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Abstract

Background: Recent evidence suggests that the number and variety of functional RNAs (ncRNAs as well as cis-acting RNA
elements within mRNAs ) is much higher than previously thought; thus, the ability to computationally predict and analyze
RNAs has taken on new importance. We have computationally studied the secondary structures in an alignment of six
Aspergillus genomes. Little is known about the RNAs present in this set of fungi, and this diverse set of genomes has an
optimal level of sequence conservation for observing the correlated evolution of base-pairs seen in RNAs.

Methodology/Principal Findings: We report the results of a whole-genome search for evolutionarily conserved secondary
structures, as well as the results of clustering these predicted secondary structures by structural similarity. We find a total of
7450 predicted secondary structures, including a new predicted ,60 bp long hairpin motif found primarily inside introns.
We find no evidence for microRNAs. Different types of genomic regions are over-represented in different classes of
predicted secondary structures. Exons contain the longest motifs (primarily long, branched hairpins), 59 UTRs primarily
contain groupings of short hairpins located near the start codon, and 39 UTRs contain very little secondary structure
compared to other regions. There is a large concentration of short hairpins just inside the boundaries of exons. The density
of predicted intronic RNAs increases with the length of introns, and the density of predicted secondary structures within
mRNA coding regions increases with the number of introns in a gene.

Conclusions/Sigificance: There are many conserved, high-confidence RNAs of unknown function in these Aspergillus
genomes, as well as interesting spatial distributions of predicted secondary structures. This study increases our knowledge
of secondary structure in these aspergillus organisms.
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Introduction

Recent experimental evidence in mammals has indicated that

the portion of the genome that is transcribed, as well as the

number of functional RNAs in the genome, is much higher than

previously thought [1–10]. Functional RNAs include noncoding

RNAs as well as cis-acting RNA elements within mRNAs. The

number of known roles for RNA is increasing rapidly, including

gene regulation by microRNAs [11,12], regulation by cis-acting

translational control elements within mRNAs such as riboswitches

[13], X-chromosome inactivation by Xist [14], as well as many

others [15]. Therefore, predicting the locations of functional RNA

elements (both ncRNAs as well as cis-acting RNA elements) has

taken on new importance. Despite the wide availability of fungal

genome sequences, no thorough computational analysis of RNA

secondary structures has been conducted in fungi.

Several methods have been used for identifying functional RNAs

in genome sequences, taking advantage of information contained in

genome alignments [8,16–23]. EvoFold [8] and QRNA [18] use

Stochastic Context Free Grammars (SCFG’s). RNAz [19] is based

on RNAalifold [24] and the Vienna RNA package [25,26], which

evaluate the folding thermodynamics. Several whole-genome

computational searches for functional RNAs have been performed:

using EvoFold on human [8,27]; RNAz on human [9,27],

nematodes [28], and Ciona [29]; and QRNA on S. cerevisiae [30]

and E. coli [18]. Will et al. have clustered the resulting predictions in

Ciona by structural similarity [31].

Here we report the results of using RNAz to perform a genome-

wide analysis of secondary structures in six aspergillus genomes.

RNAz is a fast algorithm which has been used successfully in

several whole-genome searches for predicted secondary structures

[9,27–29]. The RNAz algorithm uses the RNAfold and RNAali-

fold [24] programs to find the minimum free energy structure for

each individual sequence in the alignment, as well as the minimum

free energy of the consensus structure for the alignment, including

a ‘‘covariance term’’ which takes into account compensatory and

consistent mutations which preserve the RNA secondary structure.

Compensatory mutations involve changing both members of a

base pair (i.e. GCRAT) to preserve the secondary structure,

whereas consistent mutations involve a change to only one

member of the pair while preserving secondary structure (i.e.

GCRGU). RNAz compares the minimum free energy of the

predicted structure to that of random sequences of the same base

composition to calculate a z-score, which is an index of the

thermodynamic stability of the structure. It also calculates a

‘‘structure conservation index’’ (SCI), which is the ratio of the free

energy of the consensus structure to the average of the free

energies of the individual sequences. A high value for this
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corresponds to a conserved structure. The z-score, SCI, and %

sequence identity are used as input to an SVM (trained on known

RNA alignments from Rfam) which decides the likelihood of the

alignment being a functional RNA.

Previous whole-genome searches using RNAz [9,27–29] have

found large numbers of predicted secondary structures with false

positive rates estimated between 16 and 70%. A study in the

human genome[9] predicted 30,000 secondary structures, includ-

ing 10,000 conserved across vertebrates. A number of new

microRNAs were predicted, as well as a large number of predicted

secondary structures that did not fit into groups of known RNA

structures.

We used RNAz to search for sequences likely to form conserved

secondary structures in an alignment of six Aspergillus genomes, and

then cluster the predicted secondary structures by structural

similarity to find structural classes. Our alignment covers

approximately 60% of the A. nidulans genome; hence we are only

scanning 60% of the genome in our study.

We find over 7000 predicted secondary structures, including a

new ,60 bp hairpin motif found primarily inside introns. Different

genomic regions primarily contain different structural classes of

predicted secondary structures. Exons contain primarily long,

branched hairpins, 59 UTRs primarily contain groupings of short

hairpins located near the start codon, and 39 UTRs contain very

little secondary structure compared to other regions. There is a large

concentration of short hairpins just inside the boundaries of exons

(gene starts, gene stops and splice sites). In addition, the density of

predicted intronic RNAs increases with the length of introns, and

the density of predicted secondary structures within mRNA coding

regions increases with the number of introns in a gene.

Methods

Whole-genome alignments
We analyzed Aspergillus nidulans, Aspergillus oryzae, Aspergillus

fumigatus, Aspergillus terreus, Aspergillus clavatus, and Neosartorya fischeri.

Aspergillus flavus was included when the alignments were construct-

ed, but discarded for the RNAz searches because RNAz takes a

maximum of six sequences in its input alignment. Aspergillus flavus

was discarded because it had the poorest assembly and is very

similar to A. oryzae. Complete genomes were available for A.

nidulans [32], A. oryzae [33], and A. fumigatus [34]. For the other four

genomes, incomplete genome assemblies were used.

A. nidulans was used as a reference in constructing the multiple

alignment. Pairwise whole genome alignments were done using

Patternhunter [35]. Colinear blocks were then identified and

aligned with Lagan [36]; multiple alignments [37] were construct-

ed with Mlagan [36]. 40% of the A. nidulans genome was covered

by multiple alignment of all 7 genomes. 60% of the A. nidulans

genome was covered by multiple alignment of 2 more genomes.

Sequences within the alignments consisting largely of gaps were

filtered out, as in Washietl et al., 2005 [9].

Searches for secondary structure using RNAz
We searched these alignments for regions likely to form conserved

RNA secondary structures using RNAz [9,19]. We used 400 bp

search windows (tiled every 100 bp across the whole genome

alignment, for a total of 250,268 successful search windows) as well

as 200 bp search windows (tiled every 40 bp for a total of 410,998

successful search windows). We chose a longer search window size

than the 120 bp windows used previously by Washietl et al. [9]

because 120 bp windows were not adequate to identify several of the

few known RNAs in aspergillus. We found that 200 bp windows are

not too long to correctly find shorter structures as well. An RNAz

cutoff of 0.5 was used to select search windows with predicted

secondary structure for further analysis. Unlike the previous search

using RNAz by Washietl et al. [9], exonic sequence was kept within

our search space.

To determine which of the predicted secondary structures

correspond to known RNAs, we searched these sequences against

the Rfam database [38]. A loose BLAST [39] search was used to

determine possible candidate matches, followed by a more careful

search on possible hits using Infernal [40]. tRNA-ScanSE [41] was

used to search for tRNAs.

To calculate false positives, we used the script shuffle-aln.pl [22]

to shuffle each search window; then we searched the shuffled

sequences with RNAz. This conservative shuffling procedure

generates random alignments, preserving length, base composi-

tion, overall conservation, local conservation, and gap pattern.

Structural classes
To calculate structural similarity between hits, we used RNA-

distance [26], which calculates a tree or string edit distance between

RNA structures. At the time when we performed this analysis, we

found RNAdistance to be the most useful and practical tool available

for this purpose, despite issues relating to the treatment of sequences

of dissimilar length and the fact that RNAdistance performs a global,

rather than local, alignment. Since our analysis was performed, an

improved local alignment tool called LocARNA has been published

and applied to whole-genome RNAz searches in Ciona [31].

We calculated all-vs.-all RNAdistance values, using all four of the

RNAdistance structure representations (full, HIT, weighted coarse,

and coarse). A simple hierarchical clustering algorithm was used to

cluster these motifs by their RNAdistance values. This clustering was

performed separately for each of the RNAdistance structure

representations, resulting in four sets of structural classes. Fixed

cutoffs were used in the clustering based on RNAdistance values. For

each cluster, we then calculated p-values for overrepresentation of

functional groups and regions of the genome (using the hypergeo-

metric function). We calculated p-values for overrepresentation in

COG functional group categories, introns, exons, 59 UTRs, 39

UTRs, and noncoding regions, as well as overlaps between 59UTRs

and exons, 39 UTRs and exons, and introns and exons.

We then checked to see if the known RNAs found by RNAz

were clustering together. The tRNAs were the largest group of

knowns found by RNAz, and these grouped nicely into several

clusters. When looking at the other known RNAs with .1 instance

found by RNAz (5S rRNA, TPP riboswitch, U6 spliceosomal

component), we saw that different structures are associated with

quite different RNAdistance values; hence no single RNAdistance

cutoff was adequate for defining the clusters. Therefore, the

second way we created clusters was to calculate p-values when

each new member was added and to select those clusters with

minimal p-values. We sorted the clusters by p-value and applied

cutoffs: p,1e-7 (includes correction for multiple hypothesis

testing), and N,500 (number in cluster).

Predicting intronic branch sites
To predict the locations of branch sites in introns, the regions

from 10–30 bp upstream of the 39 splice site were aligned in all

annotated introns using AlignACE [37]. Since this only identified

a motif in one quarter of the introns, we used the loose consensus

pattern RYURAY (seen in the motifs found by AlignACE) and

picked the 39-most instance in each intron.

Searching for miRNAs
To search for possible animal-like miRNAs, we selected

conserved hairpins and examined them using MiRscan [44]. To

Aspergillus RNA
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search for possible plant-like miRNAs, we selected conserved

hairpins, and then looked to see which had possible conserved

miRNA targets, allowing up to 4 mismatches within exons. To

search for targets, we used Patscan [45] to do searches over the

sequences of COGs plus 1000 bp upstream and downstream for

each possible miRNA. Hits should be in exons for plant-like

miRNAs.

Results and Discussion

We generated a multiple alignment of diverse Aspergillus

genomes with an average pairwise sequence identity of 58%,

which is close to the optimal level of sequence identity for

searching for RNAs. If the genomes were more similar, there

would not be sufficient consistent and compensatory mutations

observed to infer the presence of base-pairing; if the genomes were

less similar, there would not be a good enough alignment to infer

structure. Washietl and Hofacker [22] plotted the average z-scores

of structural and sequence-based pairwise alignments of SRP

RNAs versus pairwise identity and showed that there is a peak in

the z-scores for sequence-based alignments around 60% average

pairwise sequence identity; z-scores dropped off for both higher

and lower levels of sequence identity.

We searched our whole-genome alignments with RNAz using

200 bp and 400 bp long search windows. Using a 200 bp long

search window, 2.4% of the search windows (9663 windows)

yielded hits with RNAz score .0.5; using the 400 bp search

window, 4.0% of the search windows (9916 windows) resulted in

hits with RNAz score .0.5 (see Table 1). These search window

hits were grouped into non-overlapping predicted secondary

structures (see Figure 1). Using the less stringent RNAz cutoff of

0.5, and only requiring conservation in two more organisms,

results in 5517 predicted secondary structures using the 200 bp

search window, and 5479 predicted secondary structures using the

400 bp search window (see Table 2). Using the more stringent

RNAz cutoff of 0.9, and requiring conservation in all six

organisms, yields 326 high-confidence predicted secondary

structures using the 200 bp searches and 398 using the 400 bp

search window. There is a great deal of overlap between the results

found using the 200 bp and 400 bp search windows. Combining

all of the hits, from both the 200 bp and 400 bp windows, for the

less stringent RNAz cutoff together gives us 19579 search window

hits with RNAz score .0.5 in 7450 non-overlapping predicted

secondary structures. We used this combined group of 19579 hits

for further analysis, including clustering by structural similarity

(see Figure 1).

Calculating false positive rates using searches over
shuffled sequence

Since a complete reference set of secondary structures in

Aspergillus is not available, we must estimate the rate of false

positives by comparing the observed number of predicted secondary

structures with the number that we would expect to occur by

chance. Our false positive rate is based on the number of final, non-

overlapping predicted secondary structures (see Figure 1). The

process of grouping overlapping search window hits (shown in

Figure 1) was repeated on the shuffled search window hits to obtain

a set of ‘‘shuffled predicted secondary structures’’. The false positive

rate is computed by dividing the number of predicted secondary

structures by the number of ‘‘shuffled predicted secondary

structures’’ obtained on shuffled sequence. There are fewer false

Table 1. Summary of RNAz searches by region of genome.

# windows searched RNAz score.0.5 RNAz score.0.9

# hits
fraction of
windows w/hits # hits

fraction of
windows w/ hits

a. 200 bp windows

Intron 8917 346 1.9e-2 90 5.1e-3

Overlaps splice site 78893 1596 1.0e-2 352 2.2e-3

Noncoding 47826 1786 1.9e-2 384 4.0e-3

Exon 182381 2065 5.7e-3 415 1.1e-3

59 UTR 37206 1625 2.2e-2 402 5.4e-3

39 UTR 24094 766 1.6e-2 184 3.8e-3

Overlaps start 17937 1051 3.0e-2 293 8.2e-3

Overlaps stop 13744 428 1.6e-2 100 3.6e-3

Totals 410998 9663 2.4e-2 2220 5.4e-3

b. 400 bp windows

Intron 4884 214 2.2e-2 22 2.3e-3

Overlaps splice site 50542 1902 1.9e-2 199 2.0e-3

Noncoding 43639 1344 1.5e-2 160 1.8e-3

Exon 63415 1093 8.6e-3 139 1.1e-3

59 UTR 29873 1322 2.2e-2 122 2.0e-3

39 UTR 20075 560 1.4e-2 82 2.0e-3

Overlaps start 20241 2301 5.7e-2 276 6.8e-3

Overlaps stop 17599 1180 3.4e-2 88 2.5e-3

Totals 250268 9916 4.0e-2 1088 4.3e-3

doi:10.1371/journal.pone.0002812.t001
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positives for our more stringent (RNAz score .0.9) threshold. As

expected, the rate of false positives is higher for searches performed

using the 400 bp search windows (39% for RNAz score .0.5 and

19% for RNAz score .0.9) than for searches performed using the

200 bp search windows (31% for RNAz score .0.5 and 17% for

RNAz score .0.9). Table 2 also shows that the predicted secondary

structures found in native sequence are longer than those on

shuffled sequence.

High false positives have also been reported in previous whole-

genome searches for predicted secondary structure [8,9,27,29]. In

their search over the human genome using RNAz, Washietl et al.

report false positive rates of 28.9% (RNAz score .0.5) and 19.2%

Figure 1. Obtaining predicted secondary structures and structural classes. Overlapping search window hits are grouped into predicted
secondary structures. Since most predicted secondary structures are primarily contained within a single search window, we clustered search window
hits by structural similarity into structural classes.
doi:10.1371/journal.pone.0002812.g001

Table 2. Clustering of RNAz hits into predicted secondary structures.

Conserved in all 6 genomes 200 bp windows 400 bp windows

RNAz score.0.5 RNAz score.0.9 RNAz score.0.5 RNAz score.0.9

# predicted secondary structuresa 1259 326 3651 398

# groups in shuffled controlsb 384 57 1423 76

False positivesc 31% 17% 39% 19%

Length of predicted secondary structures 191,960 50,072 657,680 94,832

Length of hits in shuffled controls 52,889 8,048 276,294 15,018

Fraction of A. nidulans genome 0.64% 0.17% 2.2% 0.32%

Conserved in 2 or more genomes 200 bp windows 400 bp windows

RNAz score.0.5 RNAz score.0.9 RNAz score.0.5 RNAz score.0.9

# predicted secondary structuresa 5517 1313 5479 624

# groups in shuffled controlsb 1916 277 2170 128

False positivesc 35% 21% 40% 21%

Length of predicted secondary structures 835,065 209,146 1,191,771 174,609

Length of hits in shuffled controls 271,100 40,321 484,903 29,797

Fraction of A. nidulans genome 2.8% 0.69% 4.0% 0.57%

anumber of non-overlappings groupings of RNAz hits on native sequence.
bnumber of non-overlappings groupings of RNAz hits found on an equivalent amount of shuffled control sequence.
cfalse positives based on number of predicted secondary structures: number of groups in shuffled controls divided by the number of predicted secondary structures.
doi:10.1371/journal.pone.0002812.t002

Aspergillus RNA
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(RNAz score .0.9) [9], which are similar to the values that we

obtained for our 200-bp search windows, despite our search

windows being longer in order to be able to identify known RNAs

in Aspergillus (200 bp rather than 120 bp).

We believe that an adequate method of constructing proper

controls is needed. Our shuffling method frequently does not

remove the signal, since the shuffled sequence often still has an

RNAz score above our cutoff threshold. This is in agreement with

previous observations by Washietl et al. [9]. The number of

possible permutations within this conservative shuffling procedure

can be small, and the total amount of compensatory and consistent

mutations will be preserved in the shuffled sequence. However, as

discussed in Washietl et al. [22], a stronger shuffling algorithm

disrupts the sequence enough to not be a meaningful control. 41%

of our shuffled hits with RNAz score .0.5 overlap an unshuffled

hit. So perhaps as many as 41% of the shuffled hits represent cases

where the folding signal was simply not destroyed by shuffling.

In addition, a recent study by Babak et al. [42] showed that

preserving dinucleotide frequencies, which we do not attempt to

preserve in our shuffling strategy, is important and increases false

positive rates in pairwise alignments. However, preserving

dinucleotide frequencies in our multiple alignments can’t be

adequately performed while still preserving gap structure and

patterns of conservation.

Calculating sensitivity
Within our alignments, there are 78 known RNAs. Among our

predicted secondary structures, we found matches to 63 of these

(including 51 tRNAs, two TPP riboswitches, five 5S rRNAs, two

U6, one U5, and one U2 spliceosomal RNA, and a U14 small

nucleolar RNA), giving us an overall sensitivity of 81%. Since only

approximately 200 RNAs have been identified in A. nidulans, [32],

this represents a sizeable fraction of the RNAs already identified

(see Table 3). Many of those that were not found are absent due to

the fact that they were not aligned in our colinear blocks, which

cover approximately 60% of the A. nidulans genome. Some other

classes of RNAs evolve too quickly to identify significant

conservation across the large evolutionary timescale in our dataset.

Preference for the coding strand
We calculated an association statistic [8] used to assess strand

bias (see Table 4). In agreement with previous observations [8], we

found a significant preference for motifs within mRNA-associated

regions of the genome to be found on the coding strand (see

Table 4). The difference between the coding and noncoding

strands is primarily due to the presence of non-Watson-Crick

‘‘GU’’ base pairs in RNA (but not its reverse complement ‘‘CA’’).

We observed that the preference for the coding strand was most

pronounced for motifs that overlap the start codon: for this region,

there were 2.3 times as many hits on the forward strand for

searches using 200 bp search windows and 2.4 times as many for

searches using 400 bp search windows (see Supplementary

Information). In contrast, when looking at hits in noncoding

regions, there were slightly less hits on the forward strand (in

relation to the closest gene) than the reverse strand (see

Supplementary information). Unlike previous results in [8] in

human, we saw no significant bias for coding strand 39 UTRs

motifs; the strongest bias was in 59 UTRs and in folds overlapping

the start codon.

Table 3. Known functional RNAs found in A. nidulans.

Previously
Identified1

Identified
by RNAz2

Contained in
our alignments Sensitivity3

tRNA 179 51 61 84%

5S rRNA 31 5 9 56%

U2 2 1 1 100%

U5 1 1 1 100%

U6 3 2 2 100%

U14 1 1 1 100%

Rnase P 1 - - -

SRP RNA 1 - - -

TPP riboswitch 3 2 3 66%

1From Pain and Griffiths-Jones, 2005 (Galagan, Calvo, et al., 2005).
2Identified tRNAs using tRNA-ScanSE, and other RNAs using Infernal with Rfam.
3The number identified by RNAz divided by the number of A. nidulans knowns
completely contained within the alignments input to RNAz.

doi:10.1371/journal.pone.0002812.t003

Table 4. Strand bias.

RNAz score.0.5 RNAz score.0.9

Avg. strand
preference score1 #regions

p-value (association
statistic) 1

Avg. strand
preference score1 #regions

p-value (association
statistic) 1

Intron 0.554 327 0.030 0.547 86 0.23

Overlaps a splice site 0.567 1005 1.2e-5 0.561 239 0.035

Exon 0.530 2631 1.2e-3 0.572 537 5.0e-4

59 UTR 0.593 1352 3.8e-12 0.603 341 7.1e-5

39 UTR 0.520 648 0.18 0.432 162 0.96

Overlaps start codon 0.685 504 3.8e-17 0.767 159 4.2e-12

Overlaps stop codon 0.484 190 0.69 0.511 45 0.5

Total 0.552 8054 5.1e-21 0.566 1862 6.5e-9

1The strand preference score and association statistic was calculated in a manner similar to Pedersen et al. (2005)[8]. RNAz scores were evaluated on both strands. Each
position was assigned a strand preference score depending on if the higher score was on the sense strand (strand preference score = 1), the antisense strand (strand
preference score = 0), or if the scores on the two strands were equal (strand preference score = 0.5). This association statistic was assumed to be binomial distributed
with parameter p = 0.5. The alternate hypothesis is that p deviates from 0.5.

doi:10.1371/journal.pone.0002812.t004
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Clustering motifs by structural similarity
To identify groups of related predicted secondary structures, we

clustered all of the search window hits by structural similarity (see

Materials and Methods) to identify structure-based classes.

Structural classes of predicted secondary structures are available

at http://www.broad.mit.edu/ftp/pub/seq/msc/pub/aspergillus_

folding/. Another study clustering the results of a whole-genome

RNAz search in Ciona by structural similarity has recently been

published [31]. Like this previous study, we were able to recover

tRNAs as a structure-based class, in addition to identifying new

classes of predicted secondary structures.

The entire clustering process (see Figure 1) was also repeated on

shuffled controls. Because there were fewer hits in the shuffled

controls than in native sequence, the shuffling process was

repeated several times in order to generate several sets of ‘‘shuffled

hits’’, in order to have a number of shuffled hits equal to the

number of native search window hits. We clustered both the native

and the shuffled search window hits, and compared the resulting

structure-based classes from native and shuffled sequence.

For each structure-based class, we calculated over-representa-

tion for each region of the genome. We applied p-value cutoffs

based on this overrepresentation for regions of the genome (p,1e-

7), and we required that the number of search window hits in a

cluster be less than 500, to rule out nonspecific clusters. We found

that native, unshuffled structure-based classes were much more

over-represented for specific regions of the genome than shuffled

structure-based classes. 97 unshuffled groupings make these

cutoffs, whereas only 19 shuffled groupings make these cutoffs,

and the p-values are much lower for the unshuffled ones (see

Supplementary Information; Figure S1).

Characteristic motifs by region of the genome
In the structure-based classes described above, we found that

different regions of the genome contained quite different motifs (see

examples in Figure 2, as well as on the website). Clusters

overrepresented in exons contain long structures, including many

long hairpins. This is in agreement with searches across the human

genome using EvoFold [8], which also yielded a surprising number

Figure 2. Examples of predicted secondary structure motifs by region of genome. a) Examples of long, branched hairpins found in exonic
regions; b) New bulgy hairpin motif found in intronic regions; c) Examples of known or predicted noncoding RNAs found in intergenic regions; d)
Examples of short hairpins found in 59 UTR regions; e) Examples of short hairpins found just inside exons near exon boundaries (the most common
type of motif in this region). Very few motifs were found in 39 UTR regions.
doi:10.1371/journal.pone.0002812.g002

Aspergillus RNA
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of long folds that overlap coding regions. The presence of substantial

amounts of secondary structure within exons agrees with the

findings of Katz and Burge [47], who showed computationally that

coding region sequences show a greater bias towards forming local

RNA structures (as shown by folding free energy) than their shuffled

counterparts. Other computational studies have predicted the

presence of extensive secondary structure in coding regions

[17,48,49]. Secondary structures overlapping coding regions are

interesting because they are often involved in genetic recoding, and

involve the dual constraints of codons and RNA structure.

However, these long hairpins we identified do not contain more

rare codons than expected. Examples of known uses of secondary

structure within coding regions include signals for selenocysteine

insertion [50], frameshifting [51], and RNA editing [52]. RNA

structure can also modulate rates of translation in order to allow for

proper protein folding.

Upstream 59 UTRs preferentially contain short hairpins (often

multiple short hairpins with intervening unstructured regions).

Many of these groupings of short hairpins over-represented in 59

UTRs exhibit positional bias. We calculated positional bias, using

the binomial distribution, for each 50 and 100 bp window between

0 and 500 bp upstream of the start site. Several clusters exhibited

bias for the region of the 59 UTR closest to the start codon (0–50 bp

or 0–100 bp upstream of the start codon). These clusters contained

mostly two or three short hairpins separated by unpaired linkers.

In contrast to 59 UTRs, there were no structural classes over-

represented in 39 UTRs. We also observed a lower density of high-

scoring search windows in 39 UTRs than in 59 UTRs (see Table 1).

This is surprising, because a previous search over the human

genome using RNAz [9] found roughly equal amounts of

predictions in 39 and 59 UTRs. Another previous search for

functional RNAs over the human genome using EvoFold [8]

Figure 3. Longer introns have more predicted secondary structure. a) The density of hits (the number of RNAz hits with RNAz score .0.5
divided by the total number of windows searched) is plotted against the length of the intron. You can see that longer introns have a higher density of
RNAz hits. b) The density of predicted paired bases also increases with the length of the intron. c) The density of predicted paired bases is plotted as a
function of the relative position within the intron, for four different length groups of introns. You can see that longer introns (light blue and yellow
curves) have a higher density of predicted paired bases across their entire length than shorter introns (the dark blue and pink curves).
doi:10.1371/journal.pone.0002812.g003
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found many more high-scoring motifs in 39 UTR regions than in

59 UTR regions. This previous study also showed that 39 UTRs

have greater bias for the coding strand than 59 UTRs, which is

also the opposite of what we observe (see Table 4 and Table S1).

Our results could indicate that RNA structure in 39 UTRs is not as

important in fungi as it is in human genomic sequence. Consistent

with this, human 39 UTRs are also significantly longer than fungal

39 UTRs [53]. It is also possible that RNAz is not able to detect 39

UTR sequences as well as EvoFold, since EvoFold is more

sensitive on AU-rich sequences, and RNAz is more sensitive on

GC-rich sequences [27].

Several interesting motifs were also found entirely within

noncoding regions, including several clusters of known tRNAs.

There were also several other small clusters of long predicted

secondary structures which are candidates for novel RNA genes

(see Supplementary Information).

No convincing plant or animal microRNAs were found in

Aspergillus, despite the fact that fungi branch from animals, and

both animals and plants have microRNAs. Since no miRNAs have

been previously identified in these fungi, it is not clear whether

fungi have miRNAs; and if they do, whether their miRNAs would

resemble animal or plant miRNAs. Fungi have RNAi [46], but to

date no evidence has been reported indicating that this system has

been adapted for use with microRNAs.

Motifs found in introns
Among the groups over-represented in introns, there is an

interesting motif: an approximately 60 bp long bulgy hairpin (see

Figure 2b). The structural classes containing this motif (one cluster

was obtained from each of the four clustering methods) are highly

enriched for introns (p,1e-13). Intron lengths in aspergillus follow

a very tight distribution, peaked at around 65 bp. However, the

introns containing this motif average 183 bp in length. Therefore,

a possible role for this motif is to decrease the effective length of

the intron or to more efficiently bring together the splice sites and/

or branch point for splicing efficiency. Another possibility is that

this motif positions the branch site for interaction with the U2

snRNP. There are several known examples of hairpins affecting

splicing efficiency [54,55]. Another possible role for this motif is

regulation of alternative splicing. This hairpin could serve as a

protein binding site, or change the relative distances of the splice

site and branch point, or of intronic or exonic splicing enhancers

or repressors (ESEs/ISEs). There are several known examples of

intronic hairpins that serve as probable or known binding sites for

Figure 4. Predicted base pairs are preferentially found just inside exon boundaries. Locations of predicted base pairs were tabulated
separately for four length categories of motifs (dark blue = 0–100 base long motifs, pink = 100–200 bases, yellow = 200–300 bases, light blue = 300–
400 bases). These locations of predicted base pairing are plotted near the a) start codon; b) stop codon; c) 59 splice site; and d) 39 splice site. Predicted
base-pairs involved in secondary structure are most common just inside exon boundaries, and many of these base-pairs are contained in short
predicted secondary structures (0–100 bp).
doi:10.1371/journal.pone.0002812.g004

Aspergillus RNA

PLoS ONE | www.plosone.org 8 July 2008 | Volume 3 | Issue 7 | e2812



proteins involved in regulating alternative splicing [56,57], or that

regulate alternative splicing by other means [58,59]. For example

the istem in Drosophila is very similar in length and appearance to

the motif we observe in aspergillus [56].

There is also a great deal of other secondary structure within

introns. In support of the idea that intronic secondary structure

can serve to effectly shorten the distance between splice sites in

introns that are longer than optimal, we observe that the density of

predicted secondary structure increases with the length of the

intron. This true for the density of intronic RNAz hits (see

Figure 3a), as well as the density of predicted paired bases (see

Figure 3b). Figure 3c shows the density of predicted intronic base

pairs as a function of the relative position across the intron. It can

be seen that longer introns have greater density of secondary

structure across their entire length than shorter introns. The same

relationships hold true when looking hits with RNAz score .0.5,

or just those with RNAz score .0.9. The average length of an

intron without predicted secondary structure is 89 bp; the average

length of an intron with predicted secondary structure is 141 bp.

Preference for predicted secondary structures to be
located just inside exon boundaries

We observe an enrichment of predicted base-pairs just inside

the exon boundaries (near the start codon, stop codon, 59 splice

site, or 39 splice site; see Figure 4). This effect can not be

completely explained by variations in sequence conservation near

the boundary regions (see Figure 5). For 59-most exons and middle

exons, there is a rise in sequence conservation near both ends of

the exon. However, last exons show a drop in sequence

conservation at their 39 end, but still exhibit an increase in

predicted secondary structure at their 39 end. (This enrichment for

secondary structure just inside exon boundaries can be observed

for both RNAz cutoffs of both 0.5 and 0.9.) This effect is

accentuated for shorter motifs (length,100 bp), which have their

predicted base pairs more concentrated towards exon boundaries

than longer motifs (See Figure 4).

For 39 and 59 splice sites (Figure 4c and 4d), there is a sharp

enrichment of predicted base pairs just inside the exon, and then

another broader secondary structure peak approximately 100 bp

away, on the intron side of the boundary. This second, broader

region of secondary structure enrichment is due to the secondary

structure peak just inside the next exon, at the other end of the

intron. This broader region of secondary structure is not as sharply

defined because of the variable length of the intervening intron.

We also observe an increase in the density of predicted

secondary structure within exons of mRNAs containing more

introns (See Figure 6). This is probably due to the fact that, as the

number of introns increases, the average length of an exon

decreases. Since exon edges are associated with a secondary

structure peak, the density of such secondary structure peaks is

increased in genes with more introns, resulting in a greater density

of secondary structure in genes with more introns. The size of the

Figure 5. The pattern of sequence conservation near exon boundaries cannot explain the secondary structure peak just inside exon
boundaries. The relative position within the exon is plotted versus the fraction of predicted base-pairs and sequence conservation for a) 59-most
exons; b) internal exons; and c) 39-most exons. The peak in predicted secondary structure inside the exon boundary is present regardless of whether
sequence conservation rises or drops near the exon boundary.
doi:10.1371/journal.pone.0002812.g005
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secondary structure peak just inside the exons is the same for genes

with one or more than one exon, so the increase is due to the

increased number of peaks. Interestingly, Katz and Burge [47]

looked computationally at secondary structure in bacterial coding

regions and found that genes with introns had greater bias towards

forming short, local secondary structures than intronless genes.

Experiments have shown that hairpins located just downstream

of the start codon can compensate for suboptimal start codon

context and increase translational efficiency [60]. Hairpins just

downstream of the start codon have also been implicated in

general cellular translational control in certain organisms [61].

Kochetov et al. have recently published a tool called AUG_hairpin

designed to locate such hairpins, preferentially found at base

positions 13–17 downstream of the start codon [62]. Our results

show that this sort of hairpin is widespread in aspergillus, although

the location downstream is broader (see Figure 4).

To further examine what sorts of motifs are found in these peaks at

the edges of exons, we clustered predicted secondary structures found

only in the first and last 10% of exons by structural similarity. The

largest structural classes found were short hairpins and variations on

short hairpins (see Figure 2e). Similar structural classes were obtained

for 59 and 39 ends of genes, and 59 and 39 splice sites.

Conclusions
We have performed a computational search for functional

RNAs across a whole-genome alignment of six Aspergillus genomes,

and clustered the resulting predictions by structural similarity. We

identify a novel, ,60 bp long hairpin motif in 86 introns. We find

no evidence of microRNAs in Aspergillus. 39 UTRs contain very

little secondary structure compared to other regions. 59 UTRs

contain groupings of short hairpins, which are biased to lie within

50–100 bp of the start codon. We find that introns contain a great

deal of secondary structure, and we show that the density of

predicted intronic RNAs increases with the length of introns.

We find that predicted paired bases are most common just

downstream of the start codon and 39 splice site, and just upstream

of the stop codon and 59 splice site (just inside all types of exon

boundaries). It appears that this effect is not due simply to sequence

conservation within these boundary regions. The motifs found in

these regions are short hairpins. We also find a surprising amount of

long RNA structures within exons (primarily long, branched

hairpins). The density of predicted RNA secondary structure within

exons increases with the number of introns in a gene, probably

because of the increased number of exonic boundary regions

enriched for secondary structure near the additional splice sites.

Despite our estimates of our false positive rate (approximately 30–

40% for RNAz score .0.5 and 17–21% for RNAz score .0.9), it is

not clear what fraction of our predicted secondary structures are real

because of difficulties in calculating false positives using shuffled

controls. The real false positive rate is likely to be substantial, and

further experimental work is necessary to more accurately charac-

terize the number of functional RNAs in these fungi. It is clear that

computational methods for finding and predicting functional RNAs

lag behind methods for predicting protein-coding genes, and will be

the subject of further development. However, RNAz was able to

identify the majority of known RNAs that were contained in our

alignments. And in agreement with recent results in the human

genome [8,9], it is clear that there is a large quantity of conserved

RNAs of unknown function in these Aspergillus genomes, including

several interesting specific predictions.

Supporting Information

Figure S1 Unshuffled clusters have lower p-values than shuffled

clusters. After clustering, p-values were computed for over-

representation for certain genomic regions (introns, exons, etc.).

These p-values were much lower for clusters made from unshuffled

hits than those made from shuffled hits. The tail of the distribution

displayed (low p-values) is much longer for the unshuffled hits.

Found at: doi:10.1371/journal.pone.0002812.s001 (0.61 MB TIF)

Table S1 Strand Bias of RNAz hits.

Found at: doi:10.1371/journal.pone.0002812.s002 (0.04 MB

DOC)
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