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Abstract

Background: Sustained outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in avian species increase the risk of
reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help
maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major
concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.

Methodology / Principal Findings: The ability of DNA vaccines encoding hemagglutinin (HA) proteins from different HPAI
H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and
heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a
pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in
combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of
the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred
protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was
observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses
as low as 5 mg DNA given twice either by intramuscular needle injection or with a needle-free device.

Conclusions/Significance: DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple
animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the
vaccine to newly evolving field isolates.
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Introduction

The highly pathogenic H5N1 influenza virus causes lethal

multi-organ disease in poultry, resulting in significant economic

losses and a public health concern in many parts of the world. The

greatest threats posed by this virus are its ability to cause mortality

in humans, its potential to compromise food supplies, and its

possible economic impacts. Viral maintenance in poultry poten-

tiates the risk of human-to-human transmission and the emergence

of a pandemic strain through reassortment. An effective, safe

poultry vaccine that elicits broadly protective immune responses to

evolving flu strains would provide a countermeasure to reduce the

likelihood of transmission of this virus from domestic birds to

humans and simultaneously would protect commercial poultry

operations and subsistence farmers.

DNA vaccines have been shown to elicit robust immune

responses in various animal species, from mice to nonhuman

primates [1–11]. In human trials, these vaccines elicit cellular and

humoral immune responses against various infectious agents,

including influenza, SARS, SIV and HIV. In addition to their

ability to elicit antibody responses, they also stimulate antigen-

specific and sustained T cell responses [1–3,6,12,13]. DNA

vaccination has been used experimentally against various

infectious agents in a variety of mammals, including cattle (against

infectious bovine rhinotracheitis/bovine diarrhea virus, leptospi-

rosis and mycobacteriosis) [14,15], pigs (against classical swine

fever virus and mycoplasmosis) [16], and horses (against West Nile

virus and rabies) [17]. In addition, DNA vaccines have been tested

against avian plasmodium infection in penguins [18] and against

influenza and infectious bursal disease in chickens [7,8,19], duck
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hepatitis B virus in ducks [6], and avian metapneumovirus and

Chlamydia psittaci in turkeys [20,21] (reviewed in ref. [22]). While they

have been used in chickens to generate antisera to specific influenza

viruses and confer protection against the low pathogenicity H5N2

strain [23], there is only one previous report of a monovalent DNA

vaccine effective against H5N1 (and that only against a matched

H5N1 isolate) [24]; no protection with multivalent DNA vaccines

against heterologous strains has been reported.

Development and characterization of a DNA vaccine modality

for use in poultry offers a potential countermeasure against HPAI

H5N1 avian influenza outbreaks. The virus can infect humans,

typically from animal sources, including commercial and wild

avian species, livestock, and possibly other non-domesticated

animal species [25–27]. While there is marked diversity in the host

range of type A influenza viruses, many experts have speculated

that a pandemic strain of type A influenza could evolve in avian

species or avian influenza viruses could contribute virulent genes

to a pandemic strain through reassortment [28,29]. Thus, there is

reason to consider vaccination of poultry that would stimulate

potent and broad protective immune responses [7,30,31]. In

undertaking such efforts, it is important that there be a

differentiation of infected from vaccinated animals [32] so that

animals can be protected and permit monitoring of new infections

using proven and sensitive methodologies.

In this study, we used an automated high capacity needle-free

injection device, Agro-JetH (Medical International Technology,

Inc., Denver, CO) to explore the feasibility of DNA vaccination of

poultry. After optimization of injection conditions, alternative

multivalent DNA vaccine regimens were analyzed and compared

for magnitude and breadth of neutralizing antibodies, as well as

protective efficacy after challenge in mouse and chicken models of

HPAI H5N1 infection. The findings suggest that it is possible to

develop a multivalent DNA vaccine for poultry that can protect

against multiple HPAI H5N1 strains and that could keep pace

with the continued evolution of avian influenza viruses.

Results

Immunogenicity and neutralizing antibody specificity of
alternative HA DNA vaccines in mice

To evaluate the efficacy of multivalent DNA vaccines, initial

studies were performed in mice. Expression vectors encoding HAs

from ten phylogenetically diverse strains of influenza viruses [33]

were generated by synthesis of cDNAs (see Materials and Methods)

in plasmid expression vectors, pCMV/R or pCMV/R 8kB, which

mediates high level expression and immunogenicity in vivo

[34,35,36]. Animals were immunized with each expression vector

intramuscularly (IM) at three week intervals, and the antisera were

evaluated on day 14 after the third immunization for their ability to

neutralize HPAI H5N1 pseudotyped lentiviral vectors as previously

described [35,36]. We have previously shown that lentiviral assay

inhibition (LAI) yields similar results to microneutralization and

HAI analyses with higher sensitivity in mice [35,36]. Significant

neutralizing antibodies generated to homologous HAs were

detected consistently by LAI with few exceptions, while cross

reactivity to a standard isolate, A/Vietnam/1203/2004, was

variable. For example, IC90 titers exceeding 1:800 were observed

against A/chicken/Nigeria/641/2006 and A/Hong Kong/156/

1997, while a lesser response was detected for the A/chicken/

Korea/ES/2003 strain (Fig. 1). Heterologous neutralization to A/

Vietnam/1203/2004 was variable and did not fully correlate with

the degree of relatedness of the specific HA. The ability of these

immunogens to generate robust cross-reactive antibodies is

consistent with previous observations [4,37,38].

Multivalent HA vaccination response in mice
To determine whether immunization with multiple HAs

simultaneously could expand the breadth of the neutralizing

antibody response without significant loss of magnitude, a

combination of 10 HA DNA vaccine immunogens was adminis-

tered IM at proportionally lower concentration (1.5 mg per

immunogen) into groups of 10 mice (see Materials and Methods).

Remarkably, despite a log lower DNA concentration of each

component, significant neutralizing antibody titers were generated

to each of the 10 immunogens, with .80% neutralization against

6 out of 12 H5 HA pseudoviruses at dilutions of up to 1:400

(Fig. 2A).

To evaluate whether similar breadth of immunity could be

generated with fewer immunogens, two different combinations of

5 immunogens were selected, based on the phylogenetic diversity

of HA among the avian influenza viruses [33] and the cross-

reactivity of the neutralizing antibody responses of select individual

immunogens (Fig. 1). As expected, there were substantial

differences in the breadth of neutralization between these two

sets of 5 immunogen multivalent vaccines (Fig. 2, B vs. C). In one

set, while neutralization of homologous strains was comparable to

the monovalent and the 10 immunogen multivalent immune

response, fewer cross-reactive antibodies were detected, directed

most prominently against A/Iraq/207-NAMRU3/2006 and A/

Egypt/ 2782-NAMRU3/2006 (Fig. 2B; 5 HA, Set 1). In contrast,

set 2 elicited consistent and comparable neutralization against

both homologous and heterologous viruses at titers exceeding

1:400 against most of the tested HA strains (Fig. 2C; 5 HA, Set 2),

as observed in the 10 component multivalent DNA vaccine. It was

therefore possible to use multivalent DNA immunization and

selection based on neutralizing antibody breadth and phylogenetic

relationships to reduce the number of components in the vaccine

while maintaining substantial breadth of cross neutralization.

Protection of DNA-vaccinated mice against challenge
with heterologous H5N1 A/Vietnam/1203/2004 influenza
virus

Mice immunized as described above were challenged with a

heterologous H5N1 virus 68 weeks after the final DNA

vaccination. Animals were then challenged with 10 LD50 of the

highly pathogenic A/Vietnam/1203/2004 virus intranasally, and

morbidity and mortality were monitored for 21 days after the viral

challenge. The control animals, injected with the plasmid

expression vector with no insert, died within 10 days of infection.

Complete survival was observed in the groups immunized with the

10 component and set 2 of the 5 component multivalent DNA

vaccines (Fig. 3). Immunization with HA derived from the A/

Indonesia/05/2005 strain or set 1 of the 5 component multivalent

DNA vaccine showed a survival rate approaching 90%. In

contrast, animals injected with HA plasmid DNA derived from A/

Anhui/1/2005, which has diverged more from A/Vietnam/

1203/2004, showed a lower percent survival (70%) after lethal

viral challenge. Survival differences between groups were assessed

using a log-rank test and the Gehan-Wilcoxon test on the survival

curves for pairs of groups. A test was deemed significant if the p-

value was ,0.01. Mice injected IM with different HAs, A/

Indonesia/5/05, A/Anhui/1/05, 10HA, 5 HA (Set 1), or 5 HA

(Set 2) showed a significant difference compared to control (all p

values,0.001). Among the HA-immunized groups, there was no

significant difference between any two groups (p.0.08 for all

comparisons). For example, no significant difference was observed

between the A/Anhui/1/05 group, which had the least survival

among the HA immunized groups (7 out of 10), and other HA
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groups: A/Indonesia/5/05 (p = 0.377), 10 HA (p = 0.082), 5 HA

(Set 1) (p = 0.101), or 5 HA (Set 2) (p = .411). Therefore, we cannot

exclude the possibility that the 3 deaths in the A/Anhui/1/05

group may have been due to random chance.

Neutralizing antibody responses in chickens after HA
DNA immunization

Since it is desirable to confer protective immunity in poultry and

HA DNA vaccination was effective in mice, we next examined the

breadth and potency of single or multiple HA plasmid immuni-

zation in chickens. The ability of chickens to generate specific

antibodies was assessed with three strains that showed broad cross

protection in mouse studies (A/Vietnam/1203/2004, A/Anhui/

1/2005 and A/Indonesia/05/2005), administered individually or

in combination, by different injection methods. In addition to

needle injection, a needle-free repetitive injection device, Agro-

JetH (Medical International Technology, Inc., Denver, CO), was

analyzed. This device disperses the 0.1 to 5 ml injection doses into

the dermal, subcutaneous, or intramuscular tissue depending upon

the pressure adjustments, powered by a CO2 gas pressure plunger

[39]. The injection conditions were determined by histologic

analysis of tissues that received injections of India ink; a pressure of

48 psi was chosen since it enabled consistent delivery into

intradermal and subcutaneous tissues (Fig. S1).

Immunization of chickens with the control plasmid (CMV/R)

without an HA gene insert elicited minimal neutralizing antibody

titers compared to HA-immunized animals 1 week after 3 DNA

immunizations. Nearly all chickens immunized with either

monovalent or multivalent HA DNA vaccines generated signifi-

cant neutralization titers (Fig. 4 and Table S1). In general, there

was a progressive increase in the amount of neutralization after

each successive DNA vaccination (data not shown) with maximal

response at 1 week after the 3rd DNA immunization, with highest

and most consistent levels in the trivalent vaccine group delivered

with the Agro-JetH device. Neutralization of the Indonesia HA

strain was the most robust, with neutralization nearing 100% at

titers greater than 1:3200. Both the monovalent and multivalent

vaccines elicited robust homologous (Fig. 4, A/Indonesia/05/

2005) and heterologous HA neutralization (Fig. 4, A/Nigeria/

641/05). Similar responses were noted in the other groups,

including administration of monovalent HA-A/Indonesia/05/

2005 subcutaneously by needle syringe and via Agro-JetH (Fig. 4,

second row). The neutralization response of chickens immunized

with monovalent Indonesia was similar to that of the trivalent

Figure 1. Sera from mice immunized with plasmid DNA vaccines encoding HA from specific strains neutralize a homologous and a
heterologous HA with differing efficacy. Groups of mice (n = 10) were immunized as described in Materials and Methods with 15 mg of
individual H5 HA DNA expression vectors, pCMV/R 8kB, encoding the HA of indicated viruses: A/Indonesia/05/2005, A/Anhui/1/2005, A/Thailand/
1(KAN-1)/2004, A/Hong Kong/156/1997, A/Hong Kong/483/1997, A/chicken/Korea/ES/2003, A/turkey/Turkey/1/2005, A/Egypt/2782-NAMRU3/2006,
A/chicken/Nigeria/641/2006, and A/Iraq/207-NAMRU3/2006. Sera was collected from each group 14 days after the third immunization, pooled, and
tested against the homologous (open circles) or a heterologous HA, A/Vietnam/1203/2004 (black diamonds). Serum from each group was serially
diluted (1:100 to 1:6400) and analyzed by LAI. Error bars at each point indicate the standard deviation; each sample was evaluated in triplicate.
Different degrees of neutralization among various H5 pseudoviruses were observed among different HA-immunized mice.
doi:10.1371/journal.pone.0002432.g001
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vaccine(Fig. 4). Even though one chicken (238) in the multivalent

vaccine group produced almost the same degree of neutralization

at each time point and was protected, it did not produce a high

neutralizing antibody titer for reasons that were uncertain but

possibly related to a non-specific inhibitor in the sera.

Protection of DNA-vaccinated chickens against challenge
with A/Vietnam/1203/2004 influenza virus

To determine whether chickens immunized with single or

multiple DNA vaccines were protected from a lethal challenge of a

heterologous HPAI H5N1 virus, vaccinated chickens were

Figure 2. Breadth of neutralization against divergent HAs is determined by the composition of multivalent HA plasmid DNA
expression vectors. Neutralization of 12 different H5N1 isolates was determined in the LAI assay using serum from mice immunized with (A) 10
HAs comprised of: pCMV/R 8kB-HA(A/Hong Kong/156/1997), pCMV/R 8kB-HA(A/chicken/Korea/ES/2003), pCMV/R 8kB-HA(A/turkey/Turkey/1/2005),
pCMV/R 8kB-HA(A/Egypt/2782-NAMRU3/2006), pCMV/R 8kB-HA(A/chicken/Nigeria/641/2006), pCMV/R 8kB-HA(A/Indonesia/05/2005), pCMV/R 8kB-
HA(A/Anhui/1/2005), pCMV/R 8kB-HA(A/Thailand/1(KAN-1)/2004), pCMV/R 8kB-HA(A/Hong Kong/483/1997), and pCMV/R 8kB-HA(A/Iraq/207-
NAMRU3/2006) as in 5 HA (Set 1) plus in 5 HA (Set 2). (B) 5 HA (Set 1) composed of vectors: pCMV/R 8kB-HA(A/Hong Kong/156/1997), pCMV/R 8kB-
HA(A/chicken/Korea/ES/2003), pCMV/R 8kB-HA(A/turkey/Turkey/1/2005), pCMV/R 8kB-HA(A/Egypt/2782-NAMRU3/2006), and pCMV/R 8kB-HA(A/
chicken/Nigeria/641/2006)., or (C) 5 HA (Set 2) contained: pCMV/R 8kB-HA(A/Indonesia/05/2005), pCMV/R 8kB-HA(A/Anhui/1/2005), pCMV/R 8kB-
HA(A/Thailand/1(KAN-1)/2004), pCMV/R 8kB-HA(A/Hong Kong/483/1997), and pCMV/R 8kB-HA(A/Iraq/207-NAMRU3/2006). Mice were vaccinated as
described in Materials and Methods. In this experiment, the DNA vaccine consisted of 10 plasmids (1.5 mg each) expressing HA proteins as indicated.
In panels B and C, mice (n = 10) were immunized with 15 mg of plasmid (3 mg each) three times at 3 week intervals. Serum pools from the immunized
animals were collected 14 days after the third immunization. The antisera were tested against the 12 indicated pseudotyped lentiviral vectors at
varying dilutions. Error bars at each point indicate the standard deviation; each sample was evaluated in triplicate. In general, the immunized serum
neutralized all tested pseudotyped lentiviruses at low dilutions while differences were often observed at high dilution.
doi:10.1371/journal.pone.0002432.g002

Figure 3. Immune protection conferred against lethal challenge of A/Vietnam/1203/2004 in mice 68 weeks after vaccination. Mice
were immunized with 15 mg total of either the 10 HA as in Fig. 2A, legend and Materials and Methods, 5 HA (Set 1) as in Fig. 2B, legend and Materials
and Methods, 5 HA (Set 2) as mentioned in Fig. 2C, legend and Materials and Methods, monovalent A/Indonesia/05/2005 HA, monovalent A/Anhui/1/
2005 HA, or Control (empty vector) three times at three week intervals as described in Fig. 2, legend. Animals (n = 8–10 per group) were challenged 68
weeks later by intranasal inoculation. All control mice died 10 days after infection.
doi:10.1371/journal.pone.0002432.g003
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inoculated with 20 LD50 of highly pathogenic A/Vietnam/1203/

2004 heterologous virus intranasally using standard methods

[25,40] and monitored for morbidity, mortality, viral shedding

and serum antibodies. While all the control animals died within 2

days of infection, 100% survival was noted in the rest of the

chickens (Fig. 5A). The animals that were healthy, showing no

signs of clinical disease or malaise, were euthanized on day 14.

There was no evidence for viral shedding monitored via tracheal

and cloacal swabs of infected chickens 2–14 days after challenge as

determined by embryonal inoculation (data not shown: egg

infectious dose 50 (EID50) limit of detection ,100 virus particles).

Relative potency of DNA vaccines delivered by needle or
needle-free injection devices

To compare the relative efficacy of DNA vaccines delivered IM

by needle and syringe versus the needle-free Agro-JetH device

injection, a dose-response study was performed with amounts of

DNA vaccine ranging from 500 to 0.5 mg with two inoculations. In

these experiments, the HA derived from A/chicken/Nigeria/641/

2006 was substituted for A/Vietnam/1203/2004 since it repre-

sented a more contemporary isolate. The observed rate of

protection was higher among the animals receiving 5 mg by

Agro-Jet (8/8) than by IM injection (6/8) (Fig. 5, B vs. C). Both

modes provided complete protection for all animals at doses

higher than this, and 25% protection for the animals receiving

0.5 mg doses (Fig. 5B, C). Survival differences between consecutive

doses were assessed using a log-rank test on the survival curves for

pairs of groups. A test was deemed significant if the p-value was

,.01, and marginally significant if the p-value was ,.05 but ..01.

Chickens injected IM showed a marginally significant difference

between 0.5 and 5 mg (p = .047). In the same group there was a

significant difference between control and 5, 50 and 500 mg

(p,.001 for all comparisons) and the difference between control

and 0.5 mg was marginally significant (p = .016). Chickens that

were injected using Agro-JetH showed a significant difference

between 0.5 and 5 mg (p = .004) and between control and 5, 50,

and 500 mg (p,.001 for all comparisons). There were no

differences between control and 0.5 mg or between 5, 50, and

500 mg. Lastly, the survival differences between Agro-JetH and IM

for each dose group were not significant. The neutralizing

antibody response to homologous and heterologous HAs corre-

sponded with protection and correlated with dose, with higher

titers elicited by injection with Agro-JetH compared to needle

(Table S2). We assessed viable viral shedding after inoculation by

chick embryo inoculation three days after virus challenge (Week

Figure 4. Neutralizing antibody responses against homologous and heterologous HAs from chickens immunized with HA
expression vectors by different routes. Neutralization against the indicated strain HAs was analyzed after immunization with trivalent HA
encoding plasmids: pCMV/R-HA(A/Indonesia/05/2005), pCMV/R-HA(A/Anhui/1/2005), and pCMV/R-HA(A/Vietnam/1203/2004) with the indicated
delivery device using sera taken two weeks after the third injection. Neutralization was determined by LAI from individual chickens at titers ranging
from 1:100 to 1:3200. Bird #238 consistently showed a low level of neutralization, possibly because of an inhibitor in the serum because it was fully
protected against viral challenge. Percent neutralization was calculated by the reduction of luciferase activity relative to the values achieved in the
non-immune sera.
doi:10.1371/journal.pone.0002432.g004
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Figure 5. Immune protection after DNA vaccination against lethal challenge with heterologous A/Vietnam/1203/2004 using needle
or needle-free injection in chickens and dose-response analysis of efficacy for each route. A. Chickens were immunized with either
trivalent HA encoding plasmids: pCMV/R-HA(A/Indonesia/05/2005) plus pCMV/R-HA(A/Anhui/1/2005) plus pCMV/R-HA(A/Vietnam/1203/2004) by
Agro-JetH three times, monovalent plasmid, pCMV/R-HA(A/Indonesia/05/2005) with Agro-JetH twice or three times, or by needle and syringe
subcutaneously or IM three times as indicated. Control animals were injected with a no insert vector by needle and syringe IM three times. A total of
500 mg plasmid DNA was used in each injection for all groups. Controls died 2 days after infection by nasal inoculation. The geometric mean
reciprocal endpoint titers (GMT) for hemagglutination inhibition (HI) in each group one week after the last vaccination and two weeks post-challenge
respectively were: Control: undetectable, not done; Trivalent by Agro-Jet (63): 777, 304; A/Indonesia/05/2005 by Agro-Jet (63): 320, 285; A/Indonesia/
05/2005 by Agro-Jet (62): 516, 533; A/Indonesia/05/2005 by needle (subcutaneous 63): 211, 155; A/Indonesia/05/2005 by Agro-Jet (intramuscular
63): 118, 495. B. Immunization with trivalent DNA vaccine, pCMV/R-HA(A/Anhui/1/2005), pCMV/R-HA(A/Indonesia/05/2005), and pCMV/R-HA(A/
chicken/Nigeria/641/2006), twice by Agro-JetH intradermally/subcutaneously in different doses (500 mg, 50 mg, 5 mg, and 0.5 mg) as indicated.
Controls were immunized with 500 mg empty vector. Controls died 4 days after infection by intranasal inoculation. The GMT HI in each group two
weeks post-challenge were: Control: 80 (n = 1); Trivalent by Agro-Jet (500 mg): 580 (n = 8); Trivalent by Agro-Jet (50 mg): 430 (n = 8); Trivalent by Agro-
Jet (5 mg): 183 (n = 8); Trivalent by Agro-Jet (0.5 mg): 200 (n = 2). C. Immunization with trivalent DNA vaccine pCMV/R-HA(A/Anhui/1/2005), pCMV/R-
HA(A/Indonesia/05/2005), and HA(A/chicken/Nigeria/641/2006) was performed twice by needle and syringe IM at doses outlined in panel B. The GMT
HI in each group two weeks post-challenge were: Control: not done (n = 0); Trivalent by needle (500 mg): 325 (n = 8); Trivalent by needle (50 mg): 120
(n = 8); Trivalent by needle (5 mg): 197 (n = 8); Trivalent by needle (0.5 mg): 200 (n = 2). The chickens in panel B and C each received two
immunizations.
doi:10.1371/journal.pone.0002432.g005

Multiple H5N1 Animal Vaccine

PLoS ONE | www.plosone.org 6 June 2008 | Volume 3 | Issue 6 | e2432



8). While we noted some embryonic lethality at the 0.5 mg dose,

there was no embryonic lethality at 5, 50 or 500 mg groups (data

not shown).

Discussion

Since the HPAI H5N1 virus first appeared ten years ago, this

highly pathogenic avian influenza virus has shown increasing

diversification and dissemination in Asia, Africa, and Europe

[28,41–44]. In addition to its effects on human health by cross-

species transmission [28,45,46] and ability to compromise food

sources, it poses a continuing threat to public health as it evolves and

adapts in different species. The pandemic potential of this virus,

especially as it relates to the poultry industry and for reservoir avian

hosts, underscores the need for a vaccine that offers broad spectrum

immunity and protection against lethal viral challenge. While the

virus remains restricted in its ability to infect humans and undergo

efficient human-to-human transmission [28,47], its persistence and

spread in poultry increases the risk of the emergence of a pandemic

strain. One approach to pandemic risk reduction is to limit the

propagation of the virus in poultry and other relevant avian species.

We have previously reported that DNA vaccines encoding HA

can confer protection against a highly lethal human pandemic

influenza virus, the 1918 H1N1 virus, in mice [36]. DNA vaccines

offer several advantages, including the ability to express diverse

antigens, tolerability in various hosts, ease of delivery, and stability

for storage and distribution without the necessity of maintaining a

cold chain; they have been shown to be safe and efficacious in a

variety of animal models [2,4,12,22,48]. Because they do not

contain other viral proteins used to screen for infection, they also

address the need to differentiate vaccinated from infected animals.

There is evidence that DNA vaccination elicits cell-mediated

immunity against influenza HA in addition to inducing an

antibody response [36], an effect that could significantly contribute

to protective immunity as viruses show genetic drift and reduced

susceptibility to neutralization.

Ideally, a highly effective influenza vaccine should not only be able

to let the host develop a protective immune response against a

matching live virus challenge but also elicit robust protective

immune responses against a broad range of homologous and

heterologous H5 influenza strains. A multivalent H5 vaccine

containing diverse serotypes could expand the antigenic breadth

sufficiently to provide protection against heterologous challenge and

may preclude the emergence of vaccine-resistant strains that may

arise due to evolutionary vaccine pressure on the virus. Due to the

antigenic drift and shift of the influenza virus genome, it has been

very difficult to predict the next dominant strain of an avian endemic

outbreak. DNA vaccines can be synthesized in a relatively short

period of time, and the targeted mutations can be tailored to specific

viral serotypes. The mutations promote a focused and enhanced

immune response [3,49,50] that may be particularly important in the

event of an outbreak where specificity is the key to epidemic control.

The use of modified codons ensures maximal expression in the host

and eliminates the possibility of recombination with influenza viruses

that might potentially generate new strains.

A more broadly protective murine vaccine was developed here

by including more HAs from varying strains in the multivalent

vaccine (Figs. 2 and 3). However, it is less practical to include large

numbers of different HAs in one vaccine due to the cost and

complexity of manufacturing such a vaccine. Therefore, we

simplified the vaccine regimen based on cross-neutralization

studies and phylogenetic relationships. A trivalent vaccine was

subsequently identified for further studies. Due to the availability

of the A/Vietnam/1203/200 H5N1 for the animal challenge

studies, 3 components of HA including A/Vietnam/1203/2004,

A/Indonesia/05/2005, and A/Anhui/1/2005 HA were tested as

the vaccine candidate in the challenge study. This trivalent DNA

HA vaccine including A/Indonesia/05/2005, A/Anhui/1/2005

and A/Vietnam/1203/2004 or A/chicken/Nigeria/641/2006

HAs included representatives of a broad range of influenza strains

by HA sequence analysis [51].

While three DNA immunizations were used initially to demon-

strate protective immunity and have been used previously to elicit

protection in mice [36], we found that effective protective immunity

could be induced with two DNA vaccinations and as little as 5 mg

trivalent DNA immunization using the ID/SC route with the Agro-

JetH device. In addition, based on the chick embryo inoculation data,

we believe that there is effective neutralization of the virus and lack of

infectious viral shedding in chicken vaccinated with as little as 5 mg of

DNA. The device’s capacity for rapid repetitive injection and the

lower quantity and stability of DNA enhance the practicality and

utility of this approach for vaccination of endangered species in

captivity or administration to poultry or other animals.

Materials and Methods

Viruses
A/Vietnam/1203/2004 (H5N1) (A/VN/1203/04) was ob-

tained from the repository at the Centers for Disease Control

and Prevention (CDC), Atlanta, Georgia. The virus was

propagated in 10-day old embryonated chicken eggs at 35uC
and stored at 270uC until use. The virus was titrated by the Reed

and Muench method to determine EID50 [52].

Immunogen and plasmid construction
Plasmids encoding different versions of H5 HA protein (A/

Thailand/1(KAN-1)/2004 (clade 1) GenBank AY555150; A/

Vietnam/1203/2004 (clade 1) GenBank AY651334; A/Hong

Kong/156/1997 (clade 0) GenBank AAC32088; A/Hong Kong/

483/1997 GenBank AAC32099.1(clade 0); A/chicken/Korea/

ES/2003 (clade 2.5) GenBank AAV97603.1; A/Indonesia/05/

2005 (clade 2.1.3) ISDN125873; A/turkey/Turkey/1/2005 (clade

2.2) GenBank DQ407519; A/Egypt/2782-NAMRU3/2006

(clade 2.2) GenBank ABE01046; A/chicken/Nigeria/641/2006

(clade 2.2) GenBank DQ406728; A/Iraq/207-NAMRU3/2006

(clade 2.2) GenBank DQ435202; A/Anhui/1/2005 (clade 2.3.4)

GenBank ABD28180) were synthesized using human-preferred

codons (GeneArt, Regensburg, Germany) [36]. HA cDNAs from

diverse strains of influenza viruses were then inserted into plasmid

expression vectors, pCMV/R or pCMV/R 8kB, which mediates

high level expression and immunogenicity in vivo [34,35,36]. For

initial trivalent immunizations in chickens, the A/Vietnam/1203/

2004, A/Anhui/1/2005 and A/Indonesia/05/2005 strains were

used and in the dose response study, the Vietnam strain was

replaced with A/chicken/Nigeria/641/2006. The immunogens

used in DNA vaccination contained a cleavage site mutation

(PQRERRRKKRG to PQRETRG) as previously described

[35,36]. This mutation was generated by site-directed mutagenesis

using a QuickChange kit (Stratagene, La Jolla, CA).

DNA immunization of mice
6–8 week old female BALB/c mice were purchased from The

Jackson Laboratory and maintained in the AAALAC-accredited

Vaccine Research Center Animal Care Facility (Bethesda, MD)

under specific pathogen-free conditions. All experiments were

approved by the Vaccine Research Center Animal Care and Use

Committee. The mice were immunized as previously described [5].

Briefly, mice (10 animals for all test groups, 20 animals for the
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negative control group) were immunized three times with a total of

15 mg plasmid DNA in 100 ml of PBS (pH 7.4) IM at weeks 0, 3 and

6. For the single plasmid groups, the DNA plasmid in a volume of

100 ml was administered to each animal: pCMV/R 8kB, pCMV/R

8kB-HA(A/Indonesia/05/2005), pCMV/R 8kB-HA(A/Anhui/1/

2005), pCMV/R 8kB-HA(A/Thailand/1(KAN-1)/2004), pCMV/

R 8kB-HA(A/Hong Kong/156/1997), pCMV/R 8kB-HA(A/

Hong Kong/483/1997), pCMV/R 8kB-HA(A/chicken/Korea/

ES/2003), pCMV/R 8kB-HA(A/turkey/Turkey/1/2005), pCMV/

R 8kB-HA(A/Egypt/2782-NAMRU3/2006), pCMV/R 8kB-

HA(A/chicken/Nigeria/641/2006), and pCMV/R 8kB-HA

(A/Iraq/207-NAMRU3/2006). The 10 plasmid combination

group (10 HA) received 1.5 mg DNA for each of the 10 HA

plasmids (total 15 mg) as used in the single plasmid groups

mentioned above. For the two 5 plasmid combination groups

[5 HA (Set1), 5 HA(Set 2)], 3 mg of each plasmid DNA were

used as total DNA remained the same (15 mg). 5 HA (Set 1)

group contained: pCMV/R 8kB-HA(A/Hong Kong/156/1997),

pCMV/R 8kB-HA(A/chicken/Korea/ES/2003), pCMV/R

8kB-HA(A/turkey/Turkey/1/2005), pCMV/R 8kB-HA(A/

Egypt/2782-NAMRU3/2006), and pCMV/R 8kB-HA(A/

chicken/Nigeria/641/2006). 5 HA (Set 2) group contained:

pCMV/R 8kB-HA(A/Indonesia/05/2005), pCMV/R 8kB-

HA(A/Anhui/1/2005), pCMV/R 8kB-HA(A/Thailand/

1(KAN-1)/2004), pCMV/R 8kB-HA(A/Hong Kong/483/

1997), and pCMV/R 8kB-HA(A/Iraq/207-NAMRU3/2006).

Serum was collected 10 days after the last vaccination.

DNA immunization of chickens
The study was carried out in the AAALAC-accredited animal

facility at the University of Maryland School of Medicine. Six

groups of 8 one-day-old male and female SPAFAS White Leghorn

Chickens, Gallus domesticus, were obtained from Charles River

Laboratories (Connecticut). The animals were housed in brooder

and grower cages (McMurray Hatcheries, Iowa). Feed (Teklad

Japanese Quail Diet – 3050, Harlan-Teklad, WI) and water were

provided to the animals ad libitum. The study was performed in

strict accordance with the ‘‘Guide’’ after approvals from the

Animal Care and Use Committees of the Vaccine Research

Center, NIH and the University of Maryland. DNA immuniza-

tions were performed as described at 0, 3 and 6 weeks. A total dose

of 500 mg of one or a combination of the following DNA plasmids

in a volume of 250 ml was administered to each animal: pCMV/

R, pCMV/R-HA(A/Indonesia/05/2005), pCMV/R-HA(A/An-

hui/1/2005), and pCMV/R-HA(A/Vietnam/1203/2004).

Groups 1–4 received intradermal/subcutaneous immunizations

via Agro-JetH with pCMV/R, with pCMV/R-HA(A/Indonesia/

05/2005), with pCMV/R-HA(A/Indonesia/05/2005) plus

pCMV/R-HA(A/Anhui/1/2005) plus pCMV/R-HA(A/Viet-

nam/1203/2004), or with pCMV/R-HA(A/Indonesia/05/2005)

respectively. Group 5 received subcutaneous immunizations via

needle and syringe with pCMV/R-HA(A/Indonesia/05/2005);

and Group 6 received intramuscular immunizations via needle

and syringe with pCMV/R-HA(A/Indonesia/05/2005). Blood

samples were collected from the alar veins of the chickens at

various intervals. All groups were challenged at week 8 intranasally

with 56106 EID50/ml of A/Vietnam/1203/2004 H5N1 viruses.

For the virus load study, cloacal and tracheal swabs were collected

from each animal on days 3 and 5 post challenge and titrated for

virus infectivity in embryonated eggs. Chickens were monitored

each day for signs of disease or death. Surviving chickens

underwent necropsy on day 14 post challenge.

For dose response experiments, five groups were immunized

with the trivalent HA vaccine (pCMV/R-HA(A/Anhui/1/2005),

pCMV/R-HA(A/Indonesia/05/2005), and pCMV/R-HA(A/

chicken/Nigeria/641/2006) using 500 mg (167 mg of each of the

three plasmids), 50 mg (17 mg of each plasmid), 5 mg (1.7 mg of

each plasmid), 0.5 mg (0.17 mg of each plasmid) and a 500 mg

control vector administered IM with needle and syringe, and an

additional five groups were injected with the same plasmid doses

using the Agro-JetH injection device.

Agro-JetH needle-free injector
Agro-JetH is a needle-free device used for mass delivery of

vaccines and drugs in livestock and poultry. The device is semi-

automatic and requires a small CO2 tank or compressed air for

low pressure delivery. Upon trigger activation, CO2 disperses the

injectate at a precise dose into the muscle, dermis or subcutaneous

tissue depending on the setting that was standardized for our use.

We used an effective volume of 0.1 ml in our injectate [39]. In this

study we were able to effectively deliver 0.1 ml of injectate into the

animal’s dermis/subcutaneous tissue at a pressure of 48–55 psi.

Challenge studies in mice
Sixty-eight weeks after the last immunization, female BALB/c

mice were lightly anesthetized with Ketamine/Xylazine and

inoculated intranasally with 10 LD50 of A/Vietnam/1203/2004

virus diluted in phosphate-buffered saline in a 50 ul volume. Mice

were monitored daily for morbidity and measured for weight loss

and mortality for 21 days post infection. Any mouse that had lost

more than 25% of its body weight was euthanized. All experiments

involving the HPAI virus were conducted in an AAALAC

accredited facility (BioQual Inc., Gaithersburg, MD) under BSL

3 conditions that included enhancements required by the USDA

and the Select Agent Program.

Challenge studies in chickens
White Leghorn chickens were challenged one week after the last

immunization with 20 lethal dose 50 (LD50) of A/Vietnam/1203/04

(H5N1) influenza A virus, equivalent to 26104 EID50 based on

previous challenges [53]. Chickens were infected with 200 ml virus

intranasally. Tracheal and cloacal swabs were collected days 3 and 5

post-challenge and stored in glass vials containing BHI medium

(BBLTM Brain Heart Infusion, Becton Dickinson) at 280uC. Blood

was collected 14 days post-challenge and serum was titered by

microneutralization assay. Chickens were observed and scored daily

for clinical signs of infection, morbidity and mortality. Chickens that

survived the study were bled and humanely euthanized at day 14

post-challenge. Lungs, heart, intestine and kidney were collected and

samples were stored in formalin for histopathology. Experiments

were carried out under BSL3+ conditions with investigators wearing

appropriate protective equipment and compliant with all Institu-

tional Animal Care and Use Committee-approved protocols and

under Animal Welfare Act regulations at the University of

Maryland, College Park, Maryland.

Virus titers in chickens
Representative tracheal and cloacal swabs were chosen to run

an EID50 assay for comparison and virus titers were determine by

the method of Reed and Meunch [52]. Briefly, swabs were used to

infect 10 day-old embryonated chicken eggs in 10-fold dilutions.

Three eggs were inoculated per dilution and incubated for

48 hours before titration.

Microneutralization assays
Neutralizing antibodies were titrated from serum samples

collected week 5 and 7 post-vaccination and day 14 post-
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challenge. The microneutralization assay was performed using a

96-well plate format. Serum was treated with receptor-destroying

enzyme (Denka Seiken Co.) and treated at 37uC per the

manufacturer’s instructions. After an overnight incubation and

subsequent inactivation samples were brought to a final dilution of

1:10 using PBS and each sample was serially diluted and virus,

diluted to 100 TCID50, was added to each well. The plates were

then incubated at 37uC, 5% CO2 for 1–2 hours. Following

incubation, supernatants were used to infect a second 96-well plate

of MDCK cells. Microplates were incubated at 4uC for 15 minutes

and then 37uC, 5% CO2 for 45 minutes. Supernatants of serum

and virus were then discarded and 200 ml of OptiMEM

(containing 1X antibiotics/antimycotics, 1 mg/ml TPCK-trypsin)

was added and incubated at 37uC, 5% CO2 for 3 days. After 3

days, 50 ml of the supernatant from each well was transferred into

a new 96-well microplate, and an HA assay was performed to

calculate the antibody titers. Virus and cell controls were included

in the assay.

Two-fold dilutions of heat-inactivated sera were tested in a

microneutralization assay as previously described [54] for the

presence of antibodies that neutralized the infectivity of 100

TCID50 (50% tissue culture infectious dose) of the A/Vietnam/

1203/2004 H5N1 virus on MDCK cell monolayers by using two

wells per dilution on a 96-well plate.

Production of pseudotyped lentiviral vectors and
measurement of neutralizing antibodies by LAI

The recombinant lentiviral vectors expressing a luciferase

reporter gene were produced as previously described [35,36].

For the neutralization assay, antisera from immunized animals

were heat-inactivated at 55uC for 30 minutes and mixed with

50 ml of pseudovirus at various dilutions. The sera/virus mixture

was then added to 293A cells in 96-well B&W TC Isoplates

(Wallac, Turku, Finland; 12,000 cells/well). Two hours later, the

plates were washed and fresh medium was added. Cells were lysed

in mammalian cell lysis buffer (Promega, Madison, WI) 24 hrs

after infection and luciferase activity was measured using the

Luciferase Assay System (Promega, Madison, WI).

The following strains were used for the production of

pseudotyped viruses: for HA we used A/Thailand/1(KAN-1)/

2004; A/Vietnam/1203/2004; A/Hong Kong/156/1997; A/

Hong Kong/483/1997; A/chicken/Korea/ES/2003; A/Indone-

sia/05/2005; A/turkey/Turkey/1/2005; A/Egypt/2782-

NAMRU3/2006; A/chicken/Nigeria/641/2006; A/Iraq/207-

NAMRU3/2006; A/Anhui/1/2005, and for N1 NA we used

A/Thailand/1(KAN-1)/2004.

Hemagglutination (HA) and hemagglutination inhibition
(HI) assays

The HA/HI titers were determined as previously described

[54]. Briefly, HA titers were calculated using 50 ml of 0.5%

chicken red blood cell suspension in PBS added to 50 ml of two-

fold dilutions of virus in PBS. This mix was incubated at room

temperature for 30 minutes. The HA titers were calculated as the

reciprocal value of the highest dilution that caused complete

hemagglutination. HI titers were calculated by titrating 50 ml of

antiserum treated with receptor-destroying enzyme and an

equivalent amount of A/Vietnam/1203/2004 virus (four hemag-

glutinating doses) was added to each well. Wells were incubated at

room temperature for 30 minutes and 50 ml of a 0.5% suspension

of chicken red blood cells was added. HI titers were calculated

after 30 minutes as the reciprocal of the serum dilution that

inhibited hemagglutination.

Supporting Information

Table S1 Hemagglutination inhibition (HI), microneutralization

titer (NT), and LAI of sera from individual chickens immunized

with different vaccines. Sera from immunized animals were

obtained at week 5 or 7, a week before or after the final boost, and

neutralization was assessed by HI, microneutralization (NT) and

LAI (shown as IC50). Individual animal serum of each group is

shown and was analyzed as described in the Materials and

Methods section.

Found at: doi:10.1371/journal.pone.0002432.s001 (0.12 MB

DOC)

Table S2 Neutralizing antibody responses after two vaccinations

at different doses by LAI. Sera obtained at week 5, one week after

the final boost, from individual animals immunized with trivalent

DNA HA encoding vaccine: pCMV/R-HA(A/Anhui/1/2005),

pCMV/R-HA(A/Indonesia/05/2005), and pCMV/R-HA(A/

chicken/Nigeria/641/2006) in the dose response study at the

indicated DNA vaccine doses were analyzed. Neutralization of A/

Vietnam/1203/2004 or A/Indonesia/05/2005 HA was per-

formed by LAI as described in the Materials and Methods. End

point dilutions of the serum with IC50 activity are shown.

Found at: doi:10.1371/journal.pone.0002432.s002 (0.11 MB

DOC)

Figure S1 Characterization of needle-free (Agro-JetH) DNA

immunization in chickens. To evaluate the distribution of fluid

into superficial or deep layers of subcutaneous tissues after delivery

by AgroJetH, 4 or 7 week old chickens were injected with a solution

containing India ink with this needle-free device at various

pressures, ranging from 45 to 55 mm Hg. Three sites (thigh, wing

and breast) were used, and biopsies were taken for routine

hematoxylin and eosin staining. Representative sections of thigh

injections are shown from 7 week old chickens and were similar at

4 weeks (data not shown). While the 48 mm Hg pressure deposited

the injectate into the dermis/subcutaneous region (left), the higher

pressure injections, 52 and 58 mm Hg, deposited the injectate into

the subcutaneous and muscle layers (middle, right). 48 mm Hg

consistently provided an optimal pressure to deposit the injectate

into the dermis and subcutaneous tissue and was chosen for all

AgroJetH immunizations.

Found at: doi:10.1371/journal.pone.0002432.s003 (10.74 MB

DOC)
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