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Abstract

Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little
understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be
controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were
raised with +/210D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of
the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium
channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were
made, targeting fluid control mechanisms. Comparison of refractive compensation to 5mM Ba2+ and 1025 M bumetanide
compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba2+

but significant change only for negative lens defocus with bumetanide (Rx{10D
SAL ~{8:6+:9D; Rx{10D

Ba2z ~{2:9+:9D;
Rx{10D

Bum ~{2:9+:9D; Rxz10D
SAL ~z8:2+:9D; Rxz10D

Ba2z ~z2:8+1:3D; Rxz10D
Bum ~z8:0+:7D). Vitreous chamber depths

showed a main effect for drug conditions with less depth change in response to defocus shown for Ba2+ relative to Saline,
while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus.
The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC
blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant
to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse.
The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON
response, suggest a possible common mechanism. The selective inhibition of refractive compensation to negative lens in
chick by loop diuretics such as bumetanide suggests that these drugs may be effective in the therapeutic management of
human myopia.
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Introduction

Myopic eyes in humans and animals are larger in axial

dimensions and hence in volume than emmetropic eyes, while

refractively hyperopic eyes are smaller overall than emmetropic

eyes of the same age. The changes in axial dimensions and

refraction are directly related to changes in vitreous chamber

depth [1]. Refractive changes, approximately equal to the strength

of blur experienced, can be induced in hatchling chicks with a few

days of negative or positive optical defocus (reviewed [2]). Vitreal

depth changes are also accompanied by inverse changes in the

thickness of the choroidal vasculature such that optical defocus

with negative lenses or form deprivation leads to increased vitreal

depth and dramatic thinning of the choroid, while optical defocus

with positive lenses is associated with shorter vitreous chamber

dimensions and thickening of the choroid. How this balance

between growth and refractive demand is achieved is not well

understood. ‘‘Stop’’ and ‘‘Go’’ growth factors [3], choroidal

control of the refractive plane [4] and scleral sculpting [5] have all

been proposed as potential mechanisms of ocular growth.

However, the problem of how the fluid necessary for ocular

dimensional changes is accumulated or dispersed is only addressed

by our theory of RPE/Müller cell controlled ionically driven trans-

retinal fluid flow between vitreous chamber and the choroidal

lymphatics [6].

Crewther [6] hypothesized that the increase in vitreous volume

associated with form deprivation myopia was due to a reduction in

the rate of the normal fluid outflow across the retinal pigment

epithelium (RPE) from the retina to the choroid, with retention in

the vitreous chamber. This model is based on four principles. The

first, that the vitreous chamber and choroid act as fluid reservoirs

in the eye, is supported by much previous ultrastructural research

[7,8]. The second, that the RPE controls movement of fluid

between these reservoirs is also well supported by in vitro and in vivo

physiological research (reviewed [9,10]). The model further poses

that reduction of temporal modulation of light under an occluder

(a condition associated with myopia and abnormal ocular

elongation) leads to reaccumulation of potassium (K) ions in the
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subretinal space (SRS) [11–14]. This predicted increase has since

been reported [15]. The last principle–that fluid exchange across

the RPE is causally driven by the refractive error signal, is yet to be

proven. The proposed outer retinal/RPE site of determination of

defocus and deprivation sensing is supported by various experi-

ments that have interfered with inner retinal function without

preventing refractive/growth compensation. These include optic

nerve section [16], tetrodotoxin (TTX) elimination of spiking

sodium channels (ganglion cells and some amacrines) [16] and

NMDA inhibition of third order retinal neurons [17].

Elemental X-ray microanalysis of myopic form deprived (FD)

chick retinas has shown an increase in atomic abundance of K,

localized to the vicinity of the sub-retinal space (SRS), RPE and

photoreceptor outer segments, and a generalized increase in the

abundance of Na and Cl across the retina, RPE and choroid.

Following the termination of FD, the high subretinal K abundance

rapidly reduced to levels below normal until refractive recovery 5

days later [15], while Na and Cl abundances took several days to

return to normal levels. Such increased abundance of potassium in

the SRS leads to reduced SRS volume and reduces the movement of

fluid across the RPE in in vitro preparations [18]. This implies that

more of the fluid being synthesized in the retina as a result of

glycolysis [19,20] must remain in the extracellular space of inner

retina or be transferred into the vitreous via the Müller cells. As the

ultrastructural appearance of the FD retina is one of hyperosmo-

larity rather than edema, the latter alternative, of fluid movement

into the vitreous, is the likely outcome. This conclusion is supported

by the fact that less than 30min of normal visual experience

following occluder removal leads to a substantial increase in

choroidal thickness and the appearance of edema beginning to

move across the retina from the vitreous towards the choroid [21].

Fluid movements across the RPE to the choroidal blood supply

are controlled by the ionic channels, cotransporters and symporters

of the apical and basal membranes of the RPE. In vitro eye cup

studies demonstrate that numerous ionic species (K+, Na+, Ca2+,

H+, Cl2, HCO3
2, as well as lactate) affect subretinal space fluid

dynamics (reviewed [22]). However, due to the fact that to date,

only K, Na and Cl abundance have been experimentally associated

with myopia [15,21], and given that Crewther’s [6] hypothesis

related myopia to the activity of the inwardly rectifying K channels

and the sodium potassium 2-chloride symporter (NKCC1) on the

apical membrane of the RPE, we have chose to focus this study on

potassium and the way in which potassium channels and cation-

chloride transporters, particularly the sodium potassium 2-chloride

symporter (NKCC1) on the apical membrane of the RPE, are

intimately involved in the growth response to defocus.

NKCC1 belongs to the cation-chloride cotransporter family,

which mediates the coupled movement of Na, K and two Cl ions

in strict ratio across the plasma membrane of cells. NKCC1

transport is electroneutral, with the driving force for ion influx

being in part supplied by the inward Na+ gradient and maintained

by Na/K-ATPase [23]. These channels, symporters and exchang-

ers, driven by alterations in K concentration, modulate fluid

transfer by controlling the absorption and secretion of chloride

[22], and hence water transport, via the cotransporters themselves

[24] and in concert with aquaporin channels [19]. Sulfamoyben-

zoic acid loop diuretics such as bumetanide can compete with Cl2

for the second chloride binding site and thus inhibit NKCC1

function [23]. In fact when the kidney isoform of the NKCC

cotransporter (NKCC2) is inhibited by bumetanide, a large

increase in urine flow, nearly isosmotic with plasma, is observed,

regardless of the hydration state of the individual. Thus, under

diuretic treatment, an individual loses the ability to excrete either a

concentrated or a dilute urine. The NKCC2 isoform, found in the

thick ascending loop of Henle of the kidney, appears to rely on the

recycling of K ions through luminal K channels for its normal

operation, as barium blockade of the potassium channels

significantly reduces Na reabsorption [25].

Cation-chloride transporters are found not only on epithelial

cells, but also across the retina. Vardi et al [26] used antibodies to

mGluR6 to label the metabotropic glutamate receptor at the

photoreceptor ON-bipolar synapse, and showed that antibodies to

NKCC1 but not KCC2 (potassium chloride symporter receptor

protein) co-localize with the glutamate receptor. Similarly, anti-

calbindin, that selectively labels an OFF-bipolar subclass, co-

localizes with KCC2 but not NKCC1 immunoreactivity at the flat

synapses of the photoreceptor OFF-bipolar interface. Thus KCC2

is expressed wherever the chloride equilibrium potential ECl,Erest

(resting potential), whereas NKCC1 is expressed wherever

ECl.Erest (ON bipolar dendrites). KCC2 was also found to be

expressed on the OFF bipolar dendrites, ganglion cell and bipolar

axons whereas NKCC1 antibodies typically labelled horizontal

cells as well as the ON bipolar dendrites [26]. Thus, bumetanide,

which is a selective blocker of NKCC1 may also alter retinal

function by blocking the cation-chloride uptake at the ON-bipolar

dendrites (and horizontal cells). Bumetanide also eliminates the

directional responses of directionally selective ganglion cells and

starburst amacrine cells [27,28].

Given the likelihood that myopia induced by lens defocus shares

many of the same mechanisms and ultrastructural changes as form

deprivation [21,29], it is probable that inhibiting potassium

movements in such retinae would interfere with defocus induced

refractive and growth changes, especially as apical potassium and

basal chloride appear to be strongly linked in the RPE [30]. The

RPE contains many different potassium channels. Early Ussing

chamber experiments demonstrated the presence of weak inwardly

rectifying potassium channels (Kir), with more recent research

delineating the likely presence of Kir7.1 and Kir4.1 subfamilies

(reviewed [22]). Despite their inwardly rectifying nature, the apical

channels are largely involved in recycling K+ ions back to the SRS,

a process that occurs because in RPE cells the resting membrane

potential is more positive than the K equilibrium potential (EKeq),

resulting in outward K+ currents. While Ba2+ blocks these Kir

channels with different sensitivities, it is also a non-specific blocker

of voltage-gated and Ca2+-activated K+ channels [31–33]. Thus,

in the first experiment we tested this idea by investigating the

interaction of the non-selective potassium channel blocker Ba2+

with the induction of refractive error by lens defocus.

Loop diuretics, by comparison, act to inhibit the cation-chloride

NKCC cotransporter, thus inhibiting the coordinated trans-

membrane movement of Na, K and Cl ions [23]. Thus, in a

second experiment, we tested the idea that if negative lens defocus

results in myopia and ocular elongation through a reduction in the

outflow of fluid across the RPE, then intravitreal injection of the

diuretic bumetanide would restore RPE fluid flow as evidenced by

relative suppression of abnormal vitreal chamber growth and

inhibition of myopia.

Results

Experiment 1: Potassium channels and refractive
compensation

Potassium channels were blocked via intravitreal injection of

barium chloride to a vitreal concentration of approximately 5mM.

Retinoscopy and ultrasonography demonstrated that while saline

injected eyes showed about 85% refractive compensation to the

applied defocus over the four days of rearing, barium suppressed

refractive compensation to both positive and negative lenses, but
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did not significantly affect refractive state for the chicks reared with

focused vision (0D group). A generally negative linear relationship

between refraction and vitreous chamber depth is clearly evident

in the data - across all lens groups and the two drug groups (Ba2+,

SAL), the data fall along a main trend line (see Figure 1A). A

between group Analysis of Variance (ANOVA) (for Lens Defocus

(+10D, 0D, 210D) and Treatment (Ba2+, Saline)) demonstrated a

significant main effect of Lens Defocus (F(2,59) = 61.1, p,.0001)

but not of Treatment on ocular refraction (F(1,59) = 0.98, p = .32).

A significant interaction between Lens Defocus and Treatment

was also observed (F2,59 = 16.2, p,.0001), - see Fig 1B. Post-hoc

tests showed the suppression of compensation to defocus by Ba2+,

with significant refractive difference for both positive and negative

lenses compared with saline injected eyes (Fisher’s PLSD, p,.005)

(see Table 1).

Similarly, ANOVA on vitreous chamber length showed the

same pattern with significant main effect for Lens (F(2,58) = 20.8,

p,.0001) but not for Treatment (F(2,58) = 1.94, p = .17), with a

significant interaction between Lens Defocus and Treatment

(F(2,58) = 5.5, p = .007) (see Fig 1C). Further, barium did not show

a lens-dependant effect on anterior chamber depth (correlation

r^2 = .048). Figure 1B indicates that an effective intravitreal

concentration of 5mM barium chloride, which would be expected

to non-selectively block potassium channels, inhibited refractive

compensation for both positive and negative lens defocus but did

not generally inhibit vitreal growth. A comparison of vitreal

chamber lengths between Ba2+ and SAL eyes, taken across all lens

groups, showed no significant difference (difference of

means = 0.098 mm, Fisher’s PLSD, p = .26) - see Table 1.

Experiment 2: Effect of the loop diuretic bumetanide
In hatchling chicks, bumetanide suppressed refractive compen-

sation to negative lenses in a dose specific fashion (here the two

effective vitreal concentrations are referred to as Bum1 = 1025M,

Bum2 = 561026M), but did not significantly affect refractive

compensation to optical defocus of +10D or to zero power lenses

(see Table 2). A scatter plot (Fig 2A) demonstrates the general

negative linear relationship between refraction and vitreous

Figure 1. The effect on refractive and growth compensation of blocking retinal and RPE potassium channels with intravitreal Ba2+

ion at an effective concentration of 5mM. A. Scatter plot of Refraction in dioptres versus Vitreous Chamber depth (mm). across all eyes
measured. The applied defocus is indicated by the triangles or circle symbols, with green symbols indicating Ba2+ and blue symbols indicating saline
injected eyes. B. Refractions of eyes injected with Ba2+ compared with those injected with similar volume of Saline. Compensation in Ba2+ eyes is
suppressed for both positive and negative lens defocus. The same colour code applies as for A. C. Vitreous chamber depths of Ba2+ and SAL eyes. An
inverse relationship between vitreous chamber depth and refraction is evident. The same colour code applies as for A. The effect of defocus on VC
depth is much less for Ba2+ than for SAL eyes, however the mean VC depth for Ba2+ eyes averaged over all lens groups is very similar to that for SAL
eyes. This indicates that Ba2+ does not inhibit eye growth per se, but suppresses compensation to defocus-related eye growth. Data presented as
means6SE.
doi:10.1371/journal.pone.0002839.g001

Table 1. Means Tables and Post-hoc comparisons Ba2+ vs SAL for Ocular Refraction and Vitreous Chamber Depth

Rx Ba2+ (D) Rx SAL (D) Fisher’s PLSD

Lens Mean SE Mean SE p

210D 22.88 0.86 28.59 0.93 0.0002

0D 22.33 1.18 0.49 1.08 0.09 ns

+10D 2.77 1.28 8.23 0.91 ,.0001

Lens VC Ba2+ (mm) VC SAL (mm) Fisher’s PLSD

Mean SE Mean SE p

210D 5.39 0.07 5.61 0.09 0.024

0D 5.31 0.08 5.08 0.11 0.11 ns

+10D 5.10 0.08 4.82 0.09 0.04

doi:10.1371/journal.pone.0002839.t001
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chamber length. Closer inspection indicates that there may be

small differences in this relation between drug groups. This is most

easily observed for the Bum2 (open red symbols) compared with

SAL (filled blue symbols), where linear regression shows parallel

slopes of approximately 214D/mm, but with the Bum2 data offset

by 0.18mm, i.e. with greater VC depth for the same refraction.

A between groups ANOVA (for Lens Defocus (+10D, 0D,

210D) and Treatment (Bum1, Bum2, Saline)) indicated significant

main effects for Ocular Refraction of Treatment (F(2, 98) = 4.5,

p = .0135), Lens Defocus (F(2, 98) = 177, p,.0001) and a

significant Treatment*Lens Defocus interaction (F(4, 98) = 3.6, p

,.01). At the higher concentration of bumetanide (Bum1:

1025M), there was a significant difference in refractive compen-

sation to negative lens defocus between the bumetanide and

control Saline injected eyes (Bum1: 22.4261.17 D, SAL:

28.5960.93 D; Fisher’s PLSD:, p = .0002–see Fig 2B). Rearing

with 210D lenses, the higher dose of bumetanide resulted in a

sparing of over 6 D of refractive compensation compared with the

Saline group, while the lower dose was markedly less effective

(25.360.74 D). Post-hoc tests also indicate that the higher dose is

significantly more effective than the lower dose (Fisher’s PLSD:

mean difference = 2.9 D, p = .0033). Indeed, further post-hoc

testing within the separate lens rearing groups (see Table 2)

indicates that bumetanide only significantly affects refractive state

in the negative lens reared chickens.

Axial dimension of the vitreous chamber of the three negative

lens wearing groups also show significant differences (see Fig 2C).

ANOVA indicates a main effect of Treatment (2 doses of

bumetanide, saline) (F(2,96) = 3.64, p = .03) and lens

(F(2,96) = 30.1, p,.0001), while the Treatment*Lens Defocus

interaction was not significant. Thus, eyes injected intravitreally

with bumetanide, showed a slightly greater vitreal chamber depth

Figure 2. The effect on refractive compensation of the loop diuretic bumetanide at two concentrations in the vitreous chamber
compared with control saline injections. Bum1 refers to an effective vitreal concentration of 1025 M, Bum2 refers to an effective concentration
of 561026 M. A. Scatter plot of Refraction in dioptres versus Vitreous Chamber depth (mm) across all eyes measured. The applied defocus is
indicated by the triangles or circle symbols, with red filled symbols indicating Bum1, red open symbols indicating Bum2 and blue symbols indicating
saline injected eyes. B. Compensation to negative lens rearing markedly diminished for both bumetanide doses with the higher dose (Bum1)
resulting in approximately 6D less refractive compensation than for SAL. The same colour code applies as for A. The refractive effect is specific to the
induction of myopia, with 0D and +10D groups showing no significant effect of the intravitreal diuretic. C. Vitreous chamber depths of bumetanide
and saline injected eyes. The same colour code applies as for A. While the same trend as in A is evident with a dose dependency with negative lens
defocus, it can also be seen that mean VC depth is slightly larger for Bumetanide cf SAL eyes, especially for 0D and +10D groups. Data presented as
means6SE.
doi:10.1371/journal.pone.0002839.g002

Table 2. Means Tables and Post-hoc comparisons Bum1, Bum2 vs SAL for Ocular Refraction and Vitreous Chamber Depth

Rx Bum1 (D) Rx Bum2 (D) Rx SAL (D) Bum1 v SAL Bum2 v SAL

Lens Mean SE Mean SE Mean SE PLSD p PLSD p

210D 22.42 1.17 25.27 0.74 28.59 0.93 0.0001 0.01

0D 1.33 0.99 1.12 1.10 0.49 1.08 0.61 ns 0.68 ns

+10D 8.02 0.70 7.75 0.46 8.23 0.91 0.87 ns 0.69 ns

VC Bum1 (mm) VC Bum2 (mm) VC SAL (mm) Bum1 v SAL Bum2 v SAL

Lens Mean SE Mean SE Mean SE PLSD p PLSD p

210D 5.45 0.06 5.66 0.04 5.61 0.09 0.12 ns 0.53 ns

0D 5.27 0.12 5.37 0.08 5.08 0.11 0.17 ns 0.03

+10D 5.08 0.11 5.05 0.08 4.82 0.09 0.06 ns 0.08 ns

doi:10.1371/journal.pone.0002839.t002
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after 4 days rearing than did eyes injected with the same volume of

saline, measured over all Lens groups (see Table 2). Post-hoc

comparisons within Lens defocus groups were not significant,

except for 0D defocus with the lower dose of bumetanide. Anterior

chamber depths were not affected in a sign-dependant fashion,

with a low correlation found between AC depth and applied

defocus (r^2 = .01).

The fellow eyes demonstrated similar refractive states across all

drug and lens groupings of the experimental eyes. Anterior

chamber depths of fellow eyes also did not show systematic

differences with respect to the various experimental eye groups.

Discussion

The experiments reported here demonstrate that both unselec-

tive blocking of potassium channels and selective inhibition of the

sodium-potassium-chloride symporter can produce dramatic

interference with refractive compensation to optically induced

blur. As both subretinal [K] and the activity of the NKCC1

symporter of the apical membrane of the RPE (and the

photoreceptor/ON bipolar synapse) are known to affect the

shunting of fluid between the retina and the choroid [9,11] these

results are consistent with a mechanism of ocular growth and

refractive error based on alteration in the rates of ionically

controlled transretinal fluid flow, (particularly by Na, K and Cl, -

the major ions of phototransduction and cell volume regulation),

as originally hypothesized by Crewther [6]. A chief tenet of this

theory of refractive and growth control is that alteration in outer

retinal visual activity under conditions of defocus leads to changes

in the ionic contents of the subretinal space (depending on the sign

and degree of defocus). To date, the only published data relating

myopia to ionic changes are restricted to K, Na and Cl

abundances [15] . If, as postulated, [K+]SRS is central to refractive

control [6,15], the effects of potassium on the RPE apical NKCC

cotransporter and inward rectifying K channels [24,30] in

modulating chloride (and water) transfer across the RPE need to

be better understood before pharmaceutical management of

myopia can be achieved.

As expected, intravitreal injection of barium severely inhibited

refractive compensation to both plus and minus lenses. This could

be interpreted as a Ba2+ induced suppression of visual function,

although electrophysiological evidence suggests otherwise, at least

in terms of outer retinal function. In rabbit, acute injection of Ba2+

induced an augmentation of the b-wave of the electroretinogram,

at least in the short term, while over longer post injection periods

the amplitude diminishes [34]. Barium would also be expected to

affect aqueous humor secretion and intraocular pressure [35],

though our results show no systematic change in anterior chamber

depth between the experimental and fellow eyes of the various lens

groups. Vitreous chamber depth in all three lens groups was also

similar after barium injections, suggesting that nonspecific

blockade of potassium channels in the eye inhibits differential

ocular growth and refractive compensation to applied defocus. On

the other hand our biometric measurements also indicate that

barium does not actually stop the eyeball growing.

By comparison the results following raising in the presence of

bumetanide are more interesting and less simple to interpret. As

expected, we found main effects of lens defocus and drug

treatment on refraction and vitreous chamber with a significant

defocus/treatment interaction for ocular refraction. However, the

general VC elongation seen with bumetanide (except for the

higher dose with 210D lens rearing) was slightly unexpected. It

appears that a model to explain the data should include a defocus

independent elongation effect as well as a defocus dependent effect

on refractive compensation and vitreous chamber depth that

applies under conditions of negative lens defocus.

We suggest that the most parsimonious interpretation of the

success of bumetanide in inhibiting the degree of induced myopia

under –ve lens defocus conditions is that the apical RPE and ON-

bipolar NKCC1 cotransporters have changed their mean

operating conditions, and hence net fluid transport. Currently, it

is accepted that when [K+]SRS is raised from 2mM to 5mM, RPE

basal to apical 36Cl2 flux increases dramatically, while the apical

to basal 36Cl2 flow is relatively unchanged, leading to a net

secretion rather than absorption of chloride and the slowing of

outflow, attributed to the NKCC1 cotransporter and basal

NaHCO3 [30]. Fluid transport is reduced by 25% under these

conditions. The reverse chloride movement was hypothesized to

involve a compensatory bicarbonate transport. Fluid flow in the

dark [22] and under FD conditions [6] has also been hypothesized

to decrease due to the reaccumulation of subretinal potassium.

The NaK-ATPase which maintains the potential difference across

the RPE must also maintain its activity to maintain the outflow

[9]. This activity is dependent on [K]SRS, but so also is the

cotransport of Na-K-Cl [18]. A bumetanide induced reduction in

RPE outflow is also a likely cause of the increase in VC depth

observed in the bumetanide injected eyes reared with 0D

and+10D lenses, given that aqueous humour production and

intraocular pressure changes under bumetanide are minimal (at

least in mouse and monkey [36,37]).

The situation with –ve lens rearing is somewhat different.

Defocus together with patterned stimulation results in lowered

amplitude of temporal modulation, particularly at high spatial

frequencies. Thus, with patterned stimulation, an apical NKCC1

symporter should shunt ions and fluid back and forth between the

SRS and the interior of the RPE cell under a sequence of light/

dark transitions. The net fluid flow actually generated across the

apical membrane of the RPE would be dependant on the

modulation of [K] in the SRS and on the time constant for water

transport of the receptor mechanism and the relation between

water and ion transfer [24]. It has been suggested [6] that

defocused pattern stimulation results in a sign-dependant asym-

metry in the profile of temporal modulation of the photoreceptors.

Hence, as the SRS volume changes are relatively slower than the

ionic changes [38], the slower phase of the asymmetric temporal

profile of onset or offset will likely drive more fluid than the faster

phase. Averaged across the RPE under patterned defocused

stimulation, a net reduction in outflow could result if the reverse

flow probability was thus biased. The net flow reduction would

explain the abnormal axial elongation and myopia. The effect of

bumetanide block of the NKCC1 is to prevent this reversal

occurring and hence inhibiting the myopic response to –ve lens

defocus and also increasing the rate of flow across the RPE to the

choroid. In support of involvement of the NKCC1 transporter in

these fluid flow changes, it has been reported [38] that bumetanide

inhibits the light evoked volume increase in the subretinal space.

Bumetanide, as a selective NKCC1 inhibitor, would be

expected to affect the ciliary secretion of Na, K, and Cl ions

[36], as well as the targeted apical membrane of the RPE and ON

bipolar dendrites. However, as we saw insignificant effects of

bumetanide on anterior eye parameters, such effects on the ciliary

body can be considered independent of the applied lens defocus.

Certainly, light-induced changes in potassium concentration in the

subretinal space are enhanced by the application of bumetanide

[38], although this may be due in part to the concomitant

inhibition of the light-induced SRS volume increase [11]. At high

concentrations (0.5mM), bumetanide is reported to inhibit the b-

wave of the electroretinogram (ERG) in fish eye cup [39], but the
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ERG appears little affected at concentrations of bumetanide as

used here. Thus, it is unlikely that the effects of blocking the

NKCC1 on negative lens defocus, i.e. of inhibiting the

development of myopia, are due to any major compromise of

outer retinal function. The strong similarity in refractive

compensation under +ve lens defocus conditions between

bumetanide and saline injected eyes suggests that the bumetanide

treated retina is functioning relatively normally under those

defocus conditions. As referenced in the introduction, other studies

(TTX elimination of spiking neuronal responses, optic nerve

section, etc) suggest that considerable damage to inner retinal

function can be sustained without compromising refractive

compensation ability.

To date there is very little consideration in the literature of the

action of bumetanide on the NKCC1 cotransporters on the ON-

bipolar dendrites. It would be expected that with bumetanide

block, any response to the onset of light, whether in the presence of

optical blur or not, would result in a lesser influx of K, Na and Cl

ions into the ON bipolars and hence a greater abundance of ions

in the extracellular space, increased osmotic gradients and so draw

further water out of the cells and increase the need for greater

transport of fluid out of the inner retina and across the RPE to the

choroid.

Furthermore, it is curious that the effects of bumetanide in

primarily inhibiting compensation to –ve lens defocus is

reminiscent of similar findings relating alteration of the ON and

OFF response and sign-dependant interference with compensa-

tion. This interference occurs if the retinal response is environ-

mentally altered through sawtooth illumination [40] or altered

through pharmacological blockade of the retinal ON and OFF

responses via the use of L- or D-a-aminoadipic acid (LAA and

DAA) [41]. Similarly, mouse mutants with an ON pathway defect

[42] show increased susceptibility to FDM. The coincidence of

findings is more salient because it is the blockade of the ON-

response (with LAA) that interferes selectively with ocular growth

and refractive compensation to –ve lens defocus.

Thus barium, a potassium channel blocker inhibits compensa-

tion to defocus of both signs, while bumetanide, a common loop

diuretic approved for human use, demonstrates a selective

inhibition on negative lens defocus induced refractive change in

the chick. The action of bumetanide appears to combine a

defocus-sensitve inhibition of refractive compensation under

conditions that would normally lead to myopia, plus a small

defocus-insensitive effect on vitreous chamber depth. Given the

common channels and symporters on the RPE demonstrated by

many animals, including human, there is hope that a rapid

development path to a pharmaceutical control of myopia can be

established, especially important for the increased incidence

observed recently in Asia [43].

Materials and Methods

Animals
A total of 139 male hatchling chicks of the Leghorn/Australorp

strain were raised in a light and temperature controlled box with

ad libitum food and water and illumination provided by a static

40W pearl incandescent light bulb on a 12 hour day/night cycle.

On day 6, all chicks were anaesthetized with an intramuscular

injection of a mixture of ketamine/xylazine (45 mg.kg21/

4.5 mg.kg21 i.m.) prior to monocular intravitreal (5 ml) injections

of either saline (n = 32), barium chloride (vitreal concentration

5mM in saline, n = 33) or bumetanide (vitreal concentration

1025M (Bum1), n = 31, or 261026M (Bum2), n = 43, dissolved in

saline and monocular attachment of lenses. All fellow eyes were

injected with 5 ml of saline. The initial concentrations of barium

and bumetanide used were determined on the basis of previous

work [38] and electroretinographic recordings. Doses of drugs are

presented as estimated vitreal concentrations. These estimates

were calculated using a vitreous volume of 0.5 ml and assuming

complete mixing. However, it is acknowledged that mixing will not

be rapid, as the diffusion coefficient through the gel vitreous will be

considerably less than that through the sol vitreous. Hence the

actual release of drug is likely to be more gradual. While the

concentration half-life of the two drugs used here has not been

quoted, various therapeutic agents demonstrate vitreous half-lives

of 2.5–5 day (e.g. [44]).

Chicks were randomly assigned to one of the goggle wearing

groups (+/210D or 0D PMMA human contact lenses). Lenses

were attached to a ring of Velcro glued to the periocular feathers.

The field of view through the goggle was ,900. Animals and lenses

were checked and cleaned twice daily. To control for batch

variation, each batch included chicks from each of the three lens

groups to allow more valid comparison.

Biometry
On Day 10, biometric measurements including retinoscopy and

ultrasonography were made on all animals under general

anaesthesia (which induces adequate pupillary dilation and negates

the need for topical mydriasis). Refractions were recorded as

equivalent spherical power. A-scan ultrasonography (Ophthascan:

7MHz) was performed and axial length and vitreous chamber

depths were determined. Animals were killed by anaesthetic

overdose after biometric measurements were completed.

All animals were raised in accordance with the ARVO

Convention and the Australian NHMRC guidelines on Animal

Use in Research. Institutional Ethics approval for the experimen-

tation was obtained from the Animal Ethics Committee at La

Trobe University, Melbourne, Victoria Australia.

Data Analysis
Between group statistical comparisons of refractions and axial

dimensions were made using Analyses of Variance (ANOVA) and

relevant post hoc tests as required. The effects of drugs on the non-

lensed fellow eyes were also assessed
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