random number

generator and a computer program to simulate the universe of the

digital array chambers.

If a panel has C chambers, consider a universe of C6K many

chambers where K is a large number chosen for simulation.

Choose some value of l as the true concentration of molecules in

one chamber. Therefore, in total, there will be l6C6K molecules.

Assign each of these molecules randomly to one of the chambers.

Extract K panels out of this universe and for each of the panels,

compute p̂p~ H
C

as an estimator of p and plot its histogram over all

the K panels. The mean should be p = 12e2l and standard

deviation should be

ffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ

C

q
. For each of these panels, estimate l

and compute the 95% confidence interval. In 95% of the K panels,

the true value of l should lie within the confidence interval.

For our simulation experiments we chose M = 400, that is,

l~ 400
765

. We chose K = 70000. In Figure 5 we show the histogram of

H which is really same as distribution of P scaled by a factor of

765. In Table 1 we show how the predicted values match with the

actual simulation values. In the same way, the sampling

distribution of number of molecules matched with what is

predicted by theory. Though the results of the simulation follow

from elementary probability, we conducted these simulations in

order to build more advanced simulations for ratios of concentra-

tions later. They also illustrate the meaning of the confidence

interval.

Determination of Ratio of Concentrations
In previous section, we established a method for estimating the

true concentration of the target molecules in the DNA sample

from the count of positive chambers as well as the 95% confidence

interval for this estimation. We also showed how the sampling

distribution g l̂l
� �

is related to the sampling distribution f(p̂).

In CNV, the goal is to determine ratio of true concentrations of

two genes, one being reference gene and the other being test gene,

and associated confidence interval, which we now accomplish in

next subsections.

Figure 5. Histogram of number of positive chambers H = P6C obtained by choosing M = 400 as the mean number of molecules per
panel over 70 thousand panels and running a simulation using a random number generator. The green curve is the sampling
distribution predicted by the theory.
doi:10.1371/journal.pone.0002876.g005

Table 1. Comparison of the metrics of histogram, shown in
Figure 5, of number of positive chambers obtained in
simulation with those predicted by the theory.

Theoretical
Predictions

Simulation
Results

Mean 311.5 311.48

Standard Deviation 13.59 13.58

Percent of times M = 400 lies in the
computed 95% confidence interval

95% 94.44%

doi:10.1371/journal.pone.0002876.t001
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Fieller’s Theorem and its geometric interpretation
Let the sampling distributions of the test gene and the reference

gene be g1 l̂l1

� �
and g2 l̂l2

� �
, respectively. If these distributions

were normal, then one can make use of Fieller’s Theorem [18,19].

However, as mentioned in previous section, one can not make

this assumption in general. It is useful to go through the geometric

interpretation of Fieller’s theorem so that one can solve the

problem for arbitrary sampling distributions. See Figure 6 for

geometric interpretation of Fieller’s Theorem [20,21].

Assume g1 l̂l1

� �
and g2 l̂l2

� �
are normal. For l̂l1 and l̂l2, the

ratio r̂r~l̂l1

.
l̂l2 can be shown as the slope of the line in the two-

dimensional plane which passes through the origin and the 2-D

point (l̂l2, l̂l1). Luxburg et al. show in [20,21] how a confidence

ellipse in the two-dimensional plane can be constructed. Consider

the two lines which pass through the origin and are tangents to this

ellipse. The intersection of these lines with the vertical line at

l̂l2~1 gives the desired confidence interval.

Ratio of concentrations
In this paper we have presented data in a controlled experimental

system, where a synthetic DNA construct was spiked into human cell

line DNA at different concentrations. In this case, the synthetic

construct, which was to the RPP30 gene, was used as the target, and

the RNase P gene which was endogenous to the human cell line, was

used as the reference gene. The two genes were identified using two

separate PCR reactions, using separate PCR primers and probes.

Since there is no reason to assume that the amplification and

detection of the target and reference genes are linked, l̂l1 and l̂l2 are

independent variables.

It is easy to see from the proof of Fieller’s theorem and its

geometric interpretation that one can compute sampling distribu-

tion q of the ratio estimator r̂r~l̂l1

.
l̂l2 as follows:

ðr2

r1

q r̂rð Þdr̂r~

ð ð
r1ƒr̂rƒr2

g1 l̂l1

� �
g2 l̂l2

� �
dl̂l1d l̂l2

This can be interpreted as cutting out thin wedges in the joint

distribution of g1 l̂l1

� �
and g2 l̂l2

� �
and accumulating the

probabilities inside the wedge to compute the function q in the

corresponding thin interval of the ratio. This is the basis of our

numerical algorithm which implements integration in order to

compute q(r̂):

1. Build histograms of sampling distributions g1 l̂l1

� �
and g2 l̂l2

� �
.

The tails of the histograms where probabilities become very

small are approximated by zero.

2. Build a histogram of sampling distribution q(r̂) of r̂r~l̂l1

.
l̂l2 by

considering each bin [r1, r2] and by adding all the joint

probabilities of different values of concentrations which give a

ratio r̂M[r1, r2].

3. Compute the mean and the 95% confidence interval from the

ratio histogram.

See Figure 7 for illustration of the above algorithm.

One can still use direct formulas, as an approximation, to

compute confidence interval as follows.

The means of g1 l̂l1

� �
and g2 l̂l2

� �
are l1 and l2 respectively. Let

the standard deviations be sx and sy respectively. For given

estimations l̂l1 and l̂l2, assuming that distributions are normal, it

follows from the analysis in [20,21] that the boundary of the

confidence ellipse for a given confidence level zc would be defined by

x{l̂l2

� �2

s2
x

z
y{l̂l1

� �2

s2
y

~z2
c

It is easy to generalize this to the case, under a reasonably close

approximation, when we have asymmetric distributions which are

assumed to be normal in each of the four quadrants of the

coordinate system centered at (l̂l2, l̂l1). Then the confidence region is

made of union of four quadrant-wise elliptic regions.

Let the asymmetric confidence intervals for specified zc and the

two concentrations be [l̂l1{HB, l̂l1zHT ] and [l̂l2{WL,

l̂l2zWR].

If WR = WL = zcsx and HT = HB = zcsy, it is symmetric case

[20,21]. Using simple algebraic manipulations, it can be shown, as

in symmetric case, that the slopes of lines that will be tangents to

this union of four quadrant-wise ellipses will be

r̂rLow~

l̂l1l̂l2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂l2

1l̂l2
2{ H2

B{l̂l2
1

� �
W 2

R{l̂l2
2

� �r
l̂l2

2{W 2
R

rHigh~

l̂l1l̂l2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂l2

1l̂l2
2{ H2

T{l̂l2
1

� �
W 2

L{l̂l2
2

� �r
l̂l2

2{W 2
L

The above equations can be used as an approximation though

numerical algorithm will give more accurate results as the

algorithm does not make any assumptions and works with

arbitrary sampling distributions.

One detail has to be mentioned. Special care has to be taken if

the confidence region gets too close to l̂l1 axis when l̂l2 is small. If it

touches l̂l1 axis, then rHigh = ‘. If either l̂l1 or l̂l2 is too small, one

can build respective histogram with smaller bin size to get more

accurate results.

See Table 2 for summary of equations derived in order to solve

the copy number variation problem. Though the numerical

Figure 6. Geometric interpretation of Fieller’s Theorem to
compute confidence interval of ratio of two normally distrib-
uted random variables l̂l1 and l̂l2 in which confidence ellipse of
the joint sampling distribution is projected on a vertical line.
doi:10.1371/journal.pone.0002876.g006
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approach based on histograms is recommended as it does not

make assumptions, these direct formulas can be used as close

approximation.

Simulation Results on Estimation of Ratio
We conducted simulation studies, using a random number

generator and a computer program as in previous section, by

choosing a ratio of 2 of concentrations of two genes, which are

independent of each other, and building a distribution of estimated

ratios over 50 thousand panels. In 94.9% of the panels, the true

chosen ratio did lie in the computed confidence intervals thereby

showing the correctness of our mathematical analysis.

Actual Results on Estimation of Ratio
The copy number variation results for known ratios of 1, 1.5, 2,

2.5, 3 and 3.5 are shown in Figure 8. Materials and methods for

this experiment are discussed in next section. As the number of

panels P increases, then the number of chambers C = 765

Pincreases and therefore the estimation of the ratio becomes more

accurate as well as the confidence interval shrinks. When only 1

panel is used, there is significant overlap between 95% confidence

intervals of certain ratios e.g. between ratio 2 and 2.5. There is no

overlap when 3 or more panels are used. In all cases the known

ratio lies within the computed 95% confidence interval. Note that

using mathematical analysis one can find optimal numbers of

positive chambers for each ratio which give smallest confidence

intervals and which will therefore improve the results.

In summary, Fluidigm’s digital array is capable of accurately

quantitating DNA samples and is a valuable platform for studying

copy number variation. It is a robust technology that is sequence-

specific, easy-to-use, and extremely flexible. We have presented

mathematical and algorithmic solutions to analyze CNV on a

digital array. The solution is an elegant application of statistical

sampling and estimation theories to such an important real-world

Table 2. Given number of chambers C and counts H1 and H2

of the positive chambers in a digital array for the target gene
and the reference gene, respectively, list of formulas needed
to analyze copy number variation.

p̂p1~
H1

C
, p̂p2~

H2

C

S1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p1 1{p̂p1ð Þ

C

q
, S2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p2 1{p̂p2ð Þ

C

q
p̂1,Low = p̂121.96S1, p̂1,High = p̂1+1.96S1

p̂2,Low = p̂221.96S2, p̂2,High = p̂2+1.96S2

l̂l1~{ln 1{p̂p1ð Þ, l̂l1,Low~{ln 1{p̂p1,Lowð Þ, l̂l1,High~{ln 1{p̂p1,High

� �
l̂l2~{ln 1{p̂p2ð Þ, l̂l2,Low~{ln 1{p̂p2,Lowð Þ, l̂l2,High~{ln 1{p̂p2,High

� �
HTop~l̂l1,High{l̂l1 , HBottom~l̂l1{l̂l1,Low

WRight~l̂l2,High{l̂l2 , WLeft~l̂l2{l̂l2,Low

r̂r~ l̂l1

l̂l2

r̂rLow~
l̂l1 l̂l2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂l2

1 l̂l2
2{ H2

Bottom
{l̂l2

1ð Þ W 2
Right

{l̂l2
2

� �q
l̂l2

2{W 2
Right

r̂rHigh~
l̂l1 l̂l2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂l2

1 l̂l2
2{ H2

Top
{l̂l2

1ð Þ W 2
Left

{l̂l2
2

� �q
l̂l2

2{W 2
Left

See the details in the paper for assumptions made so that these equations are
close approximations to actual values.
doi:10.1371/journal.pone.0002876.t002

Figure 7. Illustration of a numerical projection algorithm to compute the sampling distribution of ratio of two random variables
with arbitrary probability distributions by slicing the 2-D space into thin wedges and accumulating the joint probabilities in the
wedges. Most of the contribution would come from the confidence ellipse region.
doi:10.1371/journal.pone.0002876.g007
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problem. We have shown how one can compute the true

concentration of a target sequence in a DNA sample and the

associated confidence interval on this estimation, and how one can

compute the ratio of true concentrations of multiple sequences and

the associated confidence interval on the estimation of this ratio.

Materials and Methods

A 10-ml reaction mix is normally prepared for each panel. It

contains 16TaqMan Universal master mix (Applied Biosystems,

Foster City, CA), 16RNase P-VIC TaqMan assay, 16TaqMan

assay for the target gene (900 nM primers and 200 nM FAM-

labeled probe), 16 sample loading reagent (Fluidigm, South San

Francisco, CA) and DNA with about 1,100–1,300 copies of the

RNase P gene. 4.59 ml of the 10-ml reaction mix was uniformly

partitioned into the 765 reaction chambers of each panel and the

digital array was thermocycled on the BioMark system. Thermo-

cycling conditions included a 95uC, 10 minute hot start followed

by 40 cycles of two-step PCR: 15 seconds at 95uC for denaturing

and 1 minute at 60uC for annealing and extension. Molecules of

the two genes were independently amplified. FAM and VIC

signals of all chambers were recorded at the end of each PCR

cycle. After the reaction was completed, Digital PCR Analysis

software (Fluidigm, South San Francisco, CA) was used to process

the data and count the numbers of both FAM-positive chambers

(target gene) and VIC-positive chambers (RNase P) in each panel.

A spike-in experiment was performed using a synthetic

construct to explore the digital array’s feasibility as a robust

platform for the CNV study. A 65-base oligonucleotide was

ordered from Integrated DNA Technologies (Coralville, IA) that is

identical to a fragment of the human RPP30 gene. The sequences

of the primers and FAM-BHQ probe used to amplify this

construct are from Emery et al [22]. The primers and probe were

ordered from Biosearch Technologies (Novato, CA).

Both RPP30 synthetic construct and human genomic DNA

NA10860 (Coriell Cell Repositories Camden, NJ) were quantitat-

ed using the RPP30 assay on a digital array. Different amounts of

RPP30 synthetic construct was then added into the genomic DNA

so that mixtures with ratios of RPP30 to RNase P of 1:1 (no spike-

in), 1:1.5, 1:2, 1:2.5, 1:3, and 1:3.5 were made simulating DNA

samples containing 2 to 7 copies of the RPP30 gene per diploid

cell.

These DNA mixtures were analyzed on the digital arrays as

described above. Five panels were used for each mixture and 400–

500 RNase P molecules were present in each panel. The ratios of

RPP30/RNase P of all samples were calculated using the

techniques developed in this paper. For each ratio, we did pooled

analysis by adding the numbers of positive chambers in the first

P = 1,2,3,4,5 panels. The results are summarized in the previous

section and in Figure 8.
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