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Abstract

Background: According to prevailing understanding, skeletal mechano-responsiveness declines with age and this apparent
failure of the mechano-sensory feedback system has been attributed to the gradual bone loss with aging (age-related
osteoporosis). The objective of this study was to evaluate whether the capacity of senescent skeleton to respond to
increased loading is indeed reduced as compared to young mature skeleton.

Methods and Findings: 108 male and 101 female rats were randomly assigned into Exercise and Control groups. Exercise
groups were subjected to treadmill training either at peak bone mass between 47–61 weeks of age (Mature) or at
senescence between 75–102 weeks of age (Senescent). After the training intervention, femoral necks and diaphysis were
evaluated with peripheral quantitative computed tomography (pQCT) and mechanical testing; the proximal tibia was
assessed with microcomputed tomography (mCT). The mCT analysis revealed that the senescent bone tissue was structurally
deteriorated compared to the mature bone tissue, confirming the existence of age-related osteoporosis. As regards the
mechano-responsiveness, the used loading resulted in only marginal increases in the bones of the mature animals, while
significant exercise-induced increases were observed virtually in all bone traits among the senescent rats.

Conclusion: The bones of senescent rats displayed a clear ability to respond to an exercise regimen that failed to initiate an
adaptive response in mature animals. Thus, our observations suggest that the pathogenesis of age-related osteoporosis is
not attributable to impaired mechano-responsiveness of aging skeleton. It also seems that strengthening of even senescent
bones is possible – naturally provided that safe and efficient training methods can be developed for the oldest old.
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Introduction

The primary evolutionary function of the bones is to bear the

muscle contraction- and gravity-induced mechanical forces exerted

on them without breaking, and ultimately, to enable the efficient

locomotion of the body [1]. To successfully carry out this

locomotive function, the bone tissue is equipped with a mechano-

sensory system that facilitates the skeletal adaptation to loading. In

essence, bones first sense the loading-induced deformation and then

elicit a response that eventually results in an appropriate modification

of the bone structure, if required, to cope with the altered loading

milieu (Figure 1A). It has been recently proposed that the

pathogenesis of age-related osteoporosis (i.e., the gradual loss of

mineral from bones with aging) would be attributable to a failure of

this control system [2]: either the mechano-sensitivity of bones is

reduced [3,4] or the capacity of bones to respond to loading is

weakened. An alternative pathomechanistic theory suggests that

bone loss in senescence represents simply an appropriate response

to reduced loading in a less active host [4] (Figure 1B).

Regarding the skeletal mechano-responsiveness per se, both

systemic factors (hormones such as estrogen and growth hormone)

[5–12] and local factors (growth factors such as insulin-like growth

factor 1 and 2) [13,14] have been shown to have a direct

modulatory effect. Also, individual responses to mechanical stimuli

have been shown to depend on genetics [15] and gender [16,17],

whereas the influence of age on bone mechano-responsiveness has

remained controversial [3,18–20]. The accumulation of adipocytes

to the bone marrow during aging has been speculated to accelerate

endocortical resorption [21], whereas it has been shown that

periosteal expansion continues well into old age, particularly in

men, implying that the mechanosensory system may be properly

functioning [22–24]. Experimental studies have shown that the

responsiveness of the aged skeleton is increased [19], reduced

[18,25], or unaffected [26–28]. In our previous study [28], we

showed that the ability of bones of young (5–19 week old) and

mature (33–47 week old) male rats to adapt to treadmill-running -

induced loading was similar, but the adaptive mechanisms

differed; in response to given exercise, the growing bones primarily
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increased cross-sectional size, while the mature bones mainly

increased bone density.

Accordingly, the objective of this study was to evaluate whether

the skeleton can maintain its capability to respond to increased

loading until very old age (senescence). The timing of the increased

exercise loading was chosen to coincide appropriate phases of the

rat lifespan: maturity and senescence. The mature rats have

stopped the longitudinal growth and reached the peak bone mass,

while the senescent rats represented the ultimate group in terms of

age as judged from more than 50% mortality among control

animals at the end of the experiment.

Materials and Methods

Animals
The sample size used in this study was based on a priori

knowledge on natural loss of older animals [29,30], the expected

loss being 20% and 50% in the mature and senescent age groups,

Figure 1. Functional Bone Adaptation (A) and the Proposed Hypothesis for Age-related Osteoporosis (B).
doi:10.1371/journal.pone.0002540.g001
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respectively, and on the assumed standard deviation of ,11% in

the breaking load of rat femur, the primary outcome [31]. To

detect a significant (p,0.05) 10% loading-induced response in the

breaking load of femur in the exercised groups (vs. controls) at

80% statistical power, a minimum of ,15 rats/group was required

at the end of the experiment. Accordingly, a total of 108 male rats

of the Sprague-Dawley strain were used in the experiment.

The rats were 3 weeks old at the beginning of the study. During

the first 2 weeks of the study, all rats ran on a flat-bed treadmill at

a slow speed (10–20 cm/s) for 3 minutes/day for 3 days a week to

let the animals to adapt the treadmill running and to exclude those

animals refusing to run (about 5% of the original population were

removed). The rats were then randomly assigned into four groups:

‘‘Mature exercised’’, and ‘‘Senescent exercised’’; and ‘‘Mature

control’’, and ‘‘Senescent control’’ (Table 1, Figure 2). The

animals were housed in cages (18635655 cm), four animals per

cage, at 20uC with a light cycle of 12 h. They were fed standard

laboratory chow and water ad libitum.

Exercise program
Both mature and senescent exercise groups were subjected to a

progressive exercise program for 14 weeks (Table 2). The training

began at the age of 47 in the Mature exercise group and at 75

weeks Senescent exercise group, respectively (Table 2, Figure 2).

To corroborate (or refute) the findings of male rats, a similar

experiment was also carried out using 101 female rats. The

determination of sample size, as well as the acclimation and

randomization procedures were carried out identically to males,

but due to the known increased longevity (increased frailty) of the

senescent female rats [32], the training protocol and starting age of

training were slightly modified in comparison to males (Table 3,

Figure 2).

After the exercise intervention, the exercised animals and their

age-matched control animals were euthanized, and body weight

and the weight of the uteri, if applicable, were measured. Femora

were excised and stored at 220uC in small freezer bags wrapped

in saline-soaked gauze bandages to prevent dehydration. This kind

of storage has been shown not to affect bone’s biomechanical

properties [33,34]. Tibiae were excised and dehydrated in an

ethanol series (30 and 70% ethanol) and stored in 70% ethanol.

The research protocol was accepted by the Ethics Committee for

Animal Experiments of the University of Tampere and the

Provincial Government of Western Finland Department of Social

Affairs and Health, Finland. The study conformed to the NIH

Guide for the Care and Use of Laboratory Animals.

Figure 2. The Design of the Study.
doi:10.1371/journal.pone.0002540.g002

Table 1. The Number of Rats at Different Period of the
Experiment.

At the Beginning
of the Experiment

At the End of
the Experiment

MALES

MATURE CONTROLS 23 16

MATURE EXERCISED 29 22

SENESCENT CONTROLS 24 10

SENESCENT EXERCISED 32 14

FEMALES

MATURE CONTROLS 22 16

MATURE EXERCISED 26 22

SENESCENT CONTROLS 23 10

SENESCENT EXERCISED 30 17

doi:10.1371/journal.pone.0002540.t001

Table 2. The Progressive Treadmill Exercise Regimen Used for
Male Rats.

Week Age (weeks)
Duration
(min)

Speed
(cm/s)

Inclination
(deg)

Mature Senescent

1 47 75 5 20 5

2 | | 10 20 10

3 | | 10 20 15

4 | | 10 30 15

5 | | 10 30 20

6 | | 10 30 20

7 | | 10 30 25

8 | | 10 30 25

9 | | 10 30 30

10 | | 10 30 30

11 | | 10 30 30

12 | | 10 30 30

13 | | 10 30 30

14 60 88 10 30 30

doi:10.1371/journal.pone.0002540.t002
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Bone analysis
At the day of testing, the femora were slowly thawed at the

room temperature and kept wrapped in saline-soaked gauzes

except during measurements. A digimatic caliper (Mitutoyo 500,

Andover, United Kingdom) was used to measure the length of

femora. In our laboratory, the coefficient of variation (CVrms) for

the determination of the length of the femora was 0.2% [35].

Peripheral quantitative computed tomography
The cross-sections of the femoral diaphysis and neck were

scanned with peripheral quantitative computed tomography

(pQCT, Stratec XCT Research M, software version 5.40B,

Stratec Medizintechnik GmbH, Pforzheim, Germany). For the

pQCT assessment of the diaphysis, the femur was inserted into a

specially constructed plastic tube with the shaft in axial direction,

and one cross-sectional slice was scanned at 50% of the length of

the femur [28]. The voxel size was 0.07060.07060.5 mm3 and

the scan speed was 3.0 mm/s. Total cross-sectional area (tCSA),

cortical cross-sectional area (cCSA), and cortical bone mineral

density (cBMD) were evaluated by the pQCT software using

contour mode 1 (threshold 214 mg/cm3) for tCSA and separation

mode 1 for cCSA and cBMD (threshold 710 mg/cm3). In our

laboratory, the CVrms in the femoral midshaft were 0.9% for the

tCSA, 1.5% for the cCSA, and 0.6% for the cBMD [36].

For the pQCT assessment of the femoral neck, the femur was

inserted into a specially constructed plastic tube with the femoral

neck in an axial direction [16]. The scan line was adjusted to the

midneck using the scout view option of the pQCT software. The

voxel size and scan speed were the same as described above. Total

cross-sectional area (tCSA), total bone mineral content (tBMC),

and total bone mineral density (tBMD) were determined using

contour mode 1 (threshold 214 mg/cm3) for tCSA, tBMC, and

tBMD. In our laboratory, the CVrms were 3.9% for tCSA, 2.2%

for tBMC and 2.1% for tBMD [36].

Mechanical testing
After the pQCT scanning, the right femora were tested

mechanically. A Lloyd material testing machine (LR5K, J. J. Lloyd

Instruments, Southampton, UK) was used for the anteroposterior

three-point bending of the femoral shaft and compression of the

femoral neck according to our standard protocols [35,37].

For the three-point bending, the femur was placed on its posterior

surface on the lower supports of the bending apparatus. For each

bone, these supports were placed individually (first just distal to the

trochanter minor and the other just proximal to the condyles of the

femur). After the anatomical adjustment of the supports, a bending

load using a brass crossbar was applied to the femoral midshaft

perpendicularly to the long axis of the bone until the failure of the

specimen. The breaking load (Fmax) of the femoral midshaft was

determined from the load-deformation curve. In our laboratory, the

CVrms of the Fmax for three point bending is 5.0% [35].

After the three-point bending of the femoral shaft, the proximal

half of femur was mounted in a specially constructed fixation

device [38] and a vertical load was applied to the top of the

femoral head using a brass crossbar until failure of the femoral

neck. The Fmax of the femoral neck was determined from the load-

deformation curve. In our laboratory, the CVrms of the Fmax for

femoral neck compression is 7.6% [39].

Micro-computed tomography (mCT)
The proximal metaphysis of tibia were scanned using a high

resolution micro-computed tomography system (mCT 35; Scanco

Medical, Basserdorf, Switzerland) with nominal isotropic resolution

of 12 mm. Three-dimensional analysis of trabecular bone was

performed on the bone region 1 to 5 mm distal to the growth plate.

Trabecular bone compartment was separated from the cortical bone

by semi-automatically drawn contours and a global threshold was

used to distinguish bone and marrow. The following parameters

were determined from the trabecular bone using a direct three-

dimensional approach [40]: total bone marrow volume including the

trabeculae (TV; mm3), trabecular bone volume (BV; mm3),

trabecular bone volume fraction (BV/TV), mean trabecular number

(Tb.N; 1/mm), mean trabecular thickness (Tb.Th; mm), and mean

trabecular separation (Tb.Sp; mm). For determination of cortical

bone porosity, a 0.5 mm thick region of cortical bone at 7 mm

distance from the proximal end of tibia was analyzed.

Statistical analysis
All data were analyzed using the SPSS for Windows (version

13.0). Relative exercise effects (i.e., the percent difference between

exercised and control groups) and aging effects (i.e., the percent

difference between mature and senescent groups) were tested using

analysis of covariance (ANCOVA), and all data pertaining to

mechanical competence of the femur (cCSA, tBMC, tCSA, and

Fmax) were statistically controlled for body weight and femoral

length [16,28,36]. In all tests, an a level less than 5% (p,0.05) was

considered statistically significant.

Results

Mortality was 28% and 57% among Mature and Senescent

males, respectively (Table 1, Figure 3). The corresponding rates in

females were 21% and 49%, respectively (Table 1, Figure 3).

Estimated from this mortality, the age of the senescent groups

corresponded to over 75 years old men and over 80 years old

women in Finland [41]. Figure 3 shows the weight development

curves of the rats in each group. The mean weights of the uteri

were similar in all female groups.

Age-related osteoporosis
The influence of aging on bones (Mature vs. Senescent control

rats) is summarized in Tables 4 and 5 (grey panels). Senescent

control rats had significantly lower Fmax, tBMC and tCSA at the

Table 3. The Progressive Treadmill Exercise Regimen Used for
Female Rats.

Week Age (weeks)
Duration
(min)

Speed
(cm/s)

Inclination
(deg)

Mature Senescent

1 47 90 5 20 5

2 | | 5 20 10

3 | | 5 20 15

4 | | 5 30 15

5 | | 5 30 20

6 | | 5 30 20

7 | | 5 30 25

8 | | 5 30 25

9 | | 5 30 30

10 | | 5 30 30

11 | | 5 30 30

12 58 101 5 30 30

doi:10.1371/journal.pone.0002540.t003
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femoral neck in both sexes and Fmax at the femoral midshaft in

females as compared to corresponding Mature control rats. At the

femoral midshaft, tCSA of the male rats and cBMD of the female

rats were larger in the Senescent groups than in Mature groups. In

the proximal tibia, the trabecular bone volume fraction (BV/TV)

was significantly decreased in the Senescent rats when compared

to the corresponding Mature group both in males and females. In

males, also Tb.N., Tb.Sp., and cortical porosity differed

significantly between Mature and Senescent groups, a finding in

conjunction with reduced BV/TV indicating a deteriorated bone

structure among old rats (Figure 4).

Exercise effects
Body weight and femoral length. In males, there was a

significant exercise-related decrease in body weight: 28.2%

(p = 0.005) and 215.7% (p,0.001) in Mature and Senescent

groups, respectively (Table 4). In females, body weight was not

influenced by exercise (Table 5). Femoral length was similar

between exercised and control rats in male groups; whereas in

Mature females the femur was 1.7% longer in exercise group than

in control group (p = 0.043).

The geometric, densitometric, and biomechanical bone

traits. Skeletal responses to increased exercise among the

Mature and Senescent rats are depicted in Tables 4 and 5 and

Figure 5. In the Mature groups, significant exercise-induced

increases were observed: total cross-sectional area (tCSA) at the

femoral diaphysis of the males increased 6% (p = 0.018) compared

to age-matched controls, and total bone mineral density (tBMD) at

the femoral neck of the females increased 6% (p,0.001) while its

tCSA remained 8% (p = 0.018) smaller compared to controls.

Figure 3. The Body Weight Curves and a Kaplan-Meier Plot Demonstrating the Survival of the Male and Female Rats in This
Experiment.
doi:10.1371/journal.pone.0002540.g003

Age-Related Osteoporosis

PLoS ONE | www.plosone.org 5 July 2008 | Volume 3 | Issue 7 | e2540



Among the senescent rats significant exercise-induced between-

group effects were observed virtually in all bone traits; both tCSA

and bone mineral content (tBMC) at the femoral neck increased

19% (p = 0.003) and 18% (p = 0.030) in males and 10% (p = 0.026)

and 10% (p = 0.001) in females, respectively. Also, breaking load

(Fmax) both at the femoral neck and femoral diaphysis of senescent

females increased 16% (p = 0.045) and 19% (p = 0.026),

respectively; while in the senescent males Fmax at the femoral

neck increased 18% (p = 0.087). No differences between exercised

and control rats were observed in proximal tibia in any of the bone

traits determined using micro-CT analysis.

Age and the mechano-responsiveness of bone
An age-effect on bone mechano-responsiveness (interaction

between age and exercise loading) was observed at the femoral

neck. The exercise-effect was significantly greater in the Senescent

group for tBMC (p = 0.035 and p = 0.002) and tCSA (p = 0.027

and p = 0.001) both in males and females, respectively (Tables 4

and 5 and Figure 5). The accompanying significant decrease in

tBMD (p = 0.039 and p = 0.022, in males and females respectively)

indicated that the exercise-effect was more pronounced in tCSA

than in tBMC. As regards bone strength, the mean exercise-effects

on Fmax were greater in the Senescent group, but the group-

difference reached statistical significance only at the femoral

diaphysis in females (p = 0.032) (Figure 5).

Discussion

Bone functional bone adaptation [42–46] is one of the cardinal

principles in skeletal biology depicting a homeostatic feedback

system evolved to maintain the skeletal integrity in different

loading milieus through appropriate modifications in bone

geometry and structure, and/or material properties - with or

without changes in bone mass. Accordingly, any substantial

change either in the sensitivity of the mechano-sensory system or

in the balance between predominant bone loading and coexisting

bone rigidity results in an adaptive response to keep the tissue

deformations within the predetermined physiological window

[42,43,45]. In this context, the occurrence of age-related

osteoporosis, or the gradual bone loss with aging, has been

attributed to the failure of this mechano-sensory mechanism [3,4].

In our experiment, the senescent rats displayed a clear age-related

osteoporosis, manifest as deteriorated bone structure and reduced

bone structural strength (Tables 4 and 5). Nevertheless, these

animals also showed a positive adaptive response to exercise while

much less consistent response was seen in the mature rats

Table 4. Descriptive Data of the Biomechanical and Tomographic Measurements and Interaction (Difference Between the Two
Age-groups in the Exercise-effect) of the Male Rats.

MATURE SENESCENT
Age-related
change (p)

Mech.responsiveness vs.
Age, Interaction (p)

CONTROL EXERCISED CONTROL EXERCISED

MeanSEM MeanSEM MeanSEM MeanSEM

BASIC DESCRIPTIVES

Body weight (g) 57411 52810b 60214 50814a 0.076 0.032

Femoral length (mm) 42.00.2 41.90.3 42.00.3 42.30.4 0.334 0.235

FEMORAL NECK

tBMC (mg/mm) * 6.00.1 6.20.1 5.40.2e 6.30.2b 0.003 0.035

tBMD (mg/cm3) 104117 107815 105716 101721f 0.470 0.039

tCSA (mm2) * 5.90.2 5.80.2 5.20.3f 6.10.2c 0.024 0.027

Fmax (N) * 1726 1795 1488f 1646 0.018 0.647

FEMORAL MIDSHAFT

cBMD (mg/cm3) 14815 14746 14729 14617 0.106 0.769

tCSA (mm2) * 15.90.3 16.50.3c 17.10.4e 17.90.4e 0.004 0.751

cCSA (mm2) * 9.40.2 9.70.2 9.30.3 9.90.2 0.759 0.353

Fmax (N) * 1837 1976 1669 1898 0.130 0.756

PROXIMAL TIBIA

Trabecular TV (mm3) 57.11.4 57.73.1 59.13.1 62.11.7 0.509 0.591

Trabecular BV (mm3) 8.480.38 8.921.25 7.220.63 6.390.43f 0.080 0.319

Trabecular BV/TV (ratio) 0.150.01 0.150.02 0.120.01f 0.100.01e 0.031 0.227

Tb.N (1/mm) 2.310.06 2.390.13 1.950.10e 1.880.06e 0.004 0.391

Tb.Th (mm) 0.0850.001 0.0840.003 0.0860.003 0.0800.003 0.725 0.300

Tb.Sp (mm) 0.420.01 0.410.03 0.510.03e 0.530.02e 0.003 0.512

Cortical porosity (ratio) 0.0070.001 0.0090.001 0.0170.004e 0.0160.002f 0.007 0.597

a p,0.001, b p,0.01, c p,0.05 vs. corresponding control group; d p,0.001, e p,0.01, f p,0.05 vs. corresponding Mature group.
*values adjusted with body weight and femoral length; for details, see Statistical analysis.
tBMC, total bone mineral content; tBMD, total bone mineral density; tCSA, total cross-sectional area; Fmax, breaking load; cBMD, cortical bone mineral density; cCSA,
cortical cross-sectional area; TV, total bone marrow volume; BV, bone volume; Tb.N, mean trabecular number; Tb.Th, mean trabecular thickness; Tb.Sp, mean trabecular
separation.
doi:10.1371/journal.pone.0002540.t004
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Table 5. Descriptive Data of the Biomechanical and Tomographic Measurements and Interaction (Difference Between the Two
Age-groups in the Exercise-effect) of the Female Rats.

MATURE SENESCENT
Age-related
change (p)

Mech.responsiveness vs.
Age, Interaction (p)

CONTROL EXERCISED CONTROL EXERCISED

MeanSEM MeanSEM MeanSEM MeanSEM

BASIC DESCRIPTIVES

Body weight (g) 3079 3127 3137 2985 0.634 0.208

Femoral length (mm) 35.90.2 36.60.2c 36.00.3 36.00.2 0.901 0.173

Uterus weight (g) 1.50.1 1.40.1 1.90.2 1.50.1 0.123 0.158

FEMORAL NECK

tBMC (mg/mm) * 5.10.1 5.00.1 4.70.1f 5.20.1b 0.024 0.002

tBMD (mg/cm3) 112915 11938a 116620 116414 0.155 0.022

tCSA (mm2) * 4.50.1 4.20.1c 4.00.1f 4.50.1cf 0.015 0.001

Fmax (N) * 1245 1304 1016e 1195c 0.008 0.226

FEMORAL MIDSHAFT

cBMD (mg/cm3) 14862 14882 14974e 14994f 0.009 0.933

tCSA (mm2) * 10.70.1 10.70.1 10.80.2 11.10.1f 0.648 0.247

cCSA (mm2) * 6.60.1 6.50.1 6.50.1 6.80.1f 0.424 0.055

Fmax (N) * 1444 1464 1235f 1444c 0.014 0.032

PROXIMAL TIBIA

Trabecular TV (mm3) 38.72.0 38.62.4 39.31.4 38.51.2 0.820 0.851

Trabecular BV (mm3) 9.601.02 9.950.80 7.280.76 7.790.42f 0.087 0.904

Trabecular BV/TV (ratio) 0.250.02 0.260.01 0.190.02f 0.200.01e 0.048 0.666

Tb.N (1/mm) 3.560.29 3.840.14 2.990.15 3.140.10d 0.108 0.694

Tb.Th (mm) 0.0770.004 0.0730.001 0.0700.003 0.0730.002 0.204 0.187

Tb.Sp (mm) 0.280.04 0.240.01 0.320.02 0.300.01d 0.283 0.704

Cortical porosity (ratio) 0.0060.000 0.0070.001 0.0070.001 0.0060.000 0.205 0.058

a p,0.001, b p,0.01, c p,0.05 vs. corresponding control group; d p,0.001, e p,0.01, f p,0.05 vs. corresponding Mature group.
*values adjusted with body weight and femoral length; for details, see Statistical analysis.
tBMC, total bone mineral content; tBMD, total bone mineral density; tCSA, total cross-sectional area; Fmax, breaking load; cBMD, cortical bone mineral density; cCSA,
cortical cross-sectional area; TV, total bone marrow volume; BV, bone volume; Tb.N, mean trabecular number; Tb.Th, mean trabecular thickness; Tb.Sp, mean trabecular
separation.
doi:10.1371/journal.pone.0002540.t005

Figure 4. Effects of Aging on the Trabecular Bone Texture in the Proximal Tibial Metaphysis. Due to aging, the proportion of trabecular
bone of the bone volume (TV/BV) is decreased in males and females. In addition, in males, the number (Tb.N.) and thickness (Tb.Th.) of the trabeculae
is decreased, while the distance between individual trabeculae (Tb.Sp.) is increased.
doi:10.1371/journal.pone.0002540.g004

Age-Related Osteoporosis
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Figure 5. Exercise Effect on Different Bone Traits of the Femoral Neck and Femoral Midshaft in Mature and Senescent Male and
Female Rats. Bars represent percent (%) increases (6 the standard error of the mean, SEM) of the exercise group compared to corresponding
control group at the end of the treadmill exercise intervention in the femoral neck total bone content (tBMC); total bone density (tBMD); total bone
area (tCSA); cortical bone density (cBMD); cortical bone area (cCSA); and breaking load (Fmax). Significant differences between the exercised rats and
their controls, and between the two age-groups in the exercise-effect, are indicated: *p,0.05; **p,0.01; ***p,0.001. Results for tBMC, tCSA, cCSA,
and Fmax are adjusted for body weight and femoral length.
doi:10.1371/journal.pone.0002540.g005
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subjected to the same exercise regimen (Figure 5). This finding

challenges the reduced mechano-sensitivity at senescence as the

pathomechanism of age-related osteoporosis.

We therefore speculate that the enhanced mechano-responsive-

ness among the senescent animals was attributable to the apparent

fact that their bones were initially less rigid because of essentially

diminished habitual activity in aged rats [47]. However, as a

consequence of additional treadmill training, the bones were

subjected to increased loading, that being clearly beyond that

experienced during normal living in terms of magnitude and

intensity. These exercise-induced deformations then resulted in the

adaptive response observed in the bones of Senescent animals. In

the Mature rats, in turn, their fully developed skeleton and

relatively higher habitual activity ensured readily an appropriate

mechanical competence for the treadmill running, and there

remained only a marginal room to respond to mechanical stimulus

caused by additional treadmill training. These observations also

suggest a biomechanical explanation for the apparent direct

modulatory effect of aging on the periosteal apposition: rather

than originating from the effect of aging per se on the periosteum, it

seems that the aging-associated periosteal enlargement is an

adaptive response to cope with endocortical loss of mineral (the

imminent decrease in bone rigidity). As described above, any

change either in the loading subjected on the bone or its strength

(structural rigidity) necessitates an adaptive response to restore the

delicately controlled stress-strain equilibrium.

Although our study was a randomized controlled trial using rats

of controlled genetics, large sample size, long intervention period

and well-validated methodology [16,28,36,48,49], it had some

limitations that require consideration. First, bone deformations

during running were not measured. Instead, our conclusions relied

on a simple engineering principle that equal loading imposed on a

less rigid bone produces greater deformations and consequently

larger response and vice versa. Thus, it needs to be noted that our

paper does not deal with the mechano-sensitivity of bones between

Mature and Senescent animals. As discussed above, the treadmill

training -induced strain stimulus may not have been sufficient for

bone formation activity [50,51] for mature animals with inherently

more rigid bones, while a more vigorous loading would have been

necessary to induce an osteogenic response in mature animals.

Here the quite liberally used terms ‘mechano-sensitivity’ and

‘mechano-responsiveness’ need to be distinguished from each

other. In the most stringent sense, these two terms depict distinct

phases of functional bone adaptation -cascade (Figure 1A). It is

indeed possible that aging disproportionately affects the skeletal

mechano-sensing and responsiveness (Figure 1B) and a failure in

the former could be only verified with direct strain measurements;

i.e., a similar strain environment would lead to smaller response

among old animals than among younger, mature animals.

However, notwithstanding this possibility, we highlight that our

finding of a significant adaptive response to increased exercise loading

(i.e., increase in most bone traits, including bone strength) in

senescent animals shows that the homeostatic control system of the

skeleton functions even in the very old age and the skeletal

responsiveness is not impaired.

One might find the lack of exercise-induced increases in bone

characteristics in the mature animals somewhat controversial to

findings of our previous study [28], in which the exercise-induced

benefits were seen among adult male rats (33 to 47-week-old

during the study) subjected to the same treadmill training protocol.

However, in that study, the adult animals were still growing

axially. We therefore feel that the observed difference in the

skeletal responsiveness between these two groups of mature

animals actually underpins the importance of the longitudinal

growth period as an opportune window to enhance of impact of

mechanical loading on bone [52–60]. Also, the present senescent

rats represent the extreme in terms of age; in agreement with the

increased mortality, the aged animals displayed deteriorated bone

traits and a decreased body weight (particularly in males)

(Figures 3–5 and Tables 4 and 5), all changes characteristic of

senescence [61].

The present findings do not allow one to make conclusions

about the potential influence of gender on the mechano-

responsiveness of bones, since there were apparent differences in

the survival and functional capacity of the aged animals rendering

the study designs in males and females basically different (distinct

age at entry of the initiation of exercise in senescent animals and

different treadmill training protocols). In essence, due to the

increased longevity of female rats and the resulting increased

frailty, we felt compelled to subject the senescent females to a less

physically challenging exercise regimen. However, the effect of

gender on the skeletal responsiveness to loading has been

previously assessed [16,17,62–66], suggesting that males are more

responsive to loading than females.

In conclusion, our results demonstrate that concerning the mass,

structure, and mechanical competence of rat bones, the homeo-

static loading-driven regulatory feedback system maintains its

capacity to respond to increased exercise loading even into very

old age. Accordingly, it is unlikely that the pathogenesis of age-

related osteoporosis would be attributable solely, if at all, to a

failure in this system. Thus, our observations suggest that

strengthening of senescent human bones is also possible – naturally

provided that safe and efficient training methods can be developed

for the oldest old.
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