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Abstract

Background: Hypertrophic (HCM) and dilated (DCM) cardiomyopathies result from sarcomeric protein mutations, including
cardiac troponin T (cTnT, TNNT2). We determined whether TNNT2 mutations cause cardiomyopathies by altering cTnT
function or quantity; whether the severity of DCM is related to the ratio of mutant to wildtype cTnT; whether Ca2+

desensitization occurs in DCM; and whether absence of cTnT impairs early embryonic cardiogenesis.

Methods and Findings: We ablated Tnnt2 to produce heterozygous Tnnt2+/2 mice, and crossbreeding produced homozygous
null Tnnt22/2 embryos. We also generated transgenic mice overexpressing wildtype (TGWT) or DCM mutant (TGK210D) Tnnt2.
Crossbreeding produced mice lacking one allele of Tnnt2, but carrying wildtype (Tnnt2+/2/TGWT) or mutant (Tnnt2+/2/TGK210D)
transgenes. Tnnt2+/2 mice relative to wildtype had significantly reduced transcript (0.8260.06[SD] vs. 1.0060.12 arbitrary units;
p = 0.025), but not protein (1.0160.20 vs. 1.0060.13 arbitrary units; p = 0.44). Tnnt2+/2 mice had normal hearts (histology, mass,
left ventricular end diastolic diameter [LVEDD], fractional shortening [FS]). Moreover, whereas Tnnt2+/2/TGK210D mice had
severe DCM, TGK210D mice had only mild DCM (FS 1864 vs. 2967%; p,0.01). The difference in severity of DCM may be
attributable to a greater ratio of mutant to wildtype Tnnt2 transcript in Tnnt2+/2/TGK210D relative to TGK210D mice (2.4260.08,
p = 0.03). Tnnt2+/2/TGK210D muscle showed Ca2+ desensitization (pCa50 = 5.3460.08 vs. 5.5860.03 at sarcomere length 1.9 mm,
p,0.01), but no difference in maximum force generation. Day 9.5 Tnnt22/2 embryos had normally looped hearts, but thin
ventricular walls, large pericardial effusions, noncontractile hearts, and severely disorganized sarcomeres.

Conclusions: Absence of one Tnnt2 allele leads to a mild deficit in transcript but not protein, leading to a normal cardiac
phenotype. DCM results from abnormal function of a mutant protein, which is associated with myocyte Ca2+

desensitization. The severity of DCM depends on the ratio of mutant to wildtype Tnnt2 transcript. cTnT is essential for
sarcomere formation, but normal embryonic heart looping occurs without contractile activity.
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Introduction

The long-term response of the heart to pathological stimuli is

composed of maladaptive remodeling characterized by hypertro-

phy and/or dilation, leading to heart failure. Individuals in the

United States are at a 20% lifetime risk of heart failure, which is

the most common cause of death. Cardiomyopathies are primary

disorders of the myocardium resulting from heritable mutations in

single genes. Familial hypertrophic (HCM) and dilated cardiomy-

opathy (DCM) are among the most common inherited cardiovas-

cular disorders, with prevalences of 200 and 36.5/100,000,

respectively [1]. At least 70% of HCM is caused by mutations in

sarcomeric protein genes. The cardiac troponin T protein (cTnT),

encoded by the gene TNNT2, is a component of the troponin

complex which allows actomyosin interaction and contraction to

occur in response to Ca2+. Although TNNT2 is commonly mutated

in HCM, surprisingly, it has been found that distinct TNNT2

mutations also lead to DCM [2].

Cardiomyopathies secondary to TNNT2 mutations are inherited

as autosomal dominant traits. In autosomal dominant diseases,
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only one of two alleles of the responsible gene is mutant. In some

instances, mutations produce disease by inactivating an allele and

reducing the quantity of functional protein (haploinsufficiency).

However, in other instances, mutations create a mutant protein

(‘‘poison peptide’’) which interferes with normal function or

assumes a new function. A few mouse models have been reported

with ablations of other genes encoding sarcomeric proteins

mutated in HCM. In the heterozygous state, in which one allele

remains intact, no phenotype abnormalities have been noted for a
tropomyosin [3,4], cardiac myosin binding protein C [5], and

cardiac troponin I [6]. These observations suggest that haploin-

sufficiency of these genes does not lead to HCM. However, no

ablations have been studied of a gene mutated with a significant

frequency in both HCM and DCM. The differing phenotypes of

HCM and DCM resulting from TNNT2 mutations suggests that

divergent mechanisms lead from different mutations to either

phenotype. To address whether haploinsufficiency of TNNT2 is

partially or completely responsible for either HCM or DCM, we

ablated Tnnt2 in a mouse model by gene targeting.

Since haploinsufficiency is unlikely to lead to both HCM and

DCM, it is probable that abnormal function of a mutated cTnT

contributes to at least one phenotype. To assess possible ‘‘poison

peptide’’ in vivo effects of the human Lys210 deletion (K210D)

DCM mutation in TNNT2, we generated transgenic mice with

cardiac overexpression of mutant or wildtype cTnT. Moreover, we

determined the effect of the relative abundance of mutant cTnT

on the severity of DCM. Although previous investigations have

been inconsistent, in vitro studies have suggested that HCM

mutations in several genes lead to an increase in Ca2+ sensitivity,

increases in tension generation, and/or increases in ATPase

activity [7–12], whereas DCM mutations are associated with Ca2+

desensitization and/or decreased ATPase activity in vitro or in

permeabilized rabbit cardiac muscle fibers and isolated myocytes

[13–18].

In this study, heterozygous mice lacking one allele of Tnnt2

(Tnnt2+/2) had a mild deficit in transcript, no detectable deficit in

protein, and no detectable phenotype abnormalities. In contrast,

homozygous null embryos (Tnnt22/2) had disorganized sarco-

meres and noncontractile hearts leading to death by embryonic

day 10.5. Despite the absence of contractile activity, normal

cardiac looping occurred in these embryos. Moreover, when a

transgene with the human DCM TNNT2 K210D mutation was

introduced into Tnnt2+/2 mice (Tnnt2+/2/TGK210D), they devel-

oped DCM and their papillary muscle fibers showed Ca2+

desensitization. TGK210D mice, with two endogenous alleles of

Tnnt2 intact, had a lower ratio of mutant to wildtype transcript,

and a milder phenotype. These results suggest that TNNT2

mutations lead to cardiomyopathies because of abnormally

functioning mutant cTnT rather than haploinsufficiency of the

protein. Moreover, the severity of DCM is correlated with the

ratio of mutant to wildtype Tnnt2 transcript. Although cTnT is

essential for sarcomere formation and contraction, normal looping

of the embryonic heart occurs in the absence of contractile activity.

Materials and Methods

All studies were approved by the University of Pittsburgh

Institutional Animal Care and Use Committee (IACUC). All mice

were studied at 8–10 weeks of age unless otherwise indicated.

Generation of Tnnt2 ablated mice
A murine genomic segment containing the Tnnt2 gene was

subcloned from the CitbCJ7 BAC library, clone 353I2 (Invitro-

gen). A loxP-flanked (floxed) neomycin resistance gene driven by

the PGK promoter was inserted in place of the 39 segment of Tnnt2,

including exon 14, with a thymidine kinase gene downstream of

the genomic segment (Figure 1) [19]. The construct was

electroporated into 129/SvEv strain TC1 ES cells (a kind gift

from Philip Leder, M.D., Harvard Medical School). Targeted ES

cells were selected with Genetecin/G418 (Invitrogen) and FIAU

(Moravek), and homologous recombination confirmed by South-

ern blotting. ES cells were microinjected into mouse blastocysts to

generate chimeras, which were then bred to produce heterozy-

gotes with Tnnt2 ablation (Tnnt2+/2). Genotypes were confirmed

by Southern blotting and multiplex PCR using three primers to

amplify the wildtype and mutant alleles (primers F1, 59-

ATGACAACCAGAAAGTGTGAGTGT-39; R1, 59-GAGTTG-

GACAGATACAAGGGTCTT-39; R3, 59-CTGGACG-

TAAACTCCTCTTCAGAC-39). With Tnnt2 ablation, primers

F1 and R3 gave a product size of 260 bp; in the presence of

wildtype genomic sequence, F1 and R1 gave a product size of 617

bp. The floxed neomycin cassette was excised by mating with

transgenic EIIa-Cre recombinase mice (129/SvEv background).

Genotyping was performed by multiplex PCR using three primers

designed to amplify the wildtype and mutant alleles (primers F1;

F2, 59-GCTGTATTTCACATCCAAACCATA-39; R2, 59-

TCCTGGTGACTGATGATAATAACG-39). With the neomy-

cin cassette excised, primers F1 and R2 gave a product size of 324

bp; in the presence of wildtype genomic sequence, F2 and R2 gave

a product size of 506 bp.

Generation of Tnnt2 transgenic mice
The Tnnt2 cDNA was amplified from murine cardiac RNA by

reverse transcription-polymerase chain reaction (RT-PCR) (Qia-

gen) with primers F3, 59- AGACCTGTGTCGACTCCCTGTT-

CAGAGGGAGAGCCGAGAG-39, and R4, 59- AAACAGGAG-

TAAGCTTTGGGTGCCAAGGAGGACCCAGAGC-39, and

then subjected to PCR mutagenesis to delete nucleotides AAG

at positions 628–630, encoding the lysine deletion at codon 210

(K210D). The wildtype and K210D Tnnt2 cDNA were inserted

into a pC126 expression vector, containing a highly active cardiac

myocyte specific aMHC promoter, a human growth hormone 39

untranslated region (UTR), and a polyadenylation terminator (a

kind gift from Jeffrey Robbins, Ph.D., Cincinnati Children’s

Hospital) [20]. The plasmids were linearized, size fractionated,

purified (QIAquick Gel Extraction Kit, Qiagen), and microinject-

ed into fertilized FVB mouse oocytes. Presence of the wildtype

(TGWT) and K210D Tnnt2 (TGK210D) transgenes was confirmed

by Southern blotting and PCR with primers F4, 59-CTGAGA-

CAGAGGAGGCCAAC-39, and R5, 59-CAGCCTC-

CAGGTTGTGAATA-39. Five TGK210D and four TGWT founder

lines were generated, and lines of each genotype had similar

phenotypes. One representative mutant and wildtype transgenic

line was backcrossed for at least ten generations into a 129/SvEv

background to generate TGK210D, TGWT, Tnnt2+/2/TGK210D

and Tnnt2+/2/TGWT mice in a uniform genetic background.

RNA analyses
Hearts were harvested immediately after sacrifice of the mouse,

washed in PBS, and flash frozen in liquid nitrogen. RNA was

isolated from cardiac tissue by lysis in ice cold Trizol (Invitrogen)

and chloroform extraction and treated with 10 U DNase I (Roche)

/ 10 mg at 37uC for 10 min. RNA quantity was determined by OD

measurement at 260 nm. Northern blots were performed with 2

mg RNA per gel lane using the following antisense biotinylated

riboprobes (Strip-EZ RNA Kit, Ambion): the Tnnt2 coding

sequence, corresponding to nucleotides 169–630 of the published

sequence (NM_011619); the Tnnt2 39 UTR (present only in
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endogenous gene transcript), corresponding to nucleotides 909–

1111 of the published sequence (NM_011619); the human growth

hormone 39 UTR (present only in transgene transcript); or the

GAPDH coding sequence. Reverse transcription-PCR was

performed and the product sequenced using the BigDye

Terminator v3.1 Cycle Sequencing Kit (ABI).

Realtime quantitative reverse transcription-PCR (QPCR) was

performed as described [21]. Reverse transcription was carried out

with the SuperScript First-Strand Synthesis System as recom-

mended by the manufacturer (Invitrogen). The cDNA was then

used as template for QPCR with specific primers on an ABI Prism

7000 Sequence Detection System (Applied Biosystems). Primers

amplifying the housekeeping gene cyclophilin were used as a

control. Hot-start PCR was performed with the SYBR Green

PCR Master Mix (Applied Biosystems). The PCR mixtures were

pre-heated at 50uC for 2 min and then at 95uC for 10 min to

activate the AmpliTaq Gold DNA polymerase, followed by 40

cycles of amplification (95uC for 15 s; 60uC for 1 min). A final

extension step was performed at 60uC for 10 min. Primers were

tested on cDNA, reverse transcriptase-negative samples, and 0.1%

diethyl pyrocarbonate-treated water to exclude amplification of

genomic DNA and primer-primer interactions. Equivalence and

efficiency were tested by amplifications on serial dilutions of RNA.

Quantification was performed using the comparative Ct method

(22DDCt).

Protein analyses
Cardiac tissue was homogenized in 20 volumes of protein

extraction buffer (in mM, 50 Tris at pH 8.0, 200 NaCl, 20 NaF,

20 b-glycerolphosphate, 1 DTT, with 0.5% NP40, 1 protease

inhibitor tablet / 7 ml buffer, and 1 phosphatase inhibitor tablet /

10 ml buffer [Roche]). The homogenate was allowed to settle on

ice for 10 min, and then centrifuged at 10,000 6 g for 10 min.

The supernatant was stored at -80uC for protein studies. All

protein quantities in the proposed studies were measured by the

Bradford method (Bio-Rad). Immunoblots were performed a using

10–20 mg of protein per lane loaded onto an appropriate

concentration protein gel (Pierce) and subjected to electrophoresis

at 120 V for 45 min. Samples were transferred from the gel to a

PVDF membrane. The membrane was blocked and incubated at

4uC overnight with primary antibody recognizing cTnT, troponin

C (TnC), troponin I (cTnI), actin, tropomyosin, b-myosin heavy

chain (MHC), or GAPDH (Santa Cruz Biotechnology, # sc-8121,

#sc-20642, #sc-15368, #sc-1615, #sc-18174, #sc-20641, and

RDI Research Diagnostics # RDI-TRK5G4-6C5, respectively) at

1:200 dilution, followed by the appropriate horseradish peroxi-

dase-conjugated secondary antibody (Santa Cruz or Amersham) at

1:5000 dilution at room temperature for 45 min. Proteins were

visualized and quantified by enhanced chemiluminescence

(Pierce). Signal intensity was normalized to protein loading using

GAPDH immunoblots or Coomassie blue gel staining.

Figure 1. Generation of Tnnt2+/2 mice. A. A targeting construct containing a neomycin resistance gene (neo/zeo) between loxP sites (triangles)
was introduced into the murine Tnnt2 locus by homologous recombination in murine ES cells, ablating the 39 segment of the gene, including exon
14. ES cells were microinjected into mouse blastocysts to generate chimeras, which were bred with wildtype mice for germline transmission of the
Tnnt2 ablation. The neomycin resistance gene was excised using Cre-mediated excision by mating with EIIa-Cre recombinase mice. Horizontal arrows
indicate PCR primers (F1, F2, R1, R2, R3) used for genotyping as described in ‘‘Materials and Methods.’’ B. Genomic DNA from mice prior to Cre-
mediated excision of the neomycin resistance gene was digested with Hind III and Southern blotted with the probe indicated in panel A to
demonstrate homologous recombination. A Hind III restriction site in the neomycin resistance gene produced a smaller restriction product in the
presence of homologous recombination. WT, wildtype; TK, thymidine kinase gene.
doi:10.1371/journal.pone.0002642.g001
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Echocardiography
Transthoracic echocardiography was performed on a Visual-

Sonics Vevo 770 machine [22]. Mice were sedated with

tribromoethanol (125 mg/kg IP). 2D short-axis images of the left

ventricle were obtained. Left ventricular end diastolic (LVEDD)

and end systolic (LVESD) chamber dimensions and wall thickness

(LVWT) were obtained from M-mode tracings based on

measurements averaged from three separate cardiac cycles. Left

ventricular fractional shortening (FS) was calculated as (LVEDD-

LVESD)/ LVEDD 6 100%.

Electrocardiography (ECG) and electrophysiological
studies

Continuous telemetry electrocardiograms (ECGs) were recorded

from conscious mice and analyzed as described [23]. Mice were

anesthetized with tribromoethanol, wireless transmitters (Data

Sciences International) implanted subcutaneously, and leads tunneled

subcutaneously to the right shoulder and the left subcostal areas to

simulate a lead II surface ECG. For monitoring, mice were housed in

cages over receiver plates connected to a computer where digitized

signals were stored. Monitoring was performed for $24 hours. Data

were analyzed for heart rate, cardiac cycle intervals, and spontaneous

atrial or ventricular arrhythmia occurrence.

In vivo electrophysiological studies were performed as described

[24]. An ECG was obtained with subcutaneous limb needles. An

octapolar catheter (NuMed) was advanced through the right

external jugular vein to the right ventricular apex. Baseline cardiac

cycle intervals were measured including RR, PR, QRS, QT, AH,

and HV intervals. Sinus node function was evaluated by

measuring sinus node recovery time (SNRT) after pacing the

right atrium at a cycle length of 100 ms for 60 s, and correcting for

baseline heart rate (SNRTc = SNRT2RR) (Bloom stimulator,

Fisher). Atrioventricular (AV) and VA Wenckebach and 2:1 cycle

lengths were determined. Programmed atrial and ventricular

stimulation was performed by delivering a premature stimulus

after the eighth stimulus in a drive train. Effective (ERP) and

functional refractory periods (FRP) were determined at a cycle

length of 100 ms for both AV and VA conduction. Ventricular

ERP was determined at a drive cycle length of 100 ms.

Programmed ventricular stimulation, consisting of burst pacing

at cycle lengths of 100 ms to 50 ms in decrements of 10 ms, and of

programmed stimulation with double and triple extrastimuli at a

drive cycle length of 100 ms with a coupling interval $30 ms,

were performed. Inducibility was defined as 10 beats of ventricular

tachycardia (VT).

Figure 2. Tnnt2 gene expression in mouse lines. A. Northern
blots of total cardiac RNA from wildtype (WT) and Tnnt2 heterozygous
ablated (Tnnt2+/2) mice using probes complementary to the coding
sequence and the 39 untranslated region (UTR) of the Tnnt2 transcript,
and the GAPDH transcript as a loading control. A mild deficit in Tnnt2
transcript, quantified at 18% by densitometry, was apparent in Tnnt2+/2

mice. B. Northern blots of total cardiac RNA from mice of the indicated
genotypes using a probe complementary to the coding sequence of
the Tnnt2 transcript, comprising both endogenous and transgene
transcript (total); and a probe complementary to the human growth
hormone 39 UTR, specific to the transgene transcript. The intensity of
18S and 28S rRNA bands from ethidium bromide stained agarose gels

was used to quantify RNA loading. Significant increases in Tnnt2
transcript were apparent in mice carrying the wildtype (TGWT) or the
K210D Tnnt2 (TGK210D) transgene. C. Reverse transcription-PCR and
sequencing of cardiac Tnnt2 mRNA showing deletion of codon AAG
encoding lysine at position 210 in hearts from TGK210D and Tnnt2+/2/
TGK210D, but not wildtype (WT), mice. D. Immunoblots of total protein
extracts from the hearts of wildtype (WT) and Tnnt2+/2 mice using
antibodies specific for cardiac troponin T (cTnT), troponin C (TnC),
troponin I (cTnI), tropomyosin, actin, and a myosin heavy chain (MHC).
GAPDH loading control immunoblots are shown corresponding to the
membranes used for the immunoblots above. Levels of these
sarcomeric proteins were unchanged between genotypes. E. An
immunoblot of total protein extracts from the hearts of three wildtype,
Tnnt2+/2, Tnnt2+/2/TGK210D, and Tnnt2+/2/TGWT mice was performed
using an antibody specific for cardiac troponin T (cTnT). cTnT protein
levels were unchanged among all genotypes. Electrophoresis of these
protein extracts on a polyacrylamide gel, followed by Coomassie blue
staining, was used to correct for the relative quantity of protein loaded
for the immunoblot.
doi:10.1371/journal.pone.0002642.g002
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Histopathology
For light microscopy, cardiac tissue was fixed in 4%

formaldehyde (Polysciences), mounted in paraffin blocks, and

sections stained with hematoxylin and eosin (H&E) or Masson

trichrome. For electron microscopy, tissue was fixed with 2.5%

gluteraldehyde and 2% paraformaldehyde in 0.11 M cacodylate

buffer, postfixed in 1% osmium tetroxide (OsO4), and then 1%

uranyl acetate. The fixed tissue was dehydrated in alcohol, rinsed

in propylene oxide, and embedded with 1:1 propylene and Spurr’s

resin solution. The solution was replaced with 100% Spurr’s

solution and polymerized at 70uC for 48 hours.

Biomechanical studies
Hearts were excised, placed in ice-cold PBS, and then

transferred to relaxing solution (in mM, 40 BES [pH 7.0], 20

KCl, 1 free Mg2+, 5 MgATP, 10 creatine phosphate, 20 EGTA, 1

DTT, 0.01 leupeptin, 0.1 PMSF, 180 ionic strength). Anterior left

ventricular papillary muscles were dissected, cut into strips, and

skinned overnight in relaxing solution with 1% Triton X-100 at

4uC. Skinned muscle bundles were mounted in a 750 ml bath and

were attached to a length controller (model 322B, Aurora

Scientific, Toronto, Ontario, Canada) at one end and a force

transducer (model 403A, Aurora Scientific, Toronto, Ontario,

Canada) at the other end using aluminum T-clips (KEM-MIL-

CO, Sunnyvale, CA). Average bundle dimensions were approx-

imately 1 mm long by 180 mm wide. Sarcomere length (SL) was

determined using laser diffraction (Spectra-Physics, 10mW HeNe

laser, Mountain View, CA) and set at either 1.9 or 2.3 mm. The

muscle bundle was then fully activated twice prior to generation of

force-pCa curves. Activating solution (pCa 4.33) contained all the

ingredients of relaxing solution (pCa 10). Force-pCa data were

collected by exposing the skinned fiber to various concentrations of

free calcium (pCa range 7.00–4.33) that were generated by mixing

relaxing and activating solutions in appropriate proportions.

Normalized force was calculated as the ratio of the measured

force at a given pCa and the maximally activated force (i.e., force

at pCa = 4.33). Normalized force-pCa data were fitted to a

modified Hill equation [25] using a nonlinear regression algorithm

(Prism, GraphPad Software, San Diego, CA). Two parameters

were estimated from normalized force-pCa data for each fiber:

pCa50 (pCa required to produce normalized force of 50%) and

Hill coefficient (a measure of the steepness of the normalized force-

pCa curve, which characterizes the cooperative phenomena in

muscle force generation). All quantitative data are presented in

tables as mean 6 standard deviation (SD) or mean 6 standard

error (SE), as indicated. Most of the analysis consisted of

comparing two groups. This was accomplished using either

Student’s t test or chi-squared test. The analysis of force-pCa

data consisted of more than two groups: skinned muscle fibers

from two types of mice, with measurements made at two

sarcomere lengths in each muscle fiber. These data were analyzed

using two-way (mouse type and sarcomere length) ANOVA with

one repeated measure (sarcomere length). Post hoc pairwise

comparisons were made using the Tukey’s test.

Embryonic studies
Three to four week old Tnnt2+/2 females were superovulated

with pregnant mare serum (5 IU IP), followed two days later by

human chorionic gonadotropin (5 IU IP), and then mated with

adult Tnnt2+/2 males. Pregnant females were sacrificed and

embryos were harvested at 8.5–12.5 days postcoitum (pc). For

qualitative studies of contractility, day 9.5 embryos were attached

to the experimental chamber on the stage of an Olympus IX71

inverted microscope. The chamber was perfused with 3 ml/min

Tyrode solution at 37uC. Cardiac contractile function was indexed

by spontaneous or electrically stimulated heartbeats measured with

a video edge detector and specialized data acquisition software

(SoftEdge Acquisition System and IonWizard, IonOptix).

Data analysis
Data analysis methodologies for biomechanical studies are

described above. All other quantitative data are presented in tables

as mean 6 standard deviation (SD), unless otherwise indicated.

Differences between two groups were analyzed by Student’s t test

or chi-squared test. For comparisons among more than two

groups, ANOVA was performed, followed by post hoc Bonferroni

correction for multiple comparisons.

Prior presentations of data
This work was presented orally at the 2006 Scientific Sessions of

the American Heart Association (November 2006) and the 2007

Keystone Symposium on Molecular Pathways in Cardiac

Development and Disease (January 2007).

Results

Tnnt2+/2 mice had a mild deficit in transcript and no
deficit in protein, with a normal phenotype

Mice lacking one allele of Tnnt2, designated Tnnt2+/2, were

generated by gene targeting (Figure 1). We assessed the effect of

loss of one allele on cardiac expression of Tnnt2. Northern blots of

cardiac RNA from wildtype and Tnnt2+/2 mice were hybridized to

probes complementary to the coding sequence and the 39 UTR of

the transcript (Figure 2A). Signal intensity showed only a mild

decrease in Tnnt2 transcript, after correction for loading, with both

the coding sequence (wildtype, 1.0060.12; Tnnt2+/2, 0.8260.06;

p = 0.029; arbitrary units) and the 39 UTR probe (wildtype,

1.0060.13; Tnnt2+/2, 0.8260.06; p = 0.025). No bands of

unexpected size were observed on northern blots in Tnnt2+/2

mice, indicating that the mutant allele did not give rise to

alternatively spliced transcripts and was in effect a null allele. This

deficit in transcript was confirmed by QPCR, which showed that

Tnnt2+/2 hearts had 0.6360.01 transcript relative to wildtype

(p,0.0001). At the protein level, no detectable deficit in cTnT was

observed in Tnnt2+/2 mice. Immunoblots of cardiac protein

showed cTnT levels of 1.0060.13 in wildtype and 1.0160.20 in

Tnnt2+/2 mice (arbitrary units, corrected for total protein loaded,

p = 0.44) (Figure 2D).

Consistent with the normal quantity of cTnT observed, no

phenotype abnormalities were observed in Tnnt2+/2 mice at age

8–10 weeks. Echocardiography indicated no differences in left

ventricular wall thickness (LVWT), left ventricular end diastolic

diameter (LVEDD), and fractional shortening (FS) relative to

wildtype mice (Table 1). No histopathological abnormalities,

including myofibrillar disarray and fibrosis, were present (data

not shown). No arrhythmias were observed on continuous

ambulatory ECG recordings. Thus, despite the loss of one allele

of Tnnt2, Tnnt2+/2 mice had only a mild decrease in transcript,

no detectable deficit in protein, and a normal cardiac

phenotype.

Given the close association of cTnT with other components of

the sarcomere, we determined whether loss of one allele of Tnnt2

was associated with alterations in these other proteins. Relative to

wildtype hearts, no changes in levels of troponin C (TnC),

troponin I (cTnI), actin, tropomyosin, or b-myosin heavy chain

(MHC) were detected in Tnnt2+/2 hearts by immunoblot

(Figure 2D).
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TGK210D mice had mild DCM
TGK210D mice were generated carrying a transgene encoding

the Lys210 deletion (K210D) in Tnnt2 found in human families with

DCM [2]. Similarly, TGWT mice were generated carrying a

transgene encoding the wildtype sequence of Tnnt2. The TGK210D

and TGWT lines studied had greater total Tnnt2 mRNA expression

than wildtype mice as assessed by northern blot (Figure 2B). A

transgene specific probe showed transgene transcript in only those

mice carrying the transgene. Reverse transcription-PCR and

sequencing of Tnnt2 mRNA from TGK210D hearts showed a deletion

of the codon AAG at nucleotide positions 628–630 (K210D)

(Figure 2C). In the presence of two similar sequences with unequal

abundance, direct sequencing is relatively insensitive to the sequence

present at lower frequency. Therefore, our failure to identify wildtype

sequence by direct sequence in TGK210D hearts suggested that a

larger proportion of the transcript was mutant. cTnT protein levels

remained unchanged in all transgenic lines. Echocardiography at age

9 weeks demonstrated findings consistent with mild DCM in

TGK210D compared to TGWT mice (Table 1), with trends towards

increased LVEDD (3.8160.26 vs. 3.5360.31 mm) and decreased FS

(2967 vs. 3965%) that did not meet statistical significance. No

abnormalities were noted on telemetry ECGs, electrophysiological

studies, and histological examination (data not shown).

Tnnt2+/2/TGK210D mice had severe DCM
When the mutant and wildtype transgenes were introduced into

Tnnt2+/2 to generate Tnnt2+/2/TGK210D and Tnnt2+/2/TGWT

mice, the Tnnt2+/2/TGK210D mice recapitulated severe DCM

features observed in humans with the K210D mutation [2]. As in

TGK210D mice, reverse transcription-PCR amplification and

sequencing of Tnnt2 mRNA from Tnnt2+/2/TGK210D hearts

showed only mutant K210D sequence (Figure 2C), confirming that

a larger proportion of the transcript was mutant. Hearts harvested

from Tnnt2+/2/TGK210D mice showed massive dilation (Figure 3).

Echocardiography at age 9 weeks showed an increase in LVEDD

in Tnnt2+/2/TGK210D relative to Tnnt2+/2/TGWT mice

(4.2160.29 vs. 3.5260.30 mm, p,0.01), and a decrease in FS

(1864 vs. 4167%, p,0.01) (Table 1). Moreover, the phenotype of

Tnnt2+/2/TGK210D mice was more severe than that of TGK210D

mice with significantly greater impairment in contractility (FS,

1864 vs. 2967%, p,0.01), along with a trend towards greater left

ventricular dilation (LVEDD, 4.2160.29 vs. 3.8160.23 mm) that

did not meet statistical significance. Electrophysiological studies

induced nonsustained ventricular tachycardia at low threshold in

two of five Tnnt2+/2/TGK210D mice as contrasted with only one of

10 wildtype mice (p = 0.02) (Figure 4). In addition, Tnnt2+/2/

TGK210D mice relative to wildtype mice had a significantly

(p,0.05) prolonged QRS duration (2462 vs. 2061 ms), HV

interval (1261 vs. 961 ms), and QT interval (4962 vs. 4462 ms),

suggesting conduction delays and repolarization abnormalities.

Molecular changes consistent with heart failure were evident by

QPCR at age 50 weeks in Tnnt2+/2/TGK210D relative to Tnnt2+/

2/TGWT mice. Atrial natriuretic peptide (ANP), brain natriuretic

peptide (BNP), and b-MHC (myosin heavy chain) were all elevated

5.9461.30, 3.7961.42, and 9.2160.68 fold, respectively (p,0.01).

Increases in collagen I (2.0860.03 fold, p,0.01) and matrix

metalloproteinase 2 (MMP2) (1.4560.06 fold, p,0.01) suggested a

role for extracellular matrix remodeling in the development of

DCM. We observed downregulation of PGC1a 0.1360.02

(p,0.01) and mitochondrial cytochrome B 0.3260.03 fold

(p,0.05), suggesting impaired mitochondrial biogenesis.

The difference in phenotype severity between TGK210D

and Tnnt2+/2/TGK210D mice correlated with a difference
in the proportion of mutant to endogenous wildtype
Tnnt2 gene expression

We performed QPCR to determine whether the differences in

the severity of the phenotype in TGK210D and Tnnt2+/2/TGK210D

Table 1. Cardiac morphology and function of mice assessed by echocardiography at nine weeks age.

Tnnt2+/+ (WT) Tnnt2+/2 TGK210D TGWT Tnnt2+/2/TGK210D Tnnt2+/2/TGWT

No. of mice 9 13 7 7 6 8

LVWT (mm) 0.7660.10 0.7760.14 0.7060.16 0.7460.07 0.6760.17 0.7760.07

LVEDD (mm) 3.6060.27 || 3.6260.23 || 3.8160.26 3.5360.31 || 4.2160.29 *{1# 3.5260.30 ||

FS (%) 3767 || 3767 || 2967 ||# 3965 || 1864 *{{1# 4167 {||

HR (bpm) 422641 374655 390697 398647 408628 397643

LVWT, left ventricular wall thickness at end diastole; LVEDD, left ventricular end diastolic diameter; FS, fractional shortening; HR, heart rate; bpm, beats per minute; WT,
wildtype. Significant differences in means for LVEDD and FS were observed between groups by ANOVA (p,0.001). p,0.01 by ANOVA and Bonferroni correction versus
*WT, {Tnnt2+/2, {TGK210D, 1TGWT, ||Tnnt2+/2/ TGK210D, #Tnnt2+/2/ TGWT.
doi:10.1371/journal.pone.0002642.t001

Figure 3. Hematoxylin and eosin staining of hearts from
wildtype and Tnnt2+/2/TGK210D mice. Hematoxylin and eosin
(H&E) stained tissue is shown at low (2X) and high (10X) magnification,
and Masson’s trichrome (MT) stained tissue is shown at high (10X)
magnification. Massive dilation of the mutant heart was apparent.
doi:10.1371/journal.pone.0002642.g003
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mice may be related to the relative abundance of mutant Tnnt2

transcript. The relative ratio of mutant to endogenous wildtype

transcript was 2.4260.08 greater in Tnnt2+/2/TGK210D mice

relative to TGK210D mice (n = 5 each group, p = 0.03), suggesting

that the presence of a greater proportion of mutant cTnT in

Tnnt2+/2/TGK210D mice leads to a more severe phenotype.

DCM in Tnnt2+/2/TGK210D mice is associated with
myofiber calcium desensitization

To determine the cellular basis for reduced cardiac contractility,

biomechanical studies were performed on skinned papillary

muscle fibers from Tnnt2+/2/TGK210D and Tnnt2+/2/TGWT

mice. Tnnt2+/2/TG K210D fibers showed Ca2+ desensitization

relative to Tnnt2+/2/TGWT (pCa50 = 5.3460.08 vs. 5.5860.03 at

SL = 1.9 mm, p,0.01; 5.4660.04 vs. 5.7160.03 at SL = 2.3 mm,

p,0.01) (Table 2). The length-dependent increase in Ca2+

sensitivity (Frank-Starling mechanism commonly seen in card-

foiac muscle) was not different between the two groups of

mice (DpCa50 = 0.1360.02 for Tnnt2+/2/TGWT and

DpCa50 = 0.1260.05 for Tnnt2+/2/TGK210D, p = 0.86) (Figure 5).

Moreover, no difference in maximally activated force was detected

(Table 2). There was a tendency for the Hill coefficient to increase

in the Tnnt2+/2/TG K210D fibers; however, this increase was not

statistically significant. An increase in Hill coefficient would imply

increased cooperativity; however, the biological significance of

changes in the Hill coefficient in the skinned fiber model remains

poorly understood.

The effect of absence of cTnT on embryonic cardiac
development

We studied the consequences of complete loss of Tnnt2 by

crossbreeding Tnnt2+/2 males and females to generate Tnnt22/2

homozygous null embryos. No newborn Tnnt22/2 pups were

observed, suggesting embryonic lethality. Embryos were harvested

at 8.5–12.5 days postcoitum (pc). At 11.5–12.5 days pc, 25% of the

embryos were dead and in various stages of resorption. All dead

embryos which were successfully genotyped were Tnnt22/2. All

living and grossly normal embryos were wildtype (Tnnt2+/+) or

Tnnt2+/2. At 9.5 days pc, the genotypes of 76 embryos were 9

Tnnt22/2 (12%), 46 Tnnt2+/2 (60%), and 21 Tnnt2+/+ (28%),

significantly different from the expected Mendelian ratio (p = 0.03),

with an under-representation of Tnnt22/2 embryos. Thus, some

Tnnt22/2 embryos may be lost even earlier than 9.5 days pc.

A northern blot on pooled RNA from five embryos of each

genotype showed the absence of Tnnt2 transcript in Tnnt22/2

embryos, and a 29% reduction in Tnnt2 transcript in Tnnt2+/2

embryos relative to Tnnt2+/+ embryos (Figure 6B). Whereas

Tnnt2+/+ and Tnnt2+/2 embryos appeared normal, all Tnnt22/2

embryos displayed impaired growth and cardiac abnormalities

(p = 1025). Tnnt22/2 embryos had appropriately looped hearts.

However, the ventricular walls appeared much thinner than those

of Tnnt2+/+ and Tnnt2+/2 embryos and large pericardial effusions

suggested heart failure (Figure 6A). On electron microscopy, no

organized sarcomeres were visible in Tnnt22/2 hearts. Structures

were visible which appeared to be Z bands and possibly

disorganized thick filaments. No contractility was observed in

any Tnnt22/2 hearts, either spontaneously or on electrical

stimulation.

Discussion

In this study, we ablated the murine Tnnt2 gene by homologous

recombination mediated gene targeting. In the heterozygous state

(Tnnt2+/2), there was a mild decrease in Tnnt2 mRNA, with no

detectable decrease in total cTnT protein, and a normal cardiac

phenotype. Homozygous null mice (Tnnt22/2) were not viable

beyond embryonic day 10.5. These embryos demonstrated normal

cardiac tube looping, but had thin ventricular walls and apparent

heart failure. Electron microscopy of cardiac myocytes showed a

lack of organized sarcomeres. When a Tnnt2 cDNA transgene with

a human DCM mutation, Lys210 deletion (K210D), was

introduced into mice retaining two endogenous alleles of Tnnt2

(TGK210D), they exhibited mild DCM, trending towards left

ventricular dilation and impaired contractility. When this

transgene was introduced into heterozygous null Tnnt2+/2 mice

Figure 4. Electrophysiological study in a Tnnt2+/2/TGK210D mouse. A surface electrocardiogram (ECG) and an intracardiac electrogram are
shown of a Tnnt2+/2/TGK210D mouse which had an inducible arrhythmia. Ventricular tachycardia (VT) was inducible by a drive train at 80 ms cycle
length, which self-terminated after approximately four seconds. NSR, normal sinus rhythm.
doi:10.1371/journal.pone.0002642.g004
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lacking one endogenous allele of Tnnt2 (Tnnt2+/2/TGK210D), they

displayed findings typical of severe DCM, including significant left

ventricular dilation, poor contractility, conduction delays, repo-

larization abnormalities, and inducible ventricular tachyarrhyth-

mias. Poor contractility was found to correlate with cardiac Ca2+

desensitization in skinned fibers. The difference in severity of

DCM in these mice was correlated with the ratio of mutant to

wildtype Tnnt2 transcript.

These results confirm and extend previous data suggesting that

mutations in genes encoding sarcomeric proteins do not cause

cardiomyopathy by means of haploinsufficiency. Since most HCM

and DCM mutations in human families are transmitted in an

autosomal dominant pattern, affected individuals carry one

normal and one mutant allele. Two mechanisms may lead to

cardiomyopathy—inactivation of an allele (a null allele), leading to

a reduction in transcript and functional protein (haploinsuffi-

ciency); or production of a mutant protein (‘‘poison peptide’’)

which interferes with normal function (dominant negative) or

assumes a new function. In the present study, loss of one allele of

Tnnt2 did not cause HCM or DCM, suggesting that neither

cardiomyopathy results from haploinsufficiency. However, severe

DCM developed with the addition of a transgene encoding a

DCM mutation, suggesting that the mutant transgene encodes a

protein with dominant negative activity.

The ablation of one allele of Tnnt2 in Tnnt2+/2 mice led only to a

mild 18–37% deficit in Tnnt2 mRNA, and no detectable decrease in

cTnT protein levels. Presumably, the lack of one allele of Tnnt2 is

mitigated by increased wildtype allele transcription or decreased

degradation of wildtype transcript; similarly, to compensate for the

mild deficit in transcript, increased translation and/or decreased

protein degradation must be responsible. Moreover, the levels of

other sarcomeric proteins closely associated with cTnT, namely

troponin C (TnC), troponin I (cTnI), tropomyosin, actin, and a
myosin heavy chain (MHC) were unchanged in Tnnt2+/2 mice. In

previously reported heterozygous knockout mice lacking single

alleles of a-tropomyosin and cardiac myosin binding protein C,

Figure 5. Normalized force-pCa relationships in Tnnt2+/2/TGWT and Tnnt2+/2/TGK210D skinned papillary muscle fibers. Normalized force
(i.e., ratio of force at a given pCa and maximally activated force at pCa = 4.33) developed at a range of Ca2+ concentrations was assessed at sarcomere
lengths 1.9 mm (Tnnt2+/2/TGWT N, Tnnt2+/2/TGK210D

&) and 2.3 mm (Tnnt2+/2/TGWT
#, Tnnt2+/2/TGK210D

%). There was a rightward shift of the force-
pCa curve in Tnnt2+/2/TGK210D muscle, indicating Ca2+ desensitization. Values are mean6SE (n = 10 for Tnnt2+/2/TGWT and n = 7 for Tnnt2+/2/TGK210D).
doi:10.1371/journal.pone.0002642.g005

Table 2. Characteristics of the force-pCa relationships in skinned papillary muscle fibers.

pCa50 Hill Coefficient
Maximal Force
(mN mm22) pCa50 Hill Coefficient

Maximal Force (mN
mm22)

Sarcomere Length 1.9 mm 1.9 mm 1.9 mm 2.3 mm 2.3 mm 2.3 mm

Tnnt2+/2/TGWT (n = 10) 5.5860.03 6.5460.89 45.964.6 5.7160.03 3.6560.11 62.366.5

Tnnt2+/2/TGK210D (n = 7) 5.3460.08 9.3462.47 34.565.3 5.4660.04 6.7261.09 63.1610.9

p ,0.01 NS NS ,0.01 NS NS

pCa50, pCa required for generation of 50% of maximal force. n, number of skinned fibers studied, taken from a total of 6 hearts in each group. NS, not significant. Data:
mean6SE. p values correspond to the comparison between Tnnt2+/2/TGWT and Tnnt2+/2/TGK210D fibers at the same sarcomere length.
doi:10.1371/journal.pone.0002642.t002
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mRNA levels were approximately half those of wildtype mice, but

protein levels remained unchanged [3–5]. Thus, stoichiometric

ratios of proteins are tightly regulated in the sarcomere.

The complete absence of cTnT is lethal during embryogenesis.

This study is the first to detail the effect of ablation of a sarcomeric

protein on mammalian embryonic cardiac development. We have

shown that cTnT is critical not only to sarcomere function but also

sarcomere assembly and structure. Electron microscopy of

Tnnt22/2cardiac myocytes demonstrated a complete lack of thin

filaments (Figure 6A), although Z bands and thick filaments may

possibly be present. Given the lack of organized sarcomeres, it is

not surprising that contractile activity was absent in the hearts of

Tnnt22/2 embryos. Null mutations in cardiac troponin T in

zebrafish [26] and troponin T in the flight muscle of Drosophila

melanogaster [27] similarly cause a lack of organized sarcomeres. In

Drosophila, the ablation of myosin heavy chain in the presence of

some troponin T mutations restores the normal morphology of the

thin filaments and the Z-discs, suggesting that the lack of

organized sarcomeres with troponin T mutations alone may be

mediated by aberrant actin-myosin interactions.

Whether hemodynamic forces and shear stresses resulting from

blood flow are required for normal early cardiac development is

controversial. Studies of Na+-Ca2+ exchanger (Ncx1) knock-out

embryos, in which some hearts appear not to contract but undergo

normal early morphogenesis, suggest that flow is not required.

However, a cardiac-specific knock-out [28] and RNA interference

[29] of Ncx1 in neonatal cardiac myocytes demonstrated no effect

on contraction. Our studies using cTnT, a direct participant in the

contractile apparatus, show that early cardiac tube morphogenesis

and looping appear to occur normally, in the absence of

contractile activity.

When mutant K210D cTnT was introduced by means of a

transgene, mice developed DCM. Interestingly, the extent of

endogenous Tnnt2 transcript correlated with the severity of the

phenotype. The mutant transgene led to a milder phenotype when

both alleles of the endogenous murine Tnnt2 remained intact, but a

more severe phenotype in Tnnt2+/2 mice lacking one allele of

endogenous Tnnt2. We have shown that this phenomenon reflects

a dose effect of the ratio of mutant to wildtype transcript, so that

greater amounts of mutant transcript, and presumably mutant

Figure 6. Morphology of Tnnt2+/+ (wildtype), Tnnt2+/2, and Tnnt22/2 embryos. A. Column 1, representative embryos at age 9.5 days
postcoitum. Columns 2–3, whole embryos and hearts stained with H&E at low and high power respectively. Columns 4–6, transmission electron
microscopy of hearts at increasing magnifications. Whereas Tnnt2+/2 embryos appeared normal, Tnnt22/2 embryos showed pericardial effusions on
gross inspection, thinning of the myocardium on H&E histology, and loss of organized sarcomeres on electron microscopy. B. A northern blot of total
pooled RNA from five embryos of each genotype (Tnnt2+/+, Tnnt22/2, and Tnnt2+/2) hybridized with a probe complementary to the Tnnt2 transcript
showed absence of transcript in Tnnt22/2 embryos and a 29% deficit of transcript in Tnnt2+/2 relative to Tnnt2+/+ embryos.
doi:10.1371/journal.pone.0002642.g006
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protein, lead to a more severe phenotype. The mutant cTnT protein

likely incorporates into the sarcomere along with a smaller amount of

wildtype protein and functions abnormally, leading to DCM.

Previous studies of other proteins have similarly found that the

severity of cardiomyopathy is related to the ratio of mutant to

wildtype protein [30]. Interestingly, a similar knock-in murine model

of the Tnnt2 K210D mutation has just been reported by Du and

colleagues [31]. Homozygous mutant knock-in mice were found to

have a more severe DCM phenotype than heterozygous knock-in

mice, suggesting a gene dosage effect. The mutant to wildtype

transcript or protein ratio was not measured in the heterozygous

mice. It is interesting that not only the homozygous knock-in mice,

but even the heterozygous knock-in mice, reported by Du and

colleagues had a more severe phenotype than the TGK210D described

in this report. It is possible that this difference is related to a greater

mutant to wildtype cTnT ratio in the heterozygous knock-in mice

than the TGK210D mice. Alternatively, strain differences may be

responsible for the differences in severity of the phenotype.

The phenotype heterogeneity observed in human cardiomyop-

athy patients with identical mutations may be related to the ratio

of mutant to wildtype transcript and protein, which may be a

product of modifier genetic, epigenetic, transcriptional and post-

transcriptional processes. However, this hypothesis remains to be

tested in human subjects.

The precise mechanisms whereby abnormal cTnT protein leads

to DCM will require further study. We have demonstrated Ca2+

desensitization in Tnnt2+/2/TGK210D mice, without any changes

in maximally activated force or length-dependent activation

characteristics (Frank-Starling mechanism). Although normal

maximal force generation was not impaired, it is likely that at

physiological intracellular Ca2+ concentrations the observed Ca2+

desensitization leads to decreased force generation in vivo. Ca2+

desensitization has been observed in permeabilized rabbit cardiac

muscle fibers and isolated myocytes into which K210D or R141W

(another DCM mutation) mutant cTnT was introduced [15–18].

The knock-in Tnnt2 K210D mice reported by Du and colleagues

were similarly found to have significantly lower Ca2+ sensitivity in

force generation, which was mitigated by a positive inotropic

agent, pimobendan, which directly increases myofilament Ca2+

sensitivity [31]. Similar to our findings, these mice retained normal

maximal force generation. In mice with DCM mutations in

cardiac a-myosin heavy chain (S532P and F764L), we found that

contractile function of isolated myocytes was depressed, both

mutant myosins exhibited reduced ability to translocate actin but

similar force-generating capacities, and actin-activated ATPase

activities were reduced [32]. In contrast, some but not all studies

have demonstrated an increase in Ca2+ sensitivity resulting in

increases in force generation, ATPase activity, and hypercon-

tractility in HCM mutations [1,33]. These findings suggest a

paradigm in which DCM mutations lead to Ca2+ desensitization

and impaired motor function, whereas HCM mutations lead to

Ca2+ hypersensitization and supernormal motor function.

A potential limitation of this study is that, because the human

mutation consists of the deletion of one of four consecutive lysine

residues, the mutant and wildtype cTnT proteins could not be

differentially quantified in these transgenic mice. Nevertheless, the

differences in the relative abundances of mutant and wildtype

Tnnt2 transcripts correlated closely with the severity of the

phenotype.

Our data lead us to make the following conclusions. Absence of

one Tnnt2 allele leads to only a mild deficit in transcript and no

detectable deficit in protein, and is associated with a normal

phenotype. DCM secondary to the Tnnt2 K210D mutation, and

likely other sarcomeric protein mutations, results from abnormal

function of a mutant protein and is associated with myocyte Ca2+

desensitization in vivo. The severity of DCM is related to the ratio

of mutant to wildtype Tnnt2 transcript. Haploinsufficiency of Tnnt2

appears not to be mechanistically related to the development of

HCM or DCM. Although cTnT is essential for sarcomere

formation and contractility, normal early cardiac morphogenesis

and looping of the embryonic heart occurs in the absence of

contractile activity.
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