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Abstract

Background: Induction of the heat shock response (HSR) and increased expression of the heat shock proteins (HSPs)
provide mechanisms to ensure proper protein folding, trafficking, and disposition. The importance of HSPs is underscored
by the understanding that protein mis-folding and aggregation contribute centrally to the pathogenesis of
neurodegenerative diseases.

Methodology/Principal Findings: We used a cell-based hsp70-luciferease reporter gene assay system to identify agents
that modulate the HSR and show here that clinically relevant concentrations of the FDA-approved ALS drug riluzole
significantly increased the heat shock induction of hsp70-luciferse reporter gene. Immuno-Western and -cytochemical
analysis of HSF1 show that riluzole increased the amount of cytosolic HSF1 to afford a greater activation of HSF1 upon heat
shock. The increased HSF1 contributed centrally to the cytoprotective activity of riluzole as hsf1 gene knockout negated the
synergistic activity of riluzole and conditioning heat shock to confer cell survival under oxidative stress. Evidence of a post-
transcriptional mechanism for the increase in HSF1 include: quantitation of mRNAhsf1 by RT-PCR showed no effect of either
heat shock or riluzole treatment; riluzole also increased the expression of HSF1 from a CMV-promoter; analysis of the
turnover of HSF1 by pulse chase and immunoprecipitation show that riluzole slowed the decay of [35S]labeled-HSF1. The
effect of riluzole on HSF1 was qualitatively different from that of MG132 and chloroquine, inhibitors of the proteasome and
lysosome, respectively, and appeared to involve the chaperone-mediated autophagy pathway as RNAi-mediated
knockdown of CMA negated its effect.

Conclusion/Significance: We show that riluzole increased the amount of HSF1 to amplify the HSR for cytoprotection. Our
study provides novel insight into the mechanism that regulates HSF1 turnover, and identifies the degradation of HSF1 as a
target for therapeutics intervention.
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Introduction

A common feature of many neurodegenerative diseases is the

misfolding-due to genetic as well as epigenetic factors-of specific

proteins, aggregation and formation of protein fibrillary structures

termed amyloid inside and outside of brain cells [1]; terms such as

‘‘protein mis-folding diseases’’ and ‘‘proteinoapthies’’ have been

coined to describe such disorders . There is also good evidence

from in vivo studies in fruit fly and mouse models of the importance

and relevance of heat shock protein chaperones (HSP) in

preventing/mitigating such pathological consequences of protein

mis-folding. In a Drosophila model, over-expression of human

Hsp70 completely suppressed the external eye defects mediated by

the expression of expanded polyQ protein, and partially restored

retinal structure [2]. Conversely, expression of the expanded

polyQ protein in a Drosophila line bearing a dominant-negative

Hsp70 augmented the severity and kinetics of neurodegeneration,

suggesting that under normal conditions the endogenous Hsp70

protein may partially mitigate the toxic effects of the expanded

polyQ protein [2]. These considerations suggest that agents that

upregulate the HSR and HSP chaperones may hold promise in

therapeutics development for the prevention, management, and

treatment of neurodegeneration [3,4,5,6].

Riluzole (brand name RilutekH, Sanofi-Aventis Inc.) is the first

and thus far only FDA approved drug for the treatment of ALS

(Amyotrophic lateral sclerosis; aka: Lou Gehrig’s disease). Riluzole

has a modest effect on the progression of ALS, it’s mechanism of

action is not well understood and may involve inhibition of

glutamate release and excitotoxicity (http://products.sanofi-aventis.

us/rilutek/rilutek.html) [7]. Importantly, the protective effect of

riluzole is not limited to diseased motor neurons in ALS: riluzole

confers neuroprotection in spinal cord and cortical injury/ischemia

[8,9,10,11,12], retards huntingtin aggregate formation in a cell free

system and hippocampi organ culture [13], slows the progression of

multiple sclerosis in human [14], and retards neuromuscular

dysfunction in wobbler mouse motor neuron disease [15].

We are interested in harnessing the cytoprotective function of

the HSR and HSP chaperones. We developed a cell based hsp70-
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luciferase reporter gene assay to identify agents that can up-

regulated the HSR. In particular, we are interested in candidates

that are not proteotoxic and would not by themselves trigger the

full HSR but nonetheless would enhance the effect of HSR

elicitor. We show here that the FDA approved drug riluzole

significantly amplified the effects of heat shock in induction of the

hsp70-luciferse reporter gene expression. Analysis of the effects of

riluzole on HSF1, the transcription factor that mediates the HSR,

show that riluzole increased the amount of latent HSF1 monomer

by blunting its turnover. The increased HSF1 reserve allowed for a

more robust HSR to confer protection for survival under stress.

Results

Effects of riluzole on hsp70-reporter gene expression
The effects of riluzole on the basal (control; 37uC) and heat shock-

induced (42u) hsp70-luciferase reporter gene activity in the human

HeLa cell line is shown in Fig. 1. Fig. 1A and 1B represent the

average6standard deviation of four separate experiments each with

4 separate determinations, and Fig. 1C and D is the average6s-

tandard deviation of four separate determinations from one

experiment. We show in fig. 1A that expression of the hsp70-

reporter was induced 36 fold on average by heat shock. Pre-

incubation of the cells with riluzole for 16 hr followed by heat shock

gave a riluzole dose-dependent amplification of the heat shock

induction of hsp70-firefly luciferase reporter gene expression (solid

symbol, Fig. 1A); at the optimal riluzole concentration of 1–2 mM,

the heat shock induced hsp70-reporter gene activity was

,2.76higher than that of heat shock control (without riluzole).

Analysis of the effects of riluzole on the basal (i.e. 37uC) expression

of hsp70-luciferase as shown in Fig. 1B revealed a qualitatively

similar effect: both in terms of the optimal concentration of riluzole

(1–2 mM) and the fold of enhancement (2.5–2.8 fold without/with

riluzole). The large standard deviation of the heat induced reporter

gene activity shown in Fig. 1A (solid symbol) is due to experiment-

to-experiment variation in the basal (37uC) reporter gene activity

and this translates to a wide range in the fold of induction by heat

shock (e.g. in the absence of riluzole, the range of heat shock

induction was 15 to 71 fold over that of the 37uC control for the four

different experiments in Fig. 1A). Similar variation in the basal

HSF1 activity under normal conditions has previously been noted

[16]. Within a given experiment using the same pool of transfected

cell, however, the sample-to-sample variation was ,10% (Fig. 1C

and 1D). This pattern was consistently observed throughout the

many experiments done over a two-year period. The effect of

riluzole in amplifying the hsp70-reporter gene expression required a

pre-incubation period: the addition of riluzole at or within 1–2 hr of

heat shock (before or after) had little effect (data not shown).

The ability of riluzole to amplify hsp70-reporter gene expression

is not limited to the HeLa cells. Similar and reproducible results

Figure 1. Dose-response effect of riluzole on the basal and heat shock induced hsp70-luciferase reporter gene expression. HeLa cells
were transfected with the hsp 70-firefly luciferase reporter DNA and the internal control Renilla luciferase DNA according to methods described in the
text. 6 hr after DNA transfection, cells were plated into 96 StripwellH plates (Corning/Costar 9102). Riluzole was added to individual wells to final
concentrations as indicated and incubated at 37uC for 16 hr. The condition used for heat shock was 2 hr at 42uC followed by recovery at 37uC for
4 hr. Controls were incubated at 37uC for an equivalent time. Luciferase activity was assayed using the Dual-Glo luciferase assay system from
Promega (E2920) as described. Result on hsp70-reporter is presented as a ratio of hsp70-firefly luciferase over the internal control Renilla luciferase
activity, relative to that of the control (no heat shock and no riluzole; the ratio of firefly/Renilla set at 1). Panels (A) and (B) are the average6SD of
the result from four independent experiments each with 4 separate determinations. Panels (C) and (D) are the result from one single experiment
with four different sample/determinations. Panels (A) and (C) show results on the reporter gene under both basal (37uC) and heat shock (42uC, 2 hr)
condition; panels (B) and (D) show the effect of riluzole on the basal luciferase reporter gene activity on an expanded Y-axis. * and ** denotes,
respectively, two-tailed t-test with a probability of difference between 0.01–0.05 (significant) and ,0.01 (highly significant).
doi:10.1371/journal.pone.0002864.g001

Riluzole and HSP Chaperones

PLoS ONE | www.plosone.org 2 August 2008 | Volume 3 | Issue 8 | e2864



were obtained using a variety of other human and rodent cell lines

and primary cell cultures including immortalized striatal neurons

of the ST14D2 and N548 lineages [17] as well as primary cultures

of embryonic CNS neurons. Because of the wealth of literature

information on the regulation and function of HSF1 and the

robust transcriptional regulation of heat shock gene expression in

HeLa cells-information that provided a solid backdrop for our

studies on the effects of riluzole in modulating the HSR and in

regulating the amount and activity of HSF1–many of the

experiments presented in this study were done using HeLa cells.

Results on the effect of riluzole on hsp70-reporter gene expression

and survival of primary embryonic spinal cord neurons are also

presented in this study.

Effects of riluzole on the regulation and function of HSF1
HSF1 mediates the HSR: stress acutely converts the constitu-

tively expressed dormant, monomeric HSF1 in the cytosol to a

nuclear localized, hyperphosphorylated HSF1 trimer that binds

and trans-activates the heat shock promoters [18]. In order to gain

a better understanding of the mechanism by which riluzole

enhanced the hsp70-luciferase reporter gene expression shown in

Fig. 1, we used immuno-Western blot techniques to evaluate the

effects of riluzole on the amount, distribution (cytosol versus

nuclear compartment), and trimerization of HSF1. The effects of

the proteasome inhibitior, MG132, and heat shock–known

activators of HSF1–were included as positive controls in the

experiment [19,20,21]. We show in Fig. 2A that HSF1 was

detected in both the cytosol and nuclear fractions of control HeLa

cells (lanes 1 and 2); the relative distribution of HSF1 in cytosol

versus nucleus varied between experiments depending on the cell

culture condition (compare lanes 1&2 of Fig. 2A versus 2B,), and

this is consistent with the wide range of HSF1 DNA-binding

activity observed under normal conditions [16] and with the result

of our reporter gene assay (Fig. 1). Treatment of HeLa cells with

riluzole (1.5 mM, 18 hr; lanes 3 and 4) gave a significant increase

in the amount of HSF1 in the cytosol and a small but reproducible

increase in the nuclear fraction (Fig. 2A: cytosol, lanes 3 versus 1;

nuclear, lanes 4 versus 2). This is to be contrasted with the effects

of proteasome inhibition (MG132, 5 mM, 3 hr; lanes 5 and 6) and

heat shock (42uC, 2 hr; lanes 7 and 8) that acutely promoted the

activation of HSF1- as indicated by nuclear localization and

hyperphosphorylation (supershift of the HSF1 band). Pre-treat-

ment of the cells with riluzole followed by either MG132 (5 mM,

37uC for last 3 hr) or heat shock (42uC for the last 2 hr) gave a

Figure 2. Effects of riluzole on the amount, distribution and trimerization of HSF1. (A) Effects of riluzole, MG132 and heat shock on
the amount and distribution of HSF1 in the cytosol and nuclear fractions. Post-confluent HeLa cells in 60 mm plates were used. Riluzole
(Ril) was added to designated plates to a final concentration of 1.5 mM and incubated at 37uC for 18 hr. For treatment with MG132 (MG), a
proteasome inhibitor, it was added to designate plates to a final concentration of 5 mM and incubated at 37uC for 3 hr. Condition for heat shock was
42uC for 2 hr prior to harvesting of cells. When riluzole was used in combination with MG132 or heat shock, cells were treated with 1.5 mM riluzole for
a total of 18 hr; MG132 was added during the last 3 hr or heat shocked at 42uC for the last two hrs. The cytosol (C) and nuclear (N) fractions were
prepared as described [22]. Aliquots containing 10 mg protein were loaded onto 8% SDS-polyacrylamide gel for immuno-Western blot probing of
HSF1. The position of the hyperphosphorylated HSF1 is indicated by *. (B) Effects of riluzole and heat shock on the distribution and
trimerization of HSF1. Control and riluzole (1.5 mM; 16 hr) treated cells were incubated under control (37uC; lanes 1–4) and heat shocked (42uC,
1 hr; lanes 5–8) conditions. Cells were harvested and cytosol (C) and nuclear (N) fractions prepared [22]. To assess the stoichiometry of HSF1, proteins
were crosslinked with 2 mM glutaraldehyde at room temperature for 10 min followed by quenching of the crosslinking reaction with the addition of
100 mM lysine. Samples were subjected to SDS-PAGE (4–12% acrylamide gel) followed by immuno-Western blot detection of HSF1. The single,
double, and triple arrow heads indicate, respectively, the positions on the gel of the HSF1 monomer, dimer, and trimer. (C) Dose response effect
of riluzole on the accumulation of HSF1. Cells were incubated with concentrations of riluzole from 0.5, 1, 2, 5, 10, 20 and 100 mM for 16 hr at
37uC. Cells were harvested and aliquots of the whole cell extracts containing 10 mg protein were used for immuno-Western blot detection of HSF1.
The relative abundance of the HSF1 signal determined by densitometry is presented at the bottom of the figure. Samples from heat shocked (42uC,
2 hr) and control cells served as controls. The hyperphosphorylated form of HSF1 is indicated by an *. (D) Time course of effect of riluzole
treatment on the steady state level of HSF1. Cells were treated with 2 mM riluzole at 37uC for time periods indicated (2, 4, 8, 24 and 30 hr). Cells
were harvested and aliquots of the whole cell extracts containing 10 mg protein were used for immuno-Western blot detection of HSF1. The relative
abundance of the HSF1 signal determined by densitometry is presented at the bottom of the figure. Samples from heat shocked (42uC, 2 hr) and
control cells served as controls. The hyperphosphorylated form of HSF1 is indicated by an *.
doi:10.1371/journal.pone.0002864.g002
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greater mobilization and accumulation of the HSF1 in the nuclear

compartment (lanes 9–12). The result in Fig. 2A suggests that

riluzole increased the amount of HSF1 principally in the cysotol,

and this increased reserve allowed for a greater mobilization and

nuclear translocation of HSF1 upon stress. To validate this

possibility, we use a protein-crosslinking technique in conjunction

with immuno-Western blot to determine the amount and the

stoichiometry of HSF1 [22]. We show in Fig. 2B that riluzole

increased the amount of monomeric HSF1 in the cytosol of

control, unstressed cells (Fig. 2B: lane 3 versus 1). Riluzole also had

a small and reproducible effect in increasing the amount and

trimerization of HSF1 in the nuclear compartment of cells

maintained at 37uC (Fig. 2B: lanes 4 versus 2). Heat shock

promoted the nuclear translocation and trimerization of HSF1,

and these effects of heat shock were amplified by the pre-treatment

of cells with riluzole (Fig. 2B: lanes 8 versus 6). The effect of

riluzole was time and dose dependent: we show in Fig. 2C and D

that an optimal increase in the amount of HSF1 was observed

after ,18 hr of incubation with ,2 mM of riluzole.

We also used immunocytochemical staining techniques to

evaluate the effects of heat shock and riluzole treatment on the

distribution and amount of HSF1. We show in Fig. 3 that HSF1 had

a diffuse cytoplasmic and nuclear distribution in unstressed cells

(panel a). Heat shock promoted the nuclear localization of HSF1

(panel c). Riluzole increased the diffused HSF1 staining intensity in

both the cytosol and nucleus (panel e), and the pretreatment with

riluzole followed by heat shock gave a greater increase in the nuclear

HSF1 when compared to heat shock alone although there remained

some diffuse staining in the cytosol (panel g).

The synergistic cytoprotective activity of riluzole and
conditioning heat shock

Induction of the HSPs provides an important cytoprotective

mechanism for survival under stress. In this context, our

observation that riluzole increased HSF1 reserve to allow for a

more robust mobilization of HSF1 and induction of the HSR

would suggest that riluzole and conditioning heat shock could have

synergistic effect in protecting cells against stress-induced injury

and death. In Fig. 4A, we show the dose-dependent effects of

riluzole and conditioning heat shock on cell viability in the absence

and presence of sodium arsenite-induced oxidative stress challenge

[23,24]. Cell viability was expressed as a % of that of the control

(no riluzole, no heat shock, no arsenite). We showed that: (1)

arsenite (20 mM, 24 hr) by itself decreased cell viability by 75%;

this cytotoxic effect was countered somewhat by the pretreatment

of cells with riluzole with an optimal protection observed at 1 mM

(viability 25 & 45% for 0 and 1 mM riluzole, respectively; solid

circle, solid line). (2) Conditioning heat shock (pre-HS) increase cell

survival from 25 to 34% in the arsenite-challenged cells. Further,

the treatment of cells with riluzole followed by conditioning heat

shock had a synergistic effect in promoting cell survival when

challenged with arsenite (solid triangle, solid line); at 1 mM

riluzole, the percentage of viable cells was 75 versus 45%, with and

without conditioning heat shock, respectively. (3) In the un-

challenged cells (no arsenite): riluzole by itself had a small but

reproducible effect in promoting cell growth/viability (open circle),

whereas conditioning heat shock reduced cell growth/viability by

,10% (open triangle).

In order to validate that the effects of riluzole and conditioning

heat shock to confer protection for survival under stress are related

to their effects on the regulation and function of HSF1, a parallel

experiment was done using hsf12/2 and their wild-type

counterpart hsf1+/+ murine embryo fibroblasts [25,26]. The result

on cell viability of the arsenite-challenged cells is shown in 4B. The

cell viability profile of the hsf+/+ MEF (triangle symbol) was similar

to that of the HeLa cells shown in Fig. 4A–that riluzole and

conditioning heat shock had synergistic effects in promoting survival

when challenged with arsenite. The hsf2/2 MEF, by comparison,

was more sensitivity towards the cytotoxic effects of arsenite, such

that ,10% of the hsf2/2 cells survived the aresenite challenge as

compared to ,25% of the hsf1+/+ cells. Importantly, pre-

treatment of cells with riluzole followed by conditioning heat shock

had little or no effect in enhancing survival of the hsf12/2 MEF

(solid and filled circle symbols). This result underscores the critical

role of HSF1, and the presumptive induction of HSPs in conferring

cell survival under stress. Together, the results of Fig. 1–4 show that

riluzole increased the amount of HSF1 to afford a most robust HSR

for survival under stress.

Riluzole amplifies the HSR and protects spinal cord
neurons against oxidative stress induced death

ALS is a motor neuron disease with symptoms and disease

progression resulting from degeneration and death of motor

neurons in the spinal cord and other CNS regions [27]. The cause

of motor neuron death in ALS is not entirely clear and likely

involves a multitude of related contributing factors including

glutamate excitotoxicity, oxidative stress, and protein mis-folding

and aggregation [28,29,30]. In Fig. 5, we evaluated the effects of

riluzole on induction of the hsp70-reporter gene activity and in

conferring survival in primary cultures of embryonic spinal cord.

Embryonic spinal cord neurons were transfected with the

hsp70-firefly luciferase and Renilla luciferase DNA DNA at 10

DIV. The effects of heat shock and of the effect of pre-treatment

with riluzole on hsp70-reporter gene expression is shown in

Fig. 5A. Heat shock increased the hsp70-reporter gene expression

in primary cultures of embryonic spinal cord by ,5–20 fold–a

magnitude that is significantly lower than what was observed in the

HeLa cells in Fig. 1. This observation is consistent with result of

previous studies: spinal cord neurons have a high threshold for

induction of the HSR both in terms of the severity of stress and the

Figure 3. HSF1 immuno-fluorescence photomicrographs of
control and heat shocked HeLa cells without and with riluzole
pre-treatment. Riluzole (2 mM) was added to HeLa cells and incubated
at 37uC for 16 hr (panels e–h). Designated plates of cells were heat
shocked at 42uC for 2 hr (panels c, d, g, h). Control cells were incubated
at 37u for equivalent time periods. Cells were fixed, permeabilized and
stained for HSF1 according to methods described in the text (panels a,
c, e and g). Nuclei were counter stained with Hoechst 33342 (panels b,
d, f and h). Images of representative fields were captured with a SPOT
camera system (Diagnostic Instruments, Inc., Sterling Heights, MI).
doi:10.1371/journal.pone.0002864.g003
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magnitude of induction [23,24,31], and induction of the HSR is

inversely proportional to the ‘‘differentiation’’ state of neuronal

cells [23,24]. Pre-treatment of the spinal cord neuron culture with

riluzole gave a dose-dependent amplification of the heat shock

induction of hsp70-reporter gene activity. In Fig. 5A, this effect of

riluzole was illustrated using three different protocols of heat shock

and recovery: heat shock for 2 hr followed by recovery for 3 hr

(filled circle), 6 hr (filled triangle), and 22 hrs (filled square). In

each case, an optimal enhancement was observed at 0.5–1 mM

riluzole, and the protocol of heat shock for 2 hr followed by

recovery for 6 hr gave the greatest increase in reporter gene

activity. Shown as an insert in Fig. 5A is an expanded scale of the

basal 37uC reporter gene activity to show that riluzole also

increased the basal hsp70-reporter gene activity.

In Fig. 5B, we show that riluzole and conditioning heat shock

increased cell survival under conditions of arsenite-induced

oxidative stress, an effect that can be correlated with the enhanced

HSR shown in Fig. 5A. We note that embryonic spinal cord

neurons appear to be exquisitely sensitive to the cytotoxic effects of

arsenite, such that a 24 hr incubation with 20 mM of arsenite

resulted in ,95% cell kill with 5% cell survival (see insert of

Fig. 5B). Riluzole at 1 mM increased cell survival to 10%.

Conditioning heat shock by itself prior to arsenite challenge

increased survival from 5 to 8%. Riluzole plus conditioning heat

shock had a synergistic effect: at the optimal concentration of

1 mM of riluzole, cell survival was increased to 16%.

Riluzole slows the turnover of HSF1
To better understand how riluzole acts to increase the amount

of latent HSF1, we used reverse transcriptase-polymerase chain

reaction (RT-PCR) to assess the effects of heat shock and riluzole

treatment on the abundance of mRNAhsf1 using HeLa cells as a

model for these studies. In the experiment of Fig. 6A, a 642 bp

HSF1 fragment was co-amplified with a 481 bp fragment of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) using ap-

propriate primers. We show that neither heat shock nor riluzole

treatment had a significant effect on the RT-PCR product of

either HSF1 or GAPDH. To assess if the effects of riluzole is

transcriptional and thus promoter specific, we transfected hsf2/2

MEF [25,26] with the episomal eukaryotic expression vector of

hsf1-pCep4hHSF1-to force the expression of HSF1 from the

CMV early enhancer/promoter and determined the effects of

riluzole on this expression. The experiment in Fig. 6B showed that

hsf2/2 cells transfected with the empty pCep4 vector gave no

detectable HSF1 signal (lanes 1 and 2). Transfection of the cells

with pCep4hHSF1 drove the expression of HSF1, and riluzole

treatment increased the level of HSF1 (lane 3 & 4). Treatment of

the hsf+/+ cells with riluzole gave a similar increase in HSF1

(lanes 5 & 6). Analyses of the effects of riluzole on the turnover of

HSF1 by pulse-chase and immuno-precipitation of HSF1 in

Fig. 6C shows that riluzole slowed the rate of decay of

[35S]methionine-labeled HSF1 during chase, suggesting that

riluzole slowed the turnover of the HSF1 protein to effect an

increase in the steady state level of the protein. The fractional rate

(Kd) of HSF1 was calculated to be 0.051 and 0.01/hr for the

control and riluzole-treated samples, and this translated to HSF1

half-lives estimates of 13.6 and 69.3 hr, respectively. In Fig. 6D,

we show that the riluzole-induced increase in HSF1 drove a higher

expression of the 72 kDa HSP70 protein under both control

(37uC) and heat shock (42uC) conditions, with an optimal increase

observed at 2 mM riluzole.

Protein degradation in the eukaryotic cells primarily involves

the ubiquitin proteasome (UPS) and the lysosomal systems. There

is ample literature evidence that inhibition of the UPS pathway,

Figure 4. Synergistic effects of riluzle and conditioning heat shock in conferring cell survival under oxidative stress requires a
functional HSF1. (A) Dose response effect of riluzole and conditioning heat shock on cell viability in the absence and presence of
oxidative stress challenge. HeLa cells in 96 Strip-well plate were used. The conditions for riluzole treatment and conditioning heat shock were as
described in the text. To test for cell survival under conditions of oxidative stress, 20 mM sodium arsenite was added and incubated at 37uC for 24 hr.
Viability of the cells was determined using the CellTiter-Glo luminescent reagent from Promega Inc. Cell viability signal, relative to that of the
untreated control, is plotted as a function of the concentration of riluzole added. Result represents the average of four independent
determinations6standard deviation. * and ** denotes, respectively, two-tailed t-test with a probability of difference between 0.01–0.05 (significant)
and ,0.01 (highly significant) of the riluzole-treated samples from that of the minus riluzole control. (B) The cytoprotective activity of riluzole
and conditioning heat shock requires a functional HSF1 protein. Murine embryo fibroblasts derived from hsf12/2 knockout mice [25] and
its hsf1+/+ normal littermate were plated in 96 a Stripwell plate. The conditions used from the treatment of cells with riluzole, conditioning heat
shock at 42uC for 2 hr, and assessment of the ‘‘cell-kill’’ effects of arsenite were as described in the text. The figure presents data on viability of the
arsenite-challenged cells pretreated with various concentrations of riluzole, without and with conditioning heat shock. Data on viability of the control
cells (i.e. without arsenic challenge) are not included in Fig. 4B as they were qualitatively similar to that of the HeLa cells shown in Fig. 4A.
doi:10.1371/journal.pone.0002864.g004
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e.g. by the use of peptide aldehyde inhibitors including MG132,

promotes the rapid activation of HSF1 [19,20,21]. Our result on

the effects of MG132 on HSF1 in Fig. 2A is consistent with these

published observations. Further, other proteasome inhibitors

including epoxomicin, YU102, Ac-Ala-ProlNle-Asp-al; clasto-

lactacystin b-lactone; and Ada-(ahx)3-(Leu)3-vinyl sulfone (BIO-

MOL Int, LP) also promoted the activation of HSF1 as

determined by it’s hyperphosphorylation, nuclear translocation

and trimerization (data not shown). The effect of riluzole was

qualitatively different from drugs that inhibit proteasome function:

riluzole gave a delayed increase in the amount but not the acute

activation of HSF1.

There are at least three different lysosomal mechanisms of

protein degradation: autophagy (aka, macroautophagy, MA),

chaperone-mediated autophagy (CMA), and micro-autophagy

pathways. Macro-autophagy is considered a non-selective process

of ‘‘self-eating’’ involving the formation of intracellular biomem-

brane that sequester a portion of the cytosol and whole organelle

to form the autophagosome. Chaperone-mediated autophagy, on

the other hand, requires the binding of specific substrate protein to

the constitutively expressed HSC70 cognate protein and binding

of the complex to the lysosomal receptor Lamp2A for the

importation and intra-lysosomal degradation of the substrate. We

showed in Fig. 7 that whereas riluzole up-regulated the expression

of HSF1 of both the control and heat-shocked NIH-3T3 cells,

riluzole had little effect in the Lamp2A(-) RNAi knock-down cells

[32,33]. The effect of riluzole is distinct from that of lysozomo-

tropic agents such as chloroquine or ammonium chloride. We

show in Fig. 7B that chloroquine (0.2 mM) gave a time-dependent

increase in the hyperphosphorylation (supershift in gel) of HSF1.

Further, in despite the activation of HSF1, chloroquine treatment

had dire consequence in cell viability–most of the cells were dying/

dead after 8 hr incubation in the presence of 0.2 mM chloroquine.

These effects of chloroquine are qualitatively different from that of

riluzole.

Discussion

Induction of the HSR provides a ubiquitous and important

cytoprotective mechanism. A major obstacle in harnessing such

cytoprotective activity for therapeutic purposes is that agents/

conditions that induce the HSR are proteotoxic, and the induction

of HSPs under such conditions represents a compensatory

mechanism to rectify the perturbation of protein homeostasis.

We used a cell-based, hsp70-luciferase reporter gene assay in a 96

well format to identify drugs/small molecules that are not by

themselves robust inducers of the HSR but which can enhance/

amplify the effects of HSR inducers. We show here that the FDA-

approved ALS drug riluzole slows the turnover of HSF1 to effect a

more robust HSR for cytoprotection. These effects of riluzole

appear to be ubiquitous in a variety of cell types/lines that we

studied including the human HeLa cells–which we used as a model

to evaluate the effects of riluzole on the regulation and function of

HSF1, and spinal cord neurons–which we used to validate the

relevance of these effects of riluzole. Our result provides novel

insight into the mechanism of turnover of HSF1, and identifies the

degradation of HSF1 as a target for therapeutics intervention.

Studies on the effects of riluzole on hsp70-luciferase reporter

gene show that riluzole increased both the basal (37uC) and the

heat shock (42uC)-induced hsp70-reporter gene, such that the fold

of heat shock induction (i.e. HS/control) remained relatively

constant in the absence and presence of various concentrations of

riluzole. Analysis of the effects of riluzole on HSF1 by immuno-

Western blot and cytochemistry techniques showed that riluzole

markedly increased the amount of latent, cytosolic HSF1

monomer; this increased reserve allowed for a greater mobilization

Figure 5. Riluzole amplifies the heat shock response and enhances survival under oxidative challenge in embryonic spinal cord
neurons. (A) Dose-response effect of riluzole on the basal and heat-induced hsp70-luciferase reporter gene in spinal cord neurons.
Cells were transfected with the hsp70-firefly luciferase and Renilla luciferase DNA at 10 days in vitro (DIV), a time when the neurons were fully
differentiated with a meshwork of processes. Cells in 96 well plates were treated with specified concentrations of riluzole at 37uC for 16 hr. Cells were
then heat shocked at 42uC for 2 hr followed by recovery at 37uC for 3, 6 and 22 hr. Cells were harvested and processed for reporter gene assay
according to methods described in the text. Result represents the average of four independent determinations6standard deviation. The insert shows
an expanded scale of reporter gene activity to better illustrate the effect of riluzole on the basal level (37uC) of reporter gene expression. (B)
Synergistic effects of riluzole and conditioning heat shock to enhance survival of spinal cord neurons under oxidative challenge.
The conditions of riluzole treatment, heat shock, and arsenite-challenge were as described in the text (same as protocol used in the experiment
shown in Fig. 4A for NG108-15 cells). Viability of the cells was determined using the CellTiter-Glo luminescent reagent from Promega Inc. Cell viability
signal, relative to that of the untreated control (line 1; without riluzole, 100%), is plotted as a function of the concentration of riluzole added. The
insert is an expanded scale to better illustrate the fraction of cells that survived the arsenite-induced oxidative challenge. Result represents the
average of four independent determinations6standard deviation.
doi:10.1371/journal.pone.0002864.g005
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of HSF1 upon heat shock. We further note that riluzole by itself

had a smaller but reproducible effect in increasing the amount of

nuclear localized, activated HSF1 trimer–an effect likely secondary

to the increased cytosolic HSF1. Indeed, spontaneous activation of

HSF1 is often observed upon over expression of HSF1 in

transfected mammalian cells [16,34,35,36], and recombinant

HSF1 expressed in E. coli is in a constitutively active oligomeric

form [18,37,38]. These considerations suggest that both the basal

(37uC) and the heat shock-induced (42uC) hsp70-reporter gene

activity is an accurate and valid assessment of the activity of HSF1-

an activity which includes the trimerization and nuclear

translocation of HSF1 and binding of the HSF1 trimer to the

heat shock element to transactivate the hsp70 promoter [18]. The

notion that the basal reporter gene activity is in fact HSF1-

dependent is further support by the absence of a measurable

activity when the hsp70-luciferase DNA is transfected into hsf2/

2cells (data not shown).

Our conclusion that riluzole increased the amount of HSF1 to

afford a more robust HSR for cytoprotection is supported by three

lines of evidence reported in this study: (1) Riluzole and

Figure 6. Effects of riluzole on the expression, turnover and activity of HSF1. (A) Reverse-transcriptase PCR analysis of the effects of
heat shock and riluzole treatment on the expression of mRNAhsf1. RNA was isolated from control, heat shocked (2 hr, 42uC), and riluzole-
treated (2 mM, 8 hr) HeLa cells. RNA was reverse transcribed and PCR-amplified using HSF1-specific primers. Std: a 564 bp fragment from HindIII
digest of l DNA. The positions of the 642 bp HSF1 DNA fragment and the co-amplified 481 bp GAPDH internal control are as indicated. (B) Effects of
riluzole on the endogenous versus CMV-promoter driven HSF1 expression. An episomal eukaryotic expression vector of the human HSF1,
pCep4hHSF1, was used to drive the expression of HSF1 in hsf12/2 MEF. Cells were allowed to recover at 37uC for 6 hr after DNA transfection.
Riluzole was then added to designated plates to a final concentration of 2 mM and incubated at 37uC for 16 hr. Cells were harvested and RIPA extracts
prepared. Control and riluzole-treated hsf12/2 cells transfected with the pCep4 vector as well as hsf+/+ cells were included as controls in the
experiment. Result on the relative abundance of HSF1 is shown at the bottom of the figure. (C) Pulse-chase analysis of the turnover of HSF1 in
control versus riluzole-treated HeLa cells. Cells were labeled with [35S]methionine as described in the text. At the end of this labeling period,
cells were rinsed extensively the chase initiated either without (Control, solid symbol) or with 2 mM riluzole at 37uC (open symbol). Samples were
harvested at 0, 4, 8, 12 and 24 hr after initiation of the chase. Aliquots of the cell extracts were used for immunoprecipitation of HSF1 using protein A
for pull-down by centrifugation. Result on the amount of radioactivity remaining with the HSF1 immunoprecipitate, relative to that of the t = 0 chase
control, is plotted against the time of chase. Result is the average of 4 separate determinations6standard deviation. The single and double asterisk
symbols, * and **, indicate two tailed t-test of the control vs. riluzole-treated samples with probability of difference of 0.01–0.05 (*, significant) and
,0.01 (**, highly significant), respectively. (D) Dose-response effect of riluzole on HSP70 expression under control and heat-shocked
conditions. HeLa cells were treated with concentrations of riluzole as indicated for a total of 18 hrs. For heat shock, cells, at 10 hrs after the addition
of riluzole, were placed in a 42uC incubator for 2 hr followed by recovery at 37uC for 6 hr. Aliquots of the RIPA cell extract containing 10 mg protein
were used for immuno-Western blot analyses of HSP70 [23]. The relative abundance of HSP70 is indicated at the bottom of the figure.
doi:10.1371/journal.pone.0002864.g006

Figure 7. Consequences of genetic and pharmacological blockade of protein degradation pathways on the regulation of HSF1. (A)
Effects of riluzole on HSF1 in NIH-3T3 versus Lamp2A RNAi-knockdown cells. Cells in 60 mm plates were treated with 2 mM riluzole at 37uC
for 16 hr. For heat shock, cells were placed in a 42uC incubator for 2 hrs. Cells were harvested and aliquots of the RIPA cell extracts containing 10 mg
protein were used for immuno-Western blot analysis of HSF1 according to methods described in the text. The position on the gel of the HSF1 and of
the heat induced hyperphosphorylated HSF1 is indicated by an *. The relative abundance of the HSF1 protein is indicated at the bottom of the figure.
(B) Effects of chloroquine on HSF1. HeLa cells were treated with 0.2 mM chloroquine at 37uC for time periods as indicated. Aliquots
of the RIPA cell extract were used for immuno-Western blot detection of HSF1. Extracts from control and heat-shocked cells were included as
controls. The position on the gel of the HSF1 and of the heat induced hyperphosphorylated HSF1 is indicated by an *.
doi:10.1371/journal.pone.0002864.g007
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conditioning heat shock had synergistic effects in protecting cells

against the cytotoxic effects of arsenite-induced oxidative stress. (2)

Riluzole gave similar, if not identical, dose-response profiles in

increasing the amount of HSF1 (Fig. 2), in enhancing hsp70-

reporter gene expression (Fig. 1 and 5), in promoting the

expression of HSP70 (Fig. 5), and in conferring cytoprotection

(Fig. 3 and 5); such correlation is consistent with a cause-effect

relationships of the increased HSF1, enhanced induction of HSPs,

and improved cell survival. (3) Genetic deletion of hsf1 negated the

cytoprotective effects of both riluzole treatment and of condition-

ing heat shock.

Riluzole slowed the turnover of HSF1 via the CMA pathway of

protein degradation as RNAi-mediated knockdown of Lamp2A,

an essential lysosomal membrane receptor protein involved in

CMA, blunted the effect of riluzole. Most substrates for CMA

contains a KFERQ-like sequence, a binding motif to the cytosolic

HSC70 protein and targeting of the protein complex to the Lamp-

2A receptor located on the cytosolic face of the lysosomal

membrane [39]. Analysis of both the human and mouse HSF1

failed to reveal an idealized KFERQ sequence, however, it is well

known that HSF1 interacts with both the HSC and HSP70

proteins in vivo and such interaction modulates the activity and

stability of HSF1 [40,41,42,43,44]. CMA is active in most cell

types and is activated under conditions of nutrient deprivation

[39]. Consistent with this, we note that the effect of riluzole is not

cell type specific and is more pronounce in nutrient deprived post-

confluent cells (unpublished observations). At this time, we do not

know if riluzole targets a step in the CMA pathway or that it

targets the HSF1 protein as a substrate for this pathway. If it is the

former, one would expect riluzole to block the CMA-mediated

degradation of known substrates such as glyceraldehyde-3-

phosphate dehydrogenase and RNase [32,33]. If riluzole targets

HSF1, perhaps by modulating a post-translation modification

event of HSF1 necessary for its degradation via CMA, then the

effect of riluzole is likely to be more specific and limited to HSF1

and perhaps other select CMA-substrates. Analysis of the effects of

riluzole in an in vitro CMA-mediated protein degradation system

should help to provide some answers to these questions [32,33].

The effect of riluzole on HSF1 is qualitatively different from

that of MG132 and chloroquine, inhibitors of the proteasome and

lysosome, respectively; they promoted the hyperphosphorylation,

nuclear translocation and activation of HSF1. Their mechanisms

of action likely involve the blockage of bulk protein degradation,

leading to the buildup of abnormal, mis-folded proteins and

consequently activation of the HSR. It is well known that the

accumulation of abnormal proteins in cells, either due to genetic

mutation or by the artificial introduction of denatured proteins,

will trigger the HSR [45,46]. We further note that the effect of

riluzole was unaffected by genetic deletion of Atg5, an essential

gene for the macro-autophagy pathway of protein degradation

[47]: riluzole up-regulated the expression of HSF1 in both the wild

type and the atg52/2 knockout murine embryo fibroblasts

(unpublished observation).

Our working hypothesis on the regulation of HSF1 by riluzole

is: (1) Normal turnover of HSF1 likely involves, at least in part, the

CMA pathway: cytosolic HSF1 monomer associates with HSC/

HSP70 proteins and the complex is targeted for degradation by

CMA. (2) Riluzole, by mechanisms to be delineated, inhibits this

degradation leading to an increased accumulation of HSF1. (3)

The increased HSF1 reserve affords a greater mobilization of

HSF1 under stress for a more robust induction of the HSP

chaperones to confer cytoprotection.

Other drugs have been shown to modulate the HSR. In

particular non-steroidal anti-inflammatory drugs (NSAIDS) are

co-inducers of the HSR: they partially activate components of the

HSR and often work in conjunction with a secondary stress signal

for full induction of HSP70 expression [6,48]. Several clinical stage

hydroxylamine derivative compounds, arimoclomol, iroxanadine

and bimoclomol, are also co-inducers of the HSR: they promote

the hyperphosphorylation and prolong the activation of HSF1 to

enhance the production of HSPs following heat shock

[49,50,51,52,53]. Treatment of transgenic ALS mice with

arimoclomol improves behavioral phenotypes, prevents neuronal

loss and extends survival rates of the ALS mice by 22%.

The effect of riluzole on the HSR is mechanistically distinct

from the co-inducers: riluzole up-regulates HSF1 reserve to

function as an amplifier of the HSR. We believe that riluzole

may be a prototype of drugs that can amplify the HSR for

cytoprotection, and we will continue to use our cell-based reporter

gene assay to screen for and identify such compounds. We further

note that the recommended dose for ALS is one 50-mg RilutekH
tablet (MW 234.2; Aventis Pharmaceuticals) every 12 hrs, and

patients have continued on the treatment regimen for up to

5 years. Assuming an average body weight of 85 kg of the adult

male, body water content of 60% of weight, and average absolute

oral bioavailability of about 60% (http://products.sanofi-aventis.

us/rilutek/rilutek.html), this would translate to a circulating

concentration of ,5 mM riluzole. The similarity in the range of

bioactive concentrations of riluzole in patients vs. our cell-based in

vitro system is remarkable and reassuring.

We suggest that drugs that target the amount/turnover of HSF1

may provide a means for therapeutic intervention in protein mis-

folding diseases. While riluzole is the first and only FDA-approved

drug for ALS, its clinical efficacy is limited–it extends time to

death/tracheostomy by ,3 months (http://products.sanofi-aven-

tis.us/rilutek/rilutek.html). Our work described here provides a

framework to evaluate the possible synergistic cytoprotective

effects of riluzole and small molecule elicitor(s) of the HSR [6].

Materials and Methods

Materials
Riluzole was obtained from Sigma Chem. Co. and AB Chem

Tech. Both sources of riluzole gave similar results. Our RTG88

rabbit polyclonal anti-hHSF1 antibody was prepared by immu-

nizing a rabbit with histidine-tagged human HSF1 produced in E.

coli and purified by affinity chromatography using Ni-NTA resin

from Qiagen; the purified protein was sent to Cocalico Biologicals,

Inc. for the purpose of antibody production. The RTG-88

antibody was similar to that of the SPA-901 anti-HSF1 antibody

from Stressgen/Assay Designs, although RTG88 appeared to be

more specific and superior in sensitivity and gave little or no

background when used to detect the human HSF1 protein. For

detection of HSF1 in rodent cells (NIH-3T3 and Lamp2A2/2), a

rabbit polyclonal antibody (#4356) from Cell Signaling Tech. was

used. Immuno-Western blot detection and quantitation of the heat

inducible 72 kDa HSP70 protein was done using a rabbit

polyclonal antibody from Stressgen (SPA812). The pCep4

episomal eukaryotic expression vector, lipofectamine 2000 reagent

used for DNA transfection, and RT-PCR reagents were from

Invitrogen Co. The humanized Renilla DNA (phRLSV40), Dual-

Glo luciferase assay reagent (E2920), and the CellTiter-Glo

luminescent cell viability assay reagent (G7571) were from

Promega Inc. Proteasome inhibitor pack (PW9900) that include

MG132, epoxomicin, YU102, Ac-Ala-ProlNle-Asp-al; clasto-

lactacystin b-lactone; and Ada-(ahx)3-(Leu)3-vinyl sulfone were

from BIOMOL Int, LP. RIPA (RadioImmunoPrecipitation Assay)

buffer used for cell extract preparation had the following
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composition: 150 mM NaCl; 10 mM Tris, pH 7.2; 0.1% SDS;

1.0% Triton X-100; 1% deoxycholate; 5 mM EDTA; 1 mM

phenylmethylsulfonyl fluoride; 2 mg/ml leupeptin; 100 mM sodi-

um orthovanadate). All other biochemical and chemicals were of

molecular biology or reagent grade.

Cell culture and conditions of riluzole treatment and heat
shock

HeLa cells were grown in Dulbecco’s Modified Eagle’s Medium

(Mediatech Inc.) supplemented with 10% fetal bovine serum,

50 mg/ml streptomycin and 50 U/ml of penicillin. Cells were

subcultured at or near confluency by minimal trypsinization (0.25%

trypsin; Mediatech Inc.) and dispersion into single cell suspension in

new growth medium and plating onto new growing surfaces. Cells

were allowed to grow to confluency and unless indicated otherwise,

experiments were done using post-confluent cells. For riluzole

treatment, a 100 mM stock solution was diluted with DMEM to a

106 working stock and added to the cell culture medium and

incubated at 37uC for time indicated. The hsf12/2 and the wild

type hsf1+/+ murine embryo fibroblasts (McMillan et al., 1998) and

the NIH3T3 and the RNAi knock down Lamp2A cells (Massey et

al., 2006) were cultured in DMEM under standard conditions.

Primary cultures of embryonic spinal cord neuron were

prepared essentially as previously described [54]. Briefly, the

spinal cords were dissected from embryonic day 16 (E16) rat

embryos. Meninges were removed, and the cords were dissociated

with gentle trituration. Cells were plated at a density of 350

neurons/mm2. The mixed cultures were grown in serum-

containing medium (89.4% Minimum Essential Medium, 10%

horse serum, 0.6% glucose, supplemented with penicillin and

streptomycin) for 6 days at 37uC and 5% CO2 before treatment.

To enrich for neurons, the serum containing medium was changed

to Neurobasal medium (Gibco/Invitrogen) supplemented with B-

27, penicillin, and streptomycin at 24 h after plating (1 day in

vitro, DIV). After an additional 24 h, cytosine arabinoside (Ara-C,

5 mM) was added to these cultures for 3 days after which the Ara-

C containing media was changed to fresh NB media. Experiments

were done using cells at 7–10 DIV.

Unless indicated otherwise, the condition for heat shock was at

42uC for a specified time period beginning at 12–18 hr after the

addition of riluzole. Cells were either harvested immediately for

analysis of HSF1 or allowed to recover at 37u for 4 hr for analysis

of Hsp70-firefly luciferase reporter gene expression and induction

of the 72 kDa HSP 70 protein.

Assay of Hsp70 promoter driven firefly luciferase reporter
We have constructed both the human and the mouse hsp 70

promoter driven-firefly luciferase reporter genes [23,24,55]. For

construction of the human hsp 70-luciferase reporter (human hsp

70-luc), a 2.8 kb BamH1 restriction enzyme fragment of the human

hsp 70 promoter from the pHBCAT construct [56] was ligated to

the BglII linearized pGL3E vector (5064 bp) from Promega Inc.

Proper orientation of the promoter was confirmed by restriction

enzyme digestion and DNA sequencing. For construction of the

mouse hsp 70 promoter-luciferase reporter (mouse hsp 70-

luciferase), a 1,036 bp KpnI and NcoI restriction enzyme fragment

from the construct pLHSEU4 [57] was ligated to the KpnI/NcoI

digested pGL3E (5,006 bp). All constructs were confirmed by

DNA sequencing. Quanlitatively similar results were obtained

using the two reporter gene constructs in various human and

rodent cell lines. For experiments described in this study, the

mouse hsp 70 promoter-firefly luciferase reporter gene was used.

Cells were transfected with the Hsp70-firefly luciferase reporter

DNA along with the internal control of phRLSV40 (synthetic

humanized Renilla luciferase DNA) [23,24]. Unless indicated

otherwise, the amount of each DNA used was 0.5 mg/35 mm

plate or 1.5 mg/60 mm plate, and the amount of Lipofectamine

2000 used (in ml) was 36 that of the total amount of DNA (in mg).

6 hr after DNA transfection, cells were trypsinized and plated into

individual wells of a 96 StripwellTM plate (Corning/Costar 9102);

these identically transfected cells allowed for testing of the effects of

riluzole and heat shock on reporter gene expression. To evaluate

heat shock induction of the Hsp70-luciferase reporter gene, strips

of 8 wells or designated wells of cells were placed in a 42uC
incubator for 2 hr followed by recovery at 37uC for 4 hr prior to

harvesting. The assay is robust and allowed for semi-high-

throughput screening of the effects of drugs and treatment

conditions on hsp70-reporter gene expression.

The Dual-Glo luciferase assay reagent system from Promega Inc.

(E2920) was used to assay for first the firefly then the Renilla luciferase

activity according to manufacturer’s instructions. Luciferase activity

was measured using the Perkin Elmer Victor 2 multiplate reader

equipped with dual injectors. Result of the Hsp70-firefly luciferase

activity was normalized against that of the Renilla luciferase, and to

facilitate comparison across experiments for statistical analysis this

ratio was set at 1 for the control. By normalizing the Hsp70-firefly

luciferase activity against that of the Renilla luciferase internal

control, we effectively negated experimental variables such as

differences in transfection efficiency, cell number, as well as non-

selective and toxic effects of the treatment conditions/reagents on

gene expression. Statistical analysis was done by one-way ANOVA

test using the GraphPad InStat program.

Analysis of HSF1 and HSP70 by Western blotting
Whole cell and cytosol and nuclear extracts were prepared as

previously described [22]. In some experiments (Fig. 5 and 6), cells

were lysed using RIPA buffer in the presence of protease and

phosphatase inhibitors. For Western blotting, aliquots of the cell

extract containing the same amount protein (,10 mg/lane) were

loaded onto an 8% SDS-polyacrylamide gel, and proteins on the

gel were transferred to a PVDF membrane. The membrane was

probed with a 1:10,000 dilution (overnight at 4uC) of a rabbit

polyclonal antibody, RTG88, that we produced against a

recombinant histidine-tagged human HSF1 protein. The antibody

was diluted in Tris-buffered saline with 0.1% Tween 20 and 3%

non-fat dry milk. This was followed by a 2 hr incubation at room

temperature with a 1:20,000 dilution of an affinity purified HRP-

conjugated goat anti-rabbit IgG (Chemicon Int.), and detection by

the Immobilon Western detection reagent (Millipore WBKLS05).

To assess the stoichiometry of HSF1, aliquots of cytosol and

nuclear extracts containing 10 mg protein were incubated with

2 mM glutaraldehyde at room temperature for 10 min followed

by quenching of the protein crosslinking reaction with the addition

of 100 mM lysine [22]. Samples were subjected to SDS-PAGE (4–

12% acrylamide gel) followed by immuno-Western blot probing

for HSF1 as described above.

For immuno-Western blot detection of the HSP70 protein,

membrane was incubated with a rabbit polyclonal antibody from

Stressgen (SPA812, 1:10,000 dilution) protein at 4uC overnight

followed by horseradish peroxidase (HRP) conjugated secondary

antibody for 2 hr at room temperature. The antibody was diluted

in Tris-buffered saline with 0.1% Tween 20 and 3% non-fat dry

milk, and the immunoblot was probed using the Millipore

Immobilon Western blot reagent.

Immunochemical staining for HSF1
Cells in 60 mm plates were fixed with 4% paraformaldehyde for

30 min at 4uC, permeabilized with 0.1% Triton6100 in
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phosphate-buffered saline (PBS) for 30 min at 4uC, and washed

36with cold PBS. Wax pen encircled areas (,1cm in diameter) of

the fixed and permeabilized cells were overlaid with a 1:1,000

dilution of the RTG88 anti-HSF1 antibody and incubated at 4uC
for 1 hr. After washing off the primary antibody, cells were

overlaid with a 1:200 dilution of FITC-conjugated goat anti-rabbit

IgG and incubated at 4uC for 1 hr. When indicated, nuclei were

counter stained with 8 mM of Hoechst 33342. Cells were mounted

in an anti-fade/glycerol solution and viewed using a Nikon

Diaphot 300 microscope. Phase and fluorescent images were

captured with a SPOT camera system (Diagnostic Instruments,

Inc., Sterling Heights, MI).

Cell viability assay of the cytoprotective activity of
riluzole treatment and conditioning heat shock

Riluzole was added to individual wells to final concentrations as

indicated and incubated at 37uC for 16 hr. For conditioning heat

shock, designated strips of cells were heat shocked at 42uC for 2 hrs

followed by recovery at 37uC. To test for cell survival under

conditions of oxidative stress, 20 mM sodium arsenite was added to

designated wells of cells at 24 hr after conditioning heat shock and

incubated at 37uC for 24 hr. Viability of the cells were determined

using the CellTiter-Glo (G7571) luminescent reagent from Promega

Inc. Cell viability, relative to that of the untreated control, is plotted

as a function of the concentration of riluzole added.

Assessment of the turnover of HSF1 by [35S]methionine
labeling and chase

Confluent cultures in 35 mm plates were refurbished with

serum-free medium. Cells were pulse labeled with 300 mCi/ml of

[35S]methionine/cysteine (Amersham Pro-Mix, a 70:30% mixture

of [35S]methionine and [35S]cysteine) for 2 hr at 37uC. At the end

of this labeling periods, cells were rinsed extensively and

refurbished with DMEM containing 2 mM each of cysteine and

methionine to initiate the chase. To test for the effects of riluzole

on the turnover of [35S]HSF1, it was added to designated plates to

a final concentration of 2 mM at the beginning of the chase. Cells

were harvested at 0, 4, 8, 12 and 24 hr after initiation of the chase

in the absence versus in the presence of 2 mM riluzole. The cell

pellets were lysed in 200 ml of RIPA buffer, and an aliquot

(,50 ml) of the RIPA extract was used for the immunoprecipita-

tion of HSF1. For this, 2 ml of the RTG88 anti-HSF1 antibody

was added to each sample and incubated at 4uC overnight. The

antigen-antibody complex was immunoprecipitated by the addi-

tion of insoluble protein A and incubation at room temperature for

2 hr. The immunoprecipitate was collected by centrifugation and

washed 36 each with 200 ml of RIPA buffer, and the amount of

radioactivity determined by liquid scintillation counting.

RT-PCR quantitation of mRNAhsf1
RNA was isolated from cells grown in 60 mm plates using the

TRIzol reagent from Invitrogen Inc. RT-PCR was done using the

2-step procedure (cDNA synthesis with M-MLV reverse tran-

scriptase, followed by PCR amplification with HSF1-specific

primers). The forward and reverse primers of HSF1 were:

CATGAGAATGAGGCTCTGTG and CTACGCTGAGG-

CACTTTTCA. The PCR reaction was for 30 cycles using

Platinum PCR SuperMix from Invitrogen Inc. The amplied HSF1

product is 642bp.
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