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Abstract

Background: Tracking moving objects in space is important for the maintenance of spatiotemporal continuity in everyday
visual tasks. In the laboratory, this ability is tested using the Multiple Object Tracking (MOT) task, where participants track a
subset of moving objects with attention over an extended period of time. The ability to track multiple objects with attention
is severely limited. Recent research has shown that this ability may improve with extensive practice (e.g., from action
videogame playing). However, whether tracking also improves in a short training session with repeated trajectories has
rarely been investigated. In this study we examine the role of visual learning in multiple-object tracking and characterize
how varieties of attention interact with visual learning.

Methodology/Principal Findings: Participants first conducted attentive tracking on trials with repeated motion trajectories
for a short session. In a transfer phase we used the same motion trajectories but changed the role of tracking targets and
nontargets. We found that compared with novel trials, tracking was enhanced only when the target subset was the same as
that used during training. Learning did not transfer when the previously trained targets and nontargets switched roles or
mixed up. However, learning was not specific to the trained temporal order as it transferred to trials where the motion was
played backwards.

Conclusions/Significance: These findings suggest that a demanding task of tracking multiple objects can benefit from
learning of repeated motion trajectories. Such learning potentially facilitates tracking in natural vision, although learning is
largely confined to the trajectories of attended objects. Furthermore, we showed that learning in attentive tracking relies on
relational coding of all target trajectories. Surprisingly, learning was not specific to the trained temporal context, probably
because observers have learned motion paths of each trajectory independently of the exact temporal order.
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Introduction

Tracking moving objects in space is important for the

maintenance of spatiotemporal continuity in everyday visual tasks,

such as sports, driving, and keeping track of children on the

playground. When a salient feature such as color distinguishes the

targets from nontargets, tracking is easily achieved by remember-

ing the target feature. However, when salient featural differences

are absent, tracking must rely on attention. The latter case is

exemplified by the multiple-object tracking (MOT) task, where

several visually identical objects move randomly on a display and

the observers track with attention a prespecified subset of objects

[1–2]. Research using this task reveals that humans can track

about four objects among other objects moving at moderate

speeds, but performance declines with increasing target number,

increasing motion speed, and decreasing object-to-object distance

[3–4].

Although attentive tracking appears quite limited in laboratory

settings, the limitation may be alleviated in daily activities. Objects

in natural vision do not move in a completely unpredictable

manner. Repeated exposure to a given visual environment, such as

the same driving route with fixed lanes, may enhance tracking.

Indeed, recent research has shown that humans are highly

sensitive to repetitions in the visual input. They are faster at

finding a target on search displays that repeat occasionally. Such

learning, known as ‘‘contextual cueing,’’ is observed when

searching for a static target [5] or a moving target [6] among

repeated search displays. Visual associative learning is also seen for

shapes that frequently co-occur in space or in temporal sequence

[7–8].

The prevalence of statistical learning in visual tasks suggests that

attentive tracking may be similarly influenced by learning.

However, learning in a MOT task is more challenging than in

other tasks. In MOT, objects constantly change locations,

providing limited opportunities for observers to learn from any

instance of motion. Furthermore, the task places strong demands

on the observer’s ability to simultaneously learn several target

trajectories. This demand may not be easily met. For example,

contextual cueing is rapidly acquired when a search display is

consistently associated with one target location, but it fails to

develop if a search display is associated with four target locations

[9]. Nonetheless, a recent technical report demonstrated some

evidence for learning in MOT [10].

This study aims to systematically characterizing visual learning

in attentive tracking. We are interested in MOT learning because

the MOT task uniquely taps into various aspects of attention in a
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single paradigm. In this task, attention is divided among multiple

targets, which must be selected from nontargets and maintained across

spatial and temporal changes. These properties make the MOT task

a perfect candidate for characterizing how varieties of attention

interact with visual learning. The goal of this paper is to address

the following questions.

First, how does selective attention constrain visual learning in

MOT? Previous studies that investigate the role of attention in

learning have often used tasks that exert minimal requirement on

selective attention. For example, the serial reaction time task [11]

presents observers with a sequence of trials, where each trial

involves only one stimulus, eliminating any need to select the

target from distractors. In contrast, the MOT task is inherently a

selective attention task. It is well suited to address whether learning

is constrained by selective attention. To this end, we investigate

whether attended and unattended trajectories are learned equally

well.

Secondly we ask whether target trajectories are learned in

relation to one another or as separate, independent motion

trajectories. This issue is important as it can shed light on a recent

debate in the literature. Namely, when attention is divided among

multiple target trajectories, are the different attentional foci fully

independent or are they inter-related? This question has proven

difficult to answer, with some researchers proposing independent

‘‘pointers’’ for tracking separate targets [12], while others

proposing a single spotlight or multiple interdependent spotlights

for all targets [13]. This study addresses this question from the

perspective of visual learning.

Finally, because attention is deployed not only in space but also

in time, the MOT task allows us to test the specificity of learning to

trained temporal context. In other tasks, such as visual search

through a sequence of centrally-presented letters, participants

usually learn the temporal order of stimuli and use it to predict

what comes next [14]. The MOT task also involves temporally

sequenced stimuli, yet it has an additional spatial component. It is

therefore of interest to test whether learning in a spatiotemporal

task reveals the same kind of temporal specificity as learning in a

purely temporal task. To this end, we examine whether learning in

MOT transfers to presentation of learned motion sequence

presented backwards.

The current study
Participants tracked four moving circles within a field of eight

moving circles. The motion trajectories were repeatedly presented

during training. To prevent participants from learning just the

final positions of a motion trial, the trials were terminated at a

randomly selected moment. We then tested participants in a

transfer session where trials with novel trajectories (new) were

compared with trials with previously experienced trajectories. In

the transfer session of Experiment 1 (Table 1), sometimes the

tracked subset was the same as that used during training (old),

sometimes it was the opposite from that used during training

(target-distractor switched), sometimes it included two of previously

tracked targets and two of previously ignored distractors (mixed).

This design allowed us to address several theoretical questions.

First, if learning is constrained by selective attention, such that

only attended trajectories are learned, then learning should

transfer only when the target trajectories in the transfer phase

matched those used during training. Consequently, performance

in the old condition should be high but that in the switched

condition should be low. Alternatively, if learning is independent

of selective attention, then all trajectories should be learned

equally well. Consequently, learning should transfer equally well to

the switched and the old conditions.

Second, with regard to what is being learned, the comparison

between the mixed condition and other conditions can inform us

whether multiple target trajectories are learned independently of

one another. If so, repeating two of the target trajectories should

lead to about half as much transfer as repeating all four target-

trajectories. Alternatively, if the target trajectories are learned in

relation to one another, then transfer to the mixed condition should

be largely eliminated. Here we did not consider the possibility of

negative transfer from distractor trajectories; this will be discussed

later.

Experiment 2 further addresses the specificity of learning by

asking whether learning is specific to the trained temporal context.

Many forms of visual statistical learning involve repeated temporal

order. Such learning allows participants to predict the target object

based on the preceding objects [14]. The motion trajectories used

in MOT are temporally ordered, making it possible that learning is

specific to the trained temporal context. However, in this task

temporal information is also integrated with spatial information.

Thus, the trajectories form motion path, a spatially arrayed

trajectory. It is possible that MOT learning is partly comprised of

learning of the motion path independently of the exact temporal

order (or ‘‘vector’’ of motion). Experiment 2 tests these competing

possibilities by examining whether learning transfers to learned

motion played backward in time.

Materials and Methods

Participants
The study was approved by the University of Minnesota IRB

Human Subjects Committee. Participants were volunteers from

the University of Minnesota. They were 18 to 35 years old, had

normal color vision, and normal or corrected-to-normal visual

acuity. All participants provided informed consent and received

one course credit or $10/hr. Twelve participants (mean age 20.7

years) completed Experiment 1 and fifteen new participants (mean

age 20.9 years) took part in Experiment 2.

Stimuli
The moving objects were circles 0.6u in diameter presented

against a gray background. All had the same color and size on a

given trial, but the exact color could be one of eight salient colors

and was randomly determined on each trial.

Procedure
Participants initiated each trial by pressing the spacebar, which

brought up 8 objects presented at randomly selected locations

within an imaginary square (21u621u). The objects were stationary

during the cue period with four cued by an outline white square

(1.0u61.0u). The cue lasted for 1330 msec, after which the white

Table 1. An illustration of the conditions tested in
Experiment 1.

Condition Target set Distractor set

Training (15 times) [1,2,3,4] [5,6,7,8]

Transfer - Old [1,2,3,4] [5,6,7,8]

Transfer - Switched [5,6,7,8] [1,2,3,4]

Transfer - Mixed [1,2,5,6] [3,4,7,8]

Transfer - New [9,10,11,12] [13,14,15,16]

The numbers 1 to 16 correspond to 16 random motion trajectories.
doi:10.1371/journal.pone.0002228.t001

Learning in Attentive Tracking

PLoS ONE | www.plosone.org 2 May 2008 | Volume 3 | Issue 5 | e2228



squares disappeared and the objects moved at a constant speed.

Participants were asked to track the cued objects and were

encouraged to maintain fixation during tracking. The objects

bounced off the edge of the imaginary square or repelled one

another at a minimal center-to-center distance of 1.2u. After 6–8 s

of motion, the objects stopped and turned white. Participants

responded by clicking on four items, after which the correctly

clicked targets turned green and the missed targets turned red for

0.5 s.

Experiment 1’s Design
The experiment contained three consecutive phases. During

training, participants completed 15 blocks, each including 8

different trials. Each trial was 8 s in motion duration and was

shown in its entirety in Block 1. Subsequently, these eight trials

were repeated once per block for the remaining blocks with

random trial orders. Each trial terminated at a randomly

determined time after 6–7.5 s of motion in Blocks 2 to 15.

Because objects moved at 22.5u/sec, each object would have

moved up to 33.8u during a 1.5 s window. The ending

configuration was highly dissimilar from one repetition to another,

making it impossible for participants to learn just the configuration

of the ending display.

The transfer phase commenced immediately after training

without special instructions. Trials used in the transfer phase were

all novel trajectories (new condition), or the same trajectories as

used during training. There were three ways in which the eight

objects of the old trials might be cued. In the old condition, the

same subset of objects previously cued as targets during training,

were cued. In the switched condition, the previously uncued objects

were cued as tracking targets. In the mixed condition, two

previously cued objects and two previously uncued objects were

cued as tracking targets. The 8 trials in each of the four conditions

were presented in a random order. To increase statistical power,

the same 32 trials (including the same new trials) were presented

again (in a different order). Similar to training, a transfer trial

terminated at a random moment after 6–7.5 s of motion.

Following the transfer phase, participants were tested in a

recognition phase, where they were shown the 32 transfer trials along

with 32 matching trials whose starting displays (i.e., the cue period)

were the same as the 32 transfer trials, but whose motion

trajectories were newly generated. On each trial during recognition,

participants tracked the cued targets and reported whether the

trial contained trajectories they saw before.

Experiment 2’s design
There were 20 training blocks in Experiment 2. During block 1,

6 unique trials (each with 8 objects) were randomly generated for

each participant. Objects moved at a constant speed of 17.5u/sec

for 8.5 s in Block 1. Blocks 2 to 20 contained the same 6 trials

presented in a random order, but the trials started at a random

point of time between 0–2.5 s of Block 1’s starting time and lasted

6 s. The randomization of the starting positions ensured that

across repetitions, trials would start and end with highly divergent

displays.

Participants were tested in 3 conditions in the transfer phase. The

new condition used new motion trajectories for all objects. The old,

forward-motion condition was the same as training, while the old,

backward-motion condition was the trained trials played backwards.

The duration of motion was held constant at 6 seconds in all

conditions. Each trial started at a random moment 0–2.5 s from

the beginning (or 0–2.5 s from the end, when motion was played

backward) of a trial. The designation of targets in the old

conditions always matched that of training. There were 6 trials

in each condition to form 18 trials of a transfer block. To increase

statistical power, we repeated these 18 trials for a second transfer

block.

Finally, the same 18 trials used in the transfer block were

presented again in the recognition phase. Participants were asked to

track cued targets and report whether the trial contained repeated

trajectories. All other aspects of the experiment were the same as

those of Experiment 1.

Results

Accuracy in a given trial was calculated by averaging the

responses given to all four targets. For example, if a participant

correctly clicked on 3 out of the 4 targets, accuracy would be 75%

on that trial.

Experiment 1
1. Training. Tracking in Block 1 was marginally poorer than

in Block 2 (Figure 1, left), F(1, 11) = 4.31, p = .06. This difference

might reflect very rapid learning, or more plausibly, effects of

different tracking duration (8 s in Block 1 versus an average of

6.75 s in later blocks). Trial duration was comparable in blocks 2

to 15, and accuracy increased numerically but not statistically. The

linear improvement from Blocks 2 to 15 failed to reach

significance, F(1, 11) = 2.18, p..17. The lack of significant

improvement during training does not indicate an absence of

learning, as training effects may be masked by fatigue or reduced

motivation at later points of the training session. It is therefore

important to assess learning by comparing performance between

old, new, and other conditions in a single transfer phase.

2. Transfer. Accuracy in the transfer phase (Figure 1, right)

revealed a significant main effect of condition, F(3, 33) = 6.85,

p,.01. The old condition was more accurate than the new

condition, F(1, 11) = 5.08, p,.05. The switched and the mixed

conditions were both significantly worse than the old, F(1,

11)s.18.61, ps,.01, and not significantly different from each

other or from the new condition, F(1, 11)s,1.98, ps..15. This

pattern was observed in each of the two transfer blocks, as block

did not interact with transfer condition, F,1.

3. Recognition. When queried after the transfer phase, half

of the participants reported that they had noticed the repetition of

motion trajectories. However, these ‘‘aware’’ participants were no

more likely than the others at judging whether an old trial (or an

entirely novel trial) was previously repeated or not, F,1. ‘‘Aware’’

participants also did not show greater benefit from the old

condition during the transfer phase, F,1. The following analyses

were pooled across all participants.

Forced choice of whether a trial involved repeated or novel

trajectories revealed no strong evidence for the presence of explicit

knowledge (Figure 2). Trials with repeated trajectories were no

more likely than trials with novel trajectories to receive a response

of ‘‘old,’’ F,1, when the two conditions share the same cueing

phase. The two conditions most extreme in terms of novelty were

not different in recognition response. The percentage of ‘‘old’’

responses was comparable for repeated displays with old initial

displays and for new trajectories with novel initial displays,

t(11) = 1.60, p..14.

Experiment 2
1. Training. Figure 3 (left panel) shows that accuracy

improved as training progressed from blocks 2 to 20 (we

excluded Block 1 because its motion duration was longer),

resulting in a significant linear trend of block, F (1, 14) = 14.52,

p,.01. The stronger learning seen in this experiment compared

Learning in Attentive Tracking
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with Experiment 1 may be attributed to the use of fewer unique

trials and more repetitions.

2. Transfer. Performance in the old, forward-motion condition

was significant higher than that in the new condition, F(1,

14) = 13.46, p,.01. This learning transferred to the old, backward-

motion condition, which was significantly more accurate than the

new condition, F(1, 14) = 5.66, p,.05, but not significantly different

from the old, forward-motion condition, F(1, 14) = 1.59, p..22. This

pattern was seen in both transfer blocks, as the interaction between

transfer block and condition was insignificant, F,1.

3. Recognition. Participants were significantly more likely to

report a display as containing repeated trajectories in the old,

forward-motion condition (M = 56.7%) than the new condition

(M = 35.6%), F (1, 14) = 8.23, p,.05. The old, backward-motion

condition was intermediate (M = 47.8%), not significantly different

from the forward-motion, F(1, 14) = 1.20, p..29, or the new condition

F(1, 14) = 3.90, p = .07. Individual subjects’ results showed,

however, that participants who recognized more repeated

displays did not show greater MOT learning in the transfer

phase, F,1. Thus, while there was evidence for explicit

recognition of repeated displays, it was unclear whether

improvement in the tracking task was driven exclusively by

explicit knowledge.

Discussion

This study shows that the human visual system is capable of

learning in an attentive tracking task, even though the visual

stimuli are complex and the task is attentionally demanding.

Experiment 1 demonstrated that visual learning could assist

attentive tracking, even though there were multiple target

trajectories to learn [10]. Learning did not transfer to trials with

the same motion trajectories but different designation of targets

and nontargets, suggesting that learning in attentive tracking does

not originate from increased familiarity with repeated motion

trajectories. The lack of transfer in the target-distractor switched

condition is particularly notable. It suggests that learning was not

driven by an improved ability to divide the moving objects into

two specific subsets. That is, attentional segregation in MOT is not

a simple matter of dividing the display into two subsets; it is more

analogous to figure-ground segregation where the reversal of figure

and ground produces a new percept. These results indicate that

MOT learning is constrained by selective attention.

With regard to what is learned, Experiment 1 also shows that

the multiple target trajectories are learned in relation to one

another. This is because there was no partial transfer to the mixed

condition where two former targets and two former distractors

were to be tracked. But could the lack of partial transfer be

explained by a cancellation between positive transfer to the targets

and negative transfer to the nontargets? That is, suppose that

suppression of the distractor trajectories led to negative transfer,

which may have cancelled out partial transfer from two of the

target trajectories. The net result would be a lack of improvement

in the mixed condition. The notion of negative transfer is appealing

but is unsubstantiated by our data. Any negative transfer should be

revealed most strongly in the switched condition, yet our data

showed that performance in the switched condition was not worse

than the mixed condition, providing no evidence for the

cancellation of negative and positive transfers in the latter. Instead,

the lack of partial transfer in the mixed condition is most consistent

with the idea that multiple attentional trajectories are processed in

relation to one another [13].

Although MOT learning is specific to the learned spatial

context, it is not highly specific to the trained temporal context.

Experiment 2 showed that learning readily (though perhaps not

fully) transfers to trials with motion played backwards, suggesting

Figure 1. Experiment 1 Results. Left: Training phase. Right: Transfer phase. Error bars show 61s.e.
doi:10.1371/journal.pone.0002228.g001

Figure 2. Recognition data from Experiment 1.
doi:10.1371/journal.pone.0002228.g002
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that the vector of motion was not a critical component of learning.

What enabled learning to transfer to backwards motion? There

are at least two possibilities: participants might have learned the

snapshots of the spatial configuration for each moment of motion,

or they might have learned the motion path of each trajectory.

Both the moment-to-moment snapshots and the motion path were

the same for forward and backward motion. Although our

experiment could not distinguish between these two possibilities,

we believe that the snapshot account is highly implausible. The

snapshot account requires participants to learn four target

locations for each snapshot, yet a previous study has shown that

participants are unable to associate a search display with four

target locations [9]. These findings also support a recent claim that

backward predictions and forward predictions are comparable in

associative learning [15]. They suggest that temporal prediction

(such as extrapolation of future motion locations) is a not critical

component of attentive tracking [16].

Is the kind of learning involved in MOT the same as that

involved in other type of visual statistical learning? A direct answer

to this question would require tests of transfer across tasks, such as

transfer from trained motion trajectories to visual search of moving

objects in those trajectories. Without such data, we can only make

speculative comparisons. Learning in MOT is similar to other

types of visual learning in its sensitivity to selective attention.

However, it is difficult to conceive MOT learning simply as

snapshots of spatial context learning. The number of configura-

tions involved in each trial is much greater in tracking, and the

number of targets also exceeds that usually learned in visual search

[9]. Furthermore, learning in MOT relies on relational coding of

all target trajectories, whereas learning of repeated spatial context

depends on individual locations [17]. Whether the same type of

visual learning is used for attentive tracking as for other tasks

remains to be seen.

Our conclusion that learning in attentive tracking is gated by

attention is consistent with Ogawa and Yagi’s [10] finding that

repeating distractors alone was not beneficial. However, Ogawa

and Yagi also found that tracking was more accurate when both

targets and distractors repeated, than when only the targets

repeated. This finding is not inconsistent with the attention-

dependent account, as it needs not imply that distractors are

learned. Instead, the utility of target-repetition may be lower when

distractor trajectories are novel. With novel distractor trajectories,

there are new uncertainties as when distractors may get closer to

the targets, and those are the moments when observers are most

likely to lose the targets. The interaction between targets and

distractors is thus more variable when distractors are new,

reducing the utility of target learning.

In summary, this study has shown that a demanding task of

tracking multiple objects can benefit from learning of repeated

motion trajectories. Such learning potentially facilitates tracking in

natural vision, although learning is largely confined to the

trajectories of attended objects.
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