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Abstract

MALDI profiling and imaging mass spectrometry (IMS) are novel techniques for direct analysis of peptides and small
proteins in biological tissues. In this work we applied them to the study of Anopheles gambiae antennae, with the aim of
analysing expression of soluble proteins involved in olfaction perireceptor events. MALDI spectra obtained by direct
profiling on single antennae and by the analysis of extracts, showed similar profiles, although spectra obtained through
profiling had a richer ion population and higher signal to noise ratio. Male and female antennae showed distinct protein
profiles. MALDI imaging experiments were also performed and differences were observed in the localization of some
proteins. Two proteins were identified through high resolution measurement and top-down MS/MS experiments. A 8 kDa
protein only present in the male antennae matched with an unannotated sequence of the An. gambiae genome, while the
presence of odorant binding protein 9 (OBP-9) was confirmed through experiments of 2-DE, followed by MS and MS/MS
analysis of digested spots. This work shows that MALDI MS profiling is a technique suitable for the analysis of proteins of
small and medium MW in insect appendices, and allows obtaining data for several specimens which can be investigated for
differences between groups. Proteins of interest can be identified through other complementary MS approaches.
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Introduction

For their survival and reproductive success, mosquitoes depend on

a series of behaviours such as mating, foraging and oviposition,

which are modulated by internal and external cues. Olfactory cues

are the most important group of external stimuli affecting mosquito

behaviour, such as mating and partner recognition [1]. Moreover,

males also respond to odours from plants that represent their only

feeding sources, while several female behaviours, ranging from host-

seeking to oviposition, are mediated by odour cues originating from

their hosts. Perception of volatile semiochemicals in mosquitoes is

mediated, as for other insects, by chemosensory neurons segregated

within specific olfactory sensilla located mainly on the antennae and

maxillary palps. Analogously to the vertebrate olfactory system, the

detection of odour molecules involves Odorant Binding Proteins

(OBPs), soluble proteins very abundant in the antennal chemosen-

silla [2]. These proteins are believed to carry the odour molecules

from the porous cuticular surface of the antennal sensilla through the

sensillar lymph to the G-protein-coupled odorant receptors residing

on the olfactory sensory neurons [2].

Several studies have recently been focused on the mechanisms

of semiochemical perception in Anopheline mosquitoes and on the

characterization of molecules implicated in the olfactory signalling

pathways see [3,4]. In fact, the high anthropophily of major

malaria vectors, such as some of the afro-tropical species of the

Anopheles gambiae complex, is recognised to represent one of the

behavioural traits mostly responsible for their high vectorial

capacity. It has, thus, been proposed that a better understand of

the molecular mechanisms of the host-seeking behaviour would

possibly allow the development of novel tools for malaria control,

through the reduction of man-vector contact and/or a shift in its

host-preferences [4]. Based on the published genome of An.

gambiae, 57 genes encoding for putative OBPs have been identified

in this species [5], and classified into three different groups, the

‘‘classical OBPs’’, the ‘‘atypical OBPs’’ and the ‘‘Plus C-OBPs’’.

The differential expression of these genes has been analysed in the

two sexes through RT-PCR and microarrays [4,6], and differen-

tial expression has been found for some classical OBPs and Plus-C

OBPs.

Matrix assisted laser desorption ionization (MALDI) is a mass

spectrometry (MS) technique widely used in proteomic studies,

which has been successfully applied also to the direct analysis of

peptides and low and medium molecular weight proteins in

biological tissues, single cells and down to single organelles [7–10].
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Although MALDI imaging and profiling MS have been applied

mostly to the analysis of proteins in mammalian tissues [10],

profiling has also been successfully used to study the spatial

distribution of neuropeptides in sea hares (Aplysia), in crabs, as well

as in insects reviewed in [11]. Through this approach, Rubakin

and co-workers have analysed the content of neuronal vesicles of

Aplysia californica [8] and localised the distribution of peptidic

messengers in different regions within a single neuron [9]. A

similar approach has been used by Yew and corworkers [12] to

study neuropeptides in the nematode Ascaris suum.

In insects, MALDI profiling MS has been used by Clynen and

coworkers [13] to analyse peptides in the complex formed by the

pars intercerebralis and corpus cardiacum in Locusta migratoria.

Larval peptidic hormones of Drosophila melanogaster were studied by

Wegener and co-workers through MS profiling and MS/MS

experiments directly on the neurohaemal organs [14]. More

recently both MALDI imaging MS and MS/MS experiments

were also successfully performed on neuropeptides of the house

cricket Acheta domesticus [15]. The same paper also reports MS/MS

experiments aimed at analyzing the spatial distribution of

phospholipids in the corpora cardiaca and corpora allata of the same

species.

The possibility to statistically compare MS spectra obtained

from different anatomical areas or from diseased and healthy

tissues through profiling or imaging experiments has recently been

used in biomedical research, mainly with the aim of identifying

biomarkers [16,17]. A similar approach has never been reported

in studies on insect tissues; however it could be used for studying

protein presence in different tissues or organs of the same

individual, in the same organs of individuals of different sexes or

morphs, and in the same organs of individuals belonging to closely

related species. Comparisons between closely related insect species

have used MALDI MS spectra on non-tissue biological samples,

but generally lacked statistical analysis [18–19]. To our knowledge,

only the study by Turillazzi et al. [20] on the protein fraction of

the venom of different wasps included a statistical analysis and

demonstrated consistent differences between closely related

species.

In the present work we used MALDI profiling coupled with a

statistical approach, to detect small/medium proteins in the

antennae of the major malaria vector species, Anopheles gambiae

sensu stricto (s.s.), and we compared the mass spectra profiles

obtained for the two sexes. With a view of exploring whether

MALDI imaging MS could be applied to the analysis of protein

distribution in insect appendices, imaging experiments were also

attempted on the antennae of both female and male specimens. As

a proof of principle, the presence of one OBP identified through

the MALDI MS approach was also confirmed through the classic

MS and MS/MS analysis of tryptic digest from 2-dimensional

electrophoresis spots.

Materials and Methods

Chemicals
Acetonitrile, methanol, ethanol and deionized water were of

LC-MS grade and purchased from Baker (Milan, Italy). Formic

and trifluoroacetic acid (TFA) were respectively purchased from

Baker and Sigma (Milan, Italy). Sinapinic acid was high purity

grade and purchased from Sigma.

2DE Chemicals. IPG strips, IPG buffer, acrylamide and

molecular weight marker proteins were from GE Healthcare

bio.sciences (Uppsala, Sweden). All other chemicals were from

Sigma (St. Louis, USA).

Methods

Insect specimens
All the specimens analysed in the present work belonged to An.

gambiae s.s. M molecular form [21]. Individuals of sample A,

originated from a colony named GAMCAM originated from the

progeny of females collected in Cameroon. All the specimens were

2 days old and both sexes were fed with sugar only. Specimens

were killed by freezing at 220uC and kept at this temperature until

analysis.

Specimens of sample B were collected at the larval stage in

Leboudi, a district of Yaoundé (3u529N; 11u319E), the capital city

of Cameroon, in April-May 2006. Larvae were transported to the

laboratory, reared until emergence and killed by freezing at

220uC when they reached the second day of adult life. Frozen

specimens were then sent to the Department of Public Health at

the University of Rome ‘‘La Sapienza’’, where they were identified

at the molecular form level by RFLP-PCR directly performed on a

single wing [22].

Protein extraction from antennae
Antennae were dissected from the frozen specimens under a

binocular microscope with the aid of forceps and entomological

pins. For sample A, protein extracts were prepared from a pool of

40 male antennae (20 specimens) and from a pool of 80 female

antennae (40 specimens), being female antennae smaller and less

plumose than males. Antennae were immersed in a 1:1 methanol/

0.1% TFA solution, sonicated in an ultrasonic bath for 30 min and

then centrifuged for 5 min at 16,100 g. The supernatant was

recovered, filtered through 0.2 mm pore size membrane (Minisart

RC 15 Sartorius), dried in a speed vac centrifuge (RC 1010,

ThermoElectron, Brema) and subsequently dissolved either in a

0.1% TFA (for MALDI-TOF MS analysis), or in a 0.1% FA (for

LC/ESI-MS analysis) solution. In the case of the female extract,

the final concentration was of two antennae/mL equivalent, while

it was one antenna/mL for males.

Imaging and profiling experiments by MALDI –TOF
Single antennae of An. gambiae males and females from sample A

were attached to a conventional MALDI target using a double

sided conductive tape (3 M Co). In the same way we dissected out

and attached to the target, the mouth apparatus (proboscis and

palps) and one single wing from some males and females. Matrix

solution containing ethanol have been used with the aim of fixing

tissues in MALDI MS experiments [10], although washing with

fixing solvents before matrix application is preferred [23]. Since

this latter method could not be applied to our samples due to their

tiny dimensions, matrix solutions containing ethanol were tested.

Eventually we used a solution of 20 mg/mL of sinapinic acid in

acetonitrile, ethanol and 0.1% TFA (8:46:46). In comparison with

conventional solution, containing only acetonitrile and TFA 0.1%

as solvent, this mixture provided more intense spectra, possibly

because of the partial removal of the epicuticular lipids by ethanol,

which may favour the contact between the matrix and the sample

proteins. When performing profiling experiments, the matrix was

applied as discrete droplets by using a 2 ı̀l pipettor: 0.2 ml were

deposited on a single antenna, dried and re-applied a second time.

In the imaging experiments, the sample was spray coated by using

a TLC glass reagent sprayer (Sigma). The MALDI target was held

vertically about 20 cm from the sprayer nozzle and several

applications were performed waiting ,10 sec between two

consecutive sprayings, until the antenna was homogenously

covered with crystals, as observed by microscopic inspection.

An. gambiae Antennal Proteins
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In the profiling experiments on sample B, antennae were laid

directly on the target and 1 ml of matrix solution was readily

deposited on them. This allowed antennae to stick to the target.

Both profiling and imaging experiments were performed on a

MALDI-TOF/TOF mass spectrometer Ultraflex I (Bruker

Daltonics) by using Flex ControlTM 2.4 and Flex Imaging 2.0
TM as data acquisition software. Positive ion spectra were acquired

in linear mode, setting the Ions Source 1 at 25 kV, the Ion Source

2 at 23.40 kV, the lens at 6.50 kV, and the delay time at 150 ns.

The laser spot diameter was 100 mm.

Profiling experiments on sample B were performed by manually

acquiring and accumulating mass spectra along the whole

antenna. Fifty shots were collected for each spectrum and the

final spectrum was generated by summing a total of 700 shots.

Spectra acquired both in imaging and profiling experiments were

later recalibrated according to the accurate molecular weight of

three antennal proteins (8015, 11941 and 13936 Da), retrieved

from analyses in liquid chromatography coupled to electrospray

ionisation Fourier transform mass spectrometry (LC-ESI FTMS,

see below).

In experiments on sample A, spectra were acquired over a

1006100 mm raster and for each position, either 60 or 100 shots

were collected. When obtaining the final molecular images,

normalization was applied using a Ymean/Ymax threshold of

0.02. The lower the value of this filter, the higher the number of

noisy spectra were excluded from normalization. This value of the

filter was chosen after a quick exploration of the mass spectra

associated to the least intense ions on the image. Images were

ultimately generated by setting for each considered m/z value the

minimum intensity at 5% and the full intensity threshold at 100%.

Comparison between sexes
In order to compare protein antennal profiles of males and

females, the spectra obtained in profiling MS mode were imported

into ClinProt ToolsTM 2.0, Bruker Daltonics (CPT). The spectra

were aligned setting the option maximum peak shift to 0.1% of the

mass over charge (m/z) value. For each group, the program

calculates an average mass spectrum as well as, for each ion signal,

the probability (associated with the Student T and the Wilkoxon or

Kruskall Wallis tests) that a determined peak has different intensity in

different groups. Moreover, the program produces multivariate

models highlighting the most discriminant signals for the separation

between the groups. Only spectra acquired from sample B were

submitted to statistical analysis, each spectrum being derived from

one single specimen. In fact, in the case of sample A, more spectra

were acquired from the same antenna; therefore within each sex, the

spectra could not be considered as independent.

Similarly, we imported the spectra registered for the mouth

apparatus, the wings, and the antennae originating from male

specimens and compared the spectra registered for the three

organs, without submitting the data to statistical analysis.

Protein characterization by MALDI-TOF MS and LC-ESI
FTMS

Proteins obtained from antenna extracts (see above) were

analysed using the same MALDI-TOF mass spectrometer

described above. In the case of male extracts, 1 ml of the sample

was mixed to 1 ml of the matrix (sinapinic acid 10 mg/ml

CH3CN:0.1 TFA, 70:40) on the target and allowed to dry. In the

case of the female extract, 1.5 ml were mixed with 1.5 ml of matrix

and applied to the target. Spectra were acquired in linear mode

over the m/z range 5,000–20,000 for a total of 500 shots. The

instrumental parameters were chosen by setting the ion source 1 at

25 kV, and the delay time at 80 ns. The instrument was externally

calibrated prior to analysis using the Bruker protein calibrant kit

(5000–17000 Da), and the sample spectra internally recalibrated

according to the accurate molecular weight of three antennal

proteins (8015, 11941 and 13936 Da) measured in the FTMS

analyses. The male antenna extract was also submitted to HPLC-

ESI FTMS analysis on a Ultimate 3000 (Dionex, San Donato

Milanese, Italy) coupled to a LTQ Orbitrap mass spectrometer

(Thermo, Bremen, Geemany) to determine the average and

monoisotopic mass, and partial amino acid sequences through

MS/MS experiments (top-down). A C4 capillary reverse phase

column (15 cm60.3 mm65 mm, Vydac, Milan, Italy) was used.

Proteins were eluted in a linear gradient ramping from 24% A to

55% B (A water, 0.1% formic acid; B 80% CH3CN; 20% water,

0.1% formic acid) in 30 min. Mass spectra were acquired in

positive ion mode, setting the spray voltage at 2.80 kV, the

capillary temperature at 280uC, the tube lens at 140 V and the FT

nominal resolution (@ m/z 400) in MS scan at 60,000 and at

30,000 in MS/MS mode. The acquisition software (Xcalibur 2.0)

was also set in data dependent scan, excluding mono- and doubly-

charged ions from MS/MS experiments which were performed on

the first and second most intense ions of the MS spectrum.

Although the LTQ-Orbitrap mass spectrometer is designed for

MS/MS experiments on peptides and small proteins, previous top-

down experiments on isolated and abundant proteins belonging to

the OBP family showed that spectra did allow obtaining short

amino acid sequences.

Identification of proteins from 2-D gel spots. Antennae were

dissected from 200 2-day-old males of the colony GA-CAM.

Antennae were grounded in a mortar under liquid nitrogen.

Proteins were extracted by using 250 ml of 50 mM Tris-HCl

buffer pH 8 in presence of 40 ml of inhibitor Cocktail Solution

(Sigma). After centrifugation at 19,000 g for 40 min, at 4uC, the

supernatant was added with 105 mg of urea, 1.25 mg of CHAPS,

2 ml of Pharmalyte, 2 ml of IPG, 2 mg of DTT in order to obtain a

rehydration buffer (8 M urea, 0.5% CHAPS, 1.6% IPG buffer,

1.6% Pharmalyte, 1% DTT), and a trace of bromophenol blue. 2-

D gel separation was performed as described by Scarselli et al.

[24]. Proteins in gel were detected by MALDI compatible silver

staining and scanned with an Epson Expression 1680 Pro scanner.

Spots of interest were cut from the gel and destained. 40 ml of a

1 ng/ml of modified trypsin (Promega, Madison, WI) in 10 mM

ammonium bicarbonate was added to each gel spot. After 40 min

the solution was removed and substituted with a same volume of

10 mM ammonium bicarbonate only. Digestion was performed

overnight at 37uC. Supernatants were recovered and digestion was

blocked by adding 10% TFA. Peptides were separated by HPLC on

the Ultimate 3000 and analysed on the LTQ-Orbitrap. Peptides

were eluted on a PepSwift monolithic PS-DVB column (200 mm

I.D.65 cm, Dionex) in a linear gradient ramping from 100% of A

(water 0.1% formic acid) to 60% B (80% acetonitrile; 20% water,

0.1% formic acid) in 12 min. Mass spectra were acquired in positive

ion mode setting the spray voltage at 1.80 kV, the capillary

temperature at 250uC, the tube lens at 140 V. The LTQ-Orbitrap

was set to work in data dependent mode, by acquiring a full range

spectrum at 15,000 resolution from 500 to 2000 Th and MS/MS

spectra for the three top ions. Monocharged ions did not trigger MS/

MS experiments. The acquired data were analysed using Sequest

(Thermo Fisher Scientific Inc.) against a database created by

merging Anopheles gambiae protein sequences downloaded via ftp at

http://www.ensembl.org/info/data/download.html. (Anopheles_

gambiae.AgamP3.48.pep.all.fa.gz, and Anopheles_gambiae.

AgamP3.48.pep.abinitio.fa.gz) together with all entries containing

‘‘keratine’’ and ‘‘trypsin’’ within Swissprot. Searches were performed

(i) allowing up to four missed cleavage sites (ii) carbamidomethylation

An. gambiae Antennal Proteins
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of cysteins and oxidation of methionins as variable modifications and

(iii) 10 PPM of tolerance for the precursor ions and 0.5 AMU for the

fragment ions.

Results

Profiling and imaging MALDI experiments
Figure 1 (A and B) shows the mass spectra obtained from

profiling experiments performed on antennae of both males and

females mosquitoes (sample A). Mass spectra obtained from the

MALDI MS analysis of antennal extracts showed the same pattern

as those found in the profiling experiments, but the latter had a

richer ion population and a higher signal to noise (S/N) ratio. The

difference in the results obtained using the two approaches was

particularly remarkable in the case of the females, where the direct

profiling of one single antenna produced a satisfactory spectrum,

whereas the spectrum obtained on the extract of 3 antennae

equivalents exhibited signals with a lower S/N ratio (Fig. 1 C). No

evident differences in spectra quality or intensity were observed

between the experiments where antennae were attached using the

conductive double sided tape or directly attached to the target with

a matrix drop.

The spectra obtained in the imaging MS experiments were of

variable intensity and quality, and in several cases we could observe a

certain, even if small, shift between areas where signals were

registered on the target and the location where the antennae were

placed. This could be caused both by the matrix application (possibly

generating delocalization) and by the thickness of the antenna. In the

Figure 1. Direct MALDI profiling on Anopheles gambiae antenna. MALDI-TOF spectra obtained from direct profiling on a single antenna of
male (A) and female (B) of An. gambiae. Panel (C) reports the spectrum obtained from the extract of female antennae; the extract volume analysed
corresponded to the equivalent of three antennae.
doi:10.1371/journal.pone.0002822.g001
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first case, although the matrix solution was carefully sprayed in order

to avoid an excessive soaking of the sample, this precaution may have

not been sufficient to hinder protein delocalization. With regard to

the second aspect, both the presence of a greater thickness on the

MALDI target due to the ‘‘rough’’ surface of the conductive tape and

of the attached antenna, could affect laser focusing. Consequently

the actual position where the laser beam hit the sample could have

been slightly different from that dictated through the software,

producing a ‘‘delocalization effect’’ on such tiny sample (about 1 mm

in length). Nonetheless experiments produced spectra of good quality

and although most proteins appeared to be similarly localised, some

showed a different distribution across the antenna (fig. S1).

Protein characterization by MALDI-TOF MS and LC-ESI
FTMS

The identity of the proteins detected in first instance by direct

profiling was further investigated by analysing the antennal protein

extracts by MALDI-TOF MS. Having observed again the same

species at the same MW, an LC-ESI FT MS analysis was

performed and the accurate masses compared with the ones

predicted for An gambiae OBPs reported in the literature. MS/MS

top-down experiments were also run in an effort to identify the

observed proteins.

The mass signal registered at 13,936 Th in the MALDI-TOF MS

antennal profiling, and with an average mass of 13,935.74 Da in the

protein extracts analysed through LC-ESI FTMS (fig.S2 A, B, C)

was closer to the MW of AGAM OBP-9 (AY146740.1, mature

protein with all six cysteine residues linked through disulphide

bridges 13,935.70 Da) rather than to the MW of AGAM OBP-6

(AF437889.1 ) if the signal peptide ranged from aa 1 to aa 33, as

predicted by SignalP 3.0 server (http://www.cbs.dtu.dk/services/

SignalP/; mature protein 13,935.09 Da) rather than from aa 1 to 34

as originally reported [6]. The identification of the protein as OBP-9

was also supported by the measure of the monoisotopic mass

(13,926.71 Da fig. S2 D, the theoretical monoisotopic masses of

OBP9 and OBP6 being respectively 13,926.77 and 13,925.80 Da

respectively) and by the top-down experiments, which produced a

spectrum compatible with the N terminal EFVV stretch of OBP9

(see supplemental material Text S1 and fig. S2 E). Moreover the

OBP9 (AGAP000278-PA) was also identified in the 2D gel on the

basis of the MS/MS spectrum arising from the double charged ion of

the 1300.67 Da peptide matching the sequence DANEVREEIVK

(with a probability of 1.361024 that this match occurred by chance

within the given database).

The mass signal registered at 8,015 Th in the MALDI-TOF

profiling experiment was investigated as it discriminates between

sexes (present in the males, absent in the females, see below). The

monoisotopic mass of this was registered at 8,010.53 Da. The top-

down experiment (fig. S3) performed on the parent ion at 1,604.12

Th (z = 5) produced a spectrum compatible with the stretch

YSG(I/L)GYGYN. Blasting (http://130.14.29.110/BLAST/)

these and their reverse sequences, using the option ‘‘Search for

short, nearly exact matches’’ against the Anopheles genome, we

found a hit (gi|118781948) for the YSGLGYGYN sequence

(Y32-N40). Assuming a cleavage of the corresponding polypeptide

between aa 29 and 30, the mature protein including aa 30–108

would have a theoretical monoisotopic mass of 8,010.57 Da in

agreement with our experimental measure. Blasting this sequence

against Swissprot database did not produce any result.

The ion signal registered as 12,846 Th in the MALDI-TOF MS

spectra of male antennae was in agreement with the MW of OBP-

10 (AY146741, mature protein with all cystein residues linked

through disulphide bridges 12,847.94 Da). However the LC-ESI

FTMS analysis measured this protein with an average and

monoisotopic MW of 12,845.34 and 12,837.32 Da respectively (vs

a theoretical monoisotopic value of 12,839.44), indicating that

either this signal does not correspond to OBP-10 or amino acidic

substitutions have occurred. Unfortunately top-down experiments

on this protein did not produce reliable sequence information.

The signal observed at 14,518 Th in the MALDI-TOF profiling

on female antennae could correspond to OBP-1 (AY146721,

theoretical average mass 14517.57 Da) but it needs to be further

investigated as in the present work only male extracts were

analysed at the LC-ESI FTMS.

Comparison between sexes
A comparison between the antennal profiles of the two sexes

was accomplished by calculating an average mass spectrum (using

the program CPT) from the spectra obtained for each male (N = 9;

16 to 24 spectra for each antenna) and female antenna (N = 10; 12

to 27 spectra for each antenna) of sample A. The two protein

profiles exhibited several differences, the most relevant of which

are in the mass range between 8,000 and 9,000 Th, with the signal

at 8,015 Th being very intense in males and almost missing in

females, which exhibit instead an intense signal at 8,565 Th.

Similar differences between sexes were also found for the profiling

experiments performed on mosquitoes from sample B (one

antenna from 16 males and one antenna from 9 females) (fig. 2).

Male antenna spectra presented in fact a very intense ion at 8,015

which was absent in the females (P = 3.961024, using the

Kruskal–Wallis test), while these showed a signal more intense

than in males as 8565 (P = 1.961022). Other differences observed

in both samples regarded an ion signal at 13006 Th being much

more intense in female (P = 3.961024 in sample B).

In both sexes, the spectra obtained for the mouthparts on

sample A were quite similar to those obtained for the antennae

and both differed considerably from those of the wings.

The comparison between the male average mouthparts and

antennae protein patterns produced through CPT showed that

most of the signals were in common, although especially in the

10,000–14,000 m/z range, most of the proteins produce more

intense signals in the mouths. Mouthparts and antennae profiles

differed considerably with respect to the wings (fig. S4), where the

Figure 2. Average antennal mass spectra acquired through
MALDI-TOF profiling on males (N = 16, green) and females
(N = 9, red). Signals whose intensity resulted significantly different at
the Kruskal Wallis test are marked with an asterisk.
doi:10.1371/journal.pone.0002822.g002
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signal at 8,015 Th, the most intense in the mouths and in the

antennae, was completely absent.

Discussion

Good quality mass spectra were obtained both from profiling

experiments performed directly on antennae of both males and

females mosquitoes and from the MALDI MS analysis of antennal

extracts. Although a consistent ion population was obtained by

both approaches, MALDI MS direct profiling produced more

satisfactory spectra, yielding more intense and numerous signals.

These results show that MALDI MS profiling is suitable for the

direct analysis of proteins of low and medium molecular weight in

insect appendices, as small as mosquitoes antennae. Moreover, it is

relevant to note that the straightforward preparation of the

biological samples necessary for MALDI MS profiling allows to

perform with a modest effort a high number of replicates necessary

for statistical analyses. For insect species of small size, this

constitutes an enormous advantage over traditional methods of

protein expression analysis, where studies are commonly based on

samples prepared from pools of hundreds to thousand specimens.

Previous gene expression studies have targeted OBPs genes

expression in An. gambiae antennae [4,6]. To verify whether the

protein profiles obtained through the MALDI MS analysis include

OBPs, we first performed tow-down experiments on antennal

proteins and then a classic proteomic bottom-up experiment

through MS and MS/MS analysis of male antennal proteins,

separated on a 2D gel and digested in-situ. Although, a big effort

was necessary to obtain enough tissue to carry out this latter

approach (i.e. 400 male antennae were necessary for this

preliminary experiment), this analysis allowed to confirm the

presence of one OBP (i.e. OBP-9), previously identified on the

basis of its accurate molecular weight and of a short sequence

stretch obtained through the top-down experiment The identifi-

cation of other proteins, however, was not possible due to low

protein concentration in the 2D gel and would need large

antennae samples to be completed. Hence, it is important to

highlight that, despite the rapidity of acquisition of the spectra with

direct profiling, significant effort is needed to identify the proteins

present in the spectra. A second constrain in the profiling

experiments is represented by the difficulty in matching the

registered signals with the theoretical molecular weight of

hypothetical proteins, predicted through genome annotations

and/or EST libraries. Such discrepancy may have several causes,

including polymorphism in the protein sequence between the

populations/strains studied by each method, incorrect genome

annotation, redundancy or errors in the aminoacid sequences,

possible post-translational modifications and, in the case of

secreted proteins, discrepancies between the predicted and the

actual size of the clipped signal peptide. High resolution mass

spectrometry could greatly help in finding the right match;

nonetheless further structural characterization analyses, like partial

de-novo ones may be required to confirm identification. In our

work, the top-down approach utilised allowed the identification of

two proteins (i.e. OBP9 and gi|118781948) present in the

antennae. However, the high complexity of the antennal extract

mixtures and the low concentration of single proteins in the extract

limit the application of top-down experiments.

Despite the above technical constraints in the full identification

of the antennal proteins (which was beyond the scope of this work),

the results obtained show the suitability of the MALDI MS

profiling for the detection of proteins directly from body parts of

single insect specimens. The bottom-up approach, based on

peptide fingerprinting and MS/MS experiments on peptides

obtained from enzymatic digestions of proteins, is a classical

strategy for protein identification and is currently in progress in

our laboratory, to further extend the list of the proteins detected in

the extracts and in the intact antennae. This procedure indeed

proved successful in identifying OBPs in the silkmoth (Bombyx mori)

and in the honeybee, (Dani et al., submitted).

The results obtained also highlight significant differences in the

protein profiles between the two sexes of An. gambiae. The most

relevant difference is found in the mass peak at 8,015 Th, which

was attributed to a protein encoded by a gene reported as

gi|118781948 (XP_311966). To our knowledge, this gene has

never been reported as differentially expressed in the antenna of

males and females An. gambiae. Moreover, none of the signals

differentiating the two sexes by MALDI profiling corresponded to

the theoretical molecular weight of proteins encoded by genes

showing differential expression levels based on genomic analyses

[4,6]. This suggests that such proteomic analyses might comple-

ment to a significant extent, the results of genomic-based,

differential gene expression analyses aimed at clarify molecular

differences in odour perception between sexes.

The overall results show that MALDI MS profiling is a powerful

technique for the analysis of small and medium MW proteins in

small insect appendices, and allows to straightforwardly obtain

data for several single specimens. Therefore, the proposed

approach can represent a useful complement to the genomic

approaches commonly used for this kind of studies, by allowing to

directly analyse the phenotypic expression of OBPs instead of their

transcription patterns.

Supporting Information

Figure S1 MALDI imaging of an Anopheles gambiae male

antenna. MALDI-TOF imaging MS experiment on male

antennae from An. gambiae. Protein images were obtained by

setting the intensity scale between 5% (minimum intensity) and

100% (full intensity threshold). Images have also been normalized

using Flex Imaging 2.0 and setting the Ymean/Ymax threshold at

0.02. Ion images of four proteins are reported: 8015 Th, 8565 Th,

11941 Th and 13936 Th respectively in panel A, B, C, and D,

showing a different distribution across the antenna.

Found at: doi:10.1371/journal.pone.0002822.s001 (0.23 MB TIF)

Figure S2 Identification of OBP-9 through analysis performed on

an LTQ Orbitrap mass spectrometer. For the ion signal corre-

sponding to OBP-9, the figure reports the multicharged ions (A), a

zoom for the z = 9 ions (B), the deconvoluted spectrum (C), the

monoisotopic mass (calculated by using the Extract Tool integrated

in the Excalibur 2.0 Software by considering the multicharged ion at

z = 9) (D) and the MS/MS spectrum (E) on the ion at 1,394.59 Th

(z = 10) which produced three internal ion fragments (z = 9)

corresponding to the successive loss of two valine residues.

Found at: doi:10.1371/journal.pone.0002822.s002 (0.42 MB TIF)

Figure S3 MS/MS spectrum resulting from the top-down

experiment on the precursor ion at 1,604.12 Th (z = 5) and its

interpretation. The search for the reported stretch in the An. gambiae

genome found a hit for a hypothetical protein (gi|118781948) having

a theoretical monoisotopic mass of 8,010.58 Da, which was in

agreement with the experimental one (8,010.53 Da).

Found at: doi:10.1371/journal.pone.0002822.s003 (0.26 MB TIF)

Figure S4 Comparison between male antenna (green) and wing

(red) mass spectra. Average mass spectra resulting from the

analysis through ClinProt Tool on the spectra obtained through

MALDI-TOF profiling.

Found at: doi:10.1371/journal.pone.0002822.s004 (0.15 MB TIF)
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Text S1 Protein homogenate characterization by MALDI-TOF

MS and LC-ESI FTMS

Found at: doi:10.1371/journal.pone.0002822.s005 (0.03 MB

DOC)
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