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Abstract

Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control
measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial
epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and
disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human
movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special
challenge. Therefore, to test the model’s robustness, we analyzed gravity model incidence predictions for coastal cities in
England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate
coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the
model’s inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this
predicted ‘edge effect’ by increasing coastal contacts to approximate the number of per capita inland contacts. These
results illustrate the impact of ‘edge effects’ on epidemic metapopulations in general and illustrate directions for the
refinement of spatiotemporal epidemic models.
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Introduction

The dynamic clockwork of measles epidemics is relatively well

understood [1,2]. Measles is a highly infectious virus and, in pre-

vaccine developed countries, the strong acquired immunity

following infection led to an average infection age of around

5 years [1,3]. In both historic and current measles outbreaks, a

brief primary infection followed by lifelong immunity results

in violent epidemics. These epidemics extinguish themselves by

depleting susceptible numbers, as hosts move irreversibly through

susceptible-infected-recovered (SIR) classes. Subsequent epidemics

start only when susceptible density has increased over time via

births, resulting in repeated epidemic cycles interspersed with deep

troughs of little or no measles incidence [4] (figure S1b). Seasonal

patterns in aggregation and transmission can also force the timing

and magnitude of these epidemic sequences [5], and this has been

captured clearly in historical records of measles incidence for

many countries [2].

Measles data from pre-vaccination England and Wales (1944–

64) highlight spatial patterns in outbreaks and, therefore, also

indirectly reveal patterns in human movement [6,7]. A key driver

of measles spatiotemporal dynamics is a threshold local population

size, or critical community size (CCS), below which pre-

vaccination measles will fail to persist and will go stochastically

extinct (‘fade out’) between outbreaks. Epidemics in populations

smaller than this threshold are subsequently reintroduced from

other patches of a metapopulation. The CCS for measles in pre-

vaccination England and Wales is estimated at approximately

300,000 individuals [8]. Outbreaks begin in cities that exceed the

CCS, called ‘core’ cities and extend away from them, in traveling

waves of infection [2,6,8]. These outward traveling waves identify

core cities as epidemic drivers. The ‘coupling’ between patches

quantifies the contact between them, which results in their degree

of epidemic synchrony.

From previous studies, we understand that measles dynamics in

London, as well as most of England and Wales, were driven by

increased contact rates for children at the beginning of school

terms [5]. These increases in contact rates led to higher

transmission rates and ‘forced’ major biennial (every other year)

epidemics. Susceptible density built up via births during non-

epidemic years.

Despite complex geographic patterns of human habitation and

movement (e.g. [9]), the simple gravity model appears to provide a

fair approximation to many features of viral transmission. The

gravity model parameterizes both the extent to which people move

to large towns compared to small ones, and the spatial localization

of their movements. These movements can occur for any reason

and the model ignores geographic features such as desirability of

each location as a vacation/weekend destination and the

availability of public transportation. Moreover, it implicitly treats

inland communities in a different fashion than coastal towns

because neighboring communities surround inland towns whereas
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water partially surrounds coastal towns. To better understand

the applicability and limitations of the gravity model, we were

prompted by Savill et al. [10] to ask how well the model predicts

coastal dynamics, as they point out that these are true ‘edges’ and

therefore, are a unique case and a robust test of spatial models. We

start with a simplified scenario: an artificial metapopulation with

equidistant and equivalently sized inland and coastal towns

arranged in a regular geometric shape. We use this simple system

to analyze the model’s predictions along the edges. Next, we study

a more complex and realistic system using actual spatial,

demographic, and epidemic data from England and Wales. We

compared predicted and observed patterns of measles persistence

in coastal locations to those of inland locations.

Methods

Local and Regional Scale Models
Within towns and cities (patches), hosts move from Susceptible

(S) to Infected (I)to Recovered (R) classes irreversibly (full details

and parameter values are given in [11]). We use a Time-series SIR

model as follows:

Stz1~St{Itz1zbirthst ð1Þ

lt~
btStI

a
t

Nt

, Itz1~Poisson ltð Þ ð2Þ

Here, bt is the seasonally varying transmission rate, which we

have estimated from the data. The parameter a, when slightly less

than unity (as here), is a conversion factor to go from continuous

time to discrete time [12]. Each time step is two-weeks long to

reflect the average infectious period of the measles virus. Cases

enter the infected class at the beginning of a time step. Two weeks

later, they exit the infected class and enter the recovered class in

the next time step. We define a fadeout as one biweek (a two-

week interval) with zero cases reported in a location. In any one

location, the absence of a fadeout signifies a possible unbroken

local chain of transmission and we assume measles has persisted

locally. Conversely, cases following a fadeout, or local extinction,

indicate that the virus was locally reintroduced.

Reintroductions occur when the movement of individuals

results in transmission events between patches. In order to

quantify this movement, we calculate patch connectivity using a

gravity model [2,7]. Specifically, we represent the expected

movement of individuals from patch j to patch i as:

j?i~
HNt1

i Nt2

j

D
r
ij

ð3Þ

Here, Ni and Nj are the population sizes of towns i and j,

respectively, Dij is the Euclidean distance between towns i and j, r
is a power describing how flux decays with distance, t1 and t2 are

immigration and emigration exponents, respectively, and H is a

coefficient of spatial coupling. Movement between patches is most

likely to occur over short distances and towards patches with large

populations. Xia et al. [7] used a spatially explicit metapopulation

model for England and Wales with gravity coupling to estimate the

coefficients as r= 1, t1 = 1, t2 = 1.5, and H= 4.5461029 km/

person1.5/biweek.

Savill et al. [10] examined the 2001 UK foot and mouth disease

epidemic and determined that Euclidean distance was a better

predictor for transmission risk than shortest or quickest route.

While transportation of infectious materials likely occurred over

roads in the foot and mouth epidemic, multiple transmission

routes over long distances made Euclidean distance a significantly

better predictor of simple spatial transmission risk. For these

reasons, we use Euclidean distance here.

This gravity framework successfully captures the overall

defining features of pre-vaccination measles dynamics in England

and Wales, particularly the relationship between measles persis-

tence and spatial synchrony with local population size and

isolation [7]. Disease models with similar distance-weighted size-

dependent coupling have recently been used to capture spatio-

temporal epidemic spread successfully in a number of other

systems [10,13,14,15,16].

Simple Case: Artificial Metapopulation Model
We created a metapopulation with one core city (a city which

exceeds the CCS) surrounded by many cities below the CCS

(figure 1a). Our intentions with this simple artificial population

were to isolate and identify the effects of being an edge city by

holding population size and distance to core city constant and

equal between edge and non-edge patches. Therefore, this

metapopulation included 27 cities along the edge of the system

that were all equal in size and equidistant from the core city. The

metapopulation also included an equivalent set of 27 non-edge

cities, or inland patches, also equal in size and equidistant from

the core city. We introduced a simulated measles epidemic into

this artificial metapopulation. We ran the simulation for 5000

biweeks and used the predictions from the final 4000 biweeks. We

chose an R0 value of ,30, invariant of community size ([11] their

figure 8 and p. 180) and an alpha slightly less than unity. We

gradually increased the coupling strength from .005 to .02 (the

fitted value for this parameter falls within this range) and used

seasonal term time forcing, as observed in the data. We compared

the model predictions for disease persistence and outbreak

correlation to the core city between these edge and inland cities

from our artificial metapopulation.

Actual Case: England and Wales Metapopulation
Our data consist of biweekly cases, population size, and birth

rate from each of 952 towns in England and Wales (figure 2a) from

1944 to 1964. We used latitude and longitude coordinates to

determine the Euclidean distance between each pair. We defined

coastal towns as those within 5 km of the edge of the island and we

identified 184 of these.

To investigate edge effects in England and Wales, we first fit the

gravity model (equation 3) to fortnightly data for measles from

1944 to 1964 for all 952 towns in England and Wales. The gravity

model parameters (H, t1, t2, and r) were estimated by a

combination of short and long term predictions, as described by

Xia et al. [7] and discussed above. (For a more detailed description

of how the gravity model was fit, please see [7].) We ran gravity

model simulations for twenty-one consecutive years with each year

consisting of 26 biweeks in order to test the null hypothesis that

the simulated persistence and dynamics of coastal towns and non-

coastal towns of the same size would be similar.

Seasonality
We considered the possibility that coastal cities may reach peak

densities (and therefore have elevated contact rates) during the

summer months, when travelers are preferentially drawn to the

coast [17]. To investigate the impact of specific coastal seasonality

on measles epidemics, we compared coastal outbreak seasonality

to inland outbreak seasonality from the data. We compared the

Edge Effects in Measles Models
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average timing and duration of actual epidemic peaks and troughs

for the entire 21-year period.

Public Transportation
While there are no specific records of human movement to

and from the coastline during the time period studied, we used

annual public transportation passenger volume from that time

in England and Wales [18]. As a proxy for contact rates, we

analyzed these data for interesting patterns or anomalies, with

respect to each coastal town’s population size and location. We

were unable to obtain bus passenger volume, road use data or

any seasonal movement data, which would have complemented

annual train passenger data to more completely show movement

patterns.

Results

Simple Case: Artificial Metapopulation Model
The gravity formulation uses distance and population size to

capture complex patterns of human movement in a relatively

crude way. These movements are important because they drive

epidemic spread between patches of metapopulations. To

understand how the model specifically treats edges of metapop-

ulations, we used an artificial metapopulation with ‘edge’ and

‘non-edge’ towns that were similar in size (all were below the CCS)

and in equidistant from the core city (figure 1a). It is important to

note that each coastal town we identified in the data was below the

CCS and therefore too small to sustain a continuous chain of

measles transmission in the absence of re-introductions. We

Figure 1. Simulated metapopulation for edge analysis. (a) The spatial distribution of towns (all dots), the large black dot represents a core city
or central town (analogous to London) and the edge towns in red (analogous to coastal towns) have inland towns in navy (analogous to any non-
edge towns) that are equidistant from the central town and similar in size. (b), (c) The model always predicts a reduced correlation coefficient and an
increased fadeout rate between an edge town and the central town than between a similar inland town and the central town. The bias is significant,
although it looks slight here, and is even stronger in the real model predictions for England and Wales (figure 2b and 3b) (d), (e) This can be corrected
by increasing the coupling strength (H in equation 3).
doi:10.1371/journal.pone.0001941.g001
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introduced a simulated measles epidemic into our artificial

metapopulation and focused on the model’s predictions of

persistence in ‘edge’ towns and the equivalent ‘non-edge’ towns.

In our artificial metapopulation, the model predicts that edge

town epidemics stochastically fade out more frequently than inland

town epidemics. The edge towns have fewer contacts and re-

introductions than inland towns due to the predicted movement of

individuals within a gravity model framework. Reduced contacts

would lead to a difference in fadeout frequency between edge and

inland towns. These edge town epidemics are also less correlated

with the core city than are the inland town epidemics, another

likely result of reduced contacts (figure 1b). Figure 1 illustrates this

‘edge effect’ by using our simple model core-satellite disease

metapopulation [7] to show that locations along the edge of the

system were predicted to experience a smaller flux of infective

sparks than their inland counterparts. We are confident that the

Figure 2. The model predicts more coastal fadeouts than observed for England and Wales. (a) Map of England and Wales showing the
location of each of the 952 towns included in this study. Green circles with white outlines are inland towns, pink circles are coastal towns. Area of
each dot is correlated to population size. (b) Total number of fadeouts against population size as observed (top) and as predicted by gravity model
(bottom). In the data, the coastal fadeouts (pink) are distributed among the inland fadeouts (green). In the model predictions, the coastal fadeouts
are clustered near the top of the inland distribution. (c) Boxplots showing coastal (pink) and inland (green) pairs of residuals of fadeouts on
population size. Left: observed; center: gravity model predictions; right: gravity model predictions with spatial coupling increased for the entire coast.
doi:10.1371/journal.pone.0001941.g002
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increased fadeouts and reduced correlation along the edge were

due to reduced contacts because solely increasing the per capita

contacts for towns along the edge is sufficient to result in

comparable fadeouts between edge and inland equivalents

(figure 1c, 1e) and to increase edge epidemic correlation with the

central core town (figure 1b, 1d).

Actual Case: England and Wales Metapopulation
England and Wales provide an excellent opportunity to explore

how the gravity model applies to measles and real coastal towns, or

‘edges.’ The ocean surrounding Great Britain was a relatively

impenetrable geographic barrier that was unlikely to introduce

many measles cases, relative to the impact of child movement

inland. This allows us to observe a fairly epidemically autonomous

system to analyze the true edge effects of human movement in a

metapopulation and epidemics on an island (figure 2a).

The gravity model predicted a significantly greater difference in

fadeouts for coastal towns in England and Wales than for inland

towns (corrected for population size) than we observed in the data

(figure 2b and 2c, figure S1). These model predictions show a

greater bias than was seen in both our simulated metapopulation

and simple coastal system models. Importantly, model predictions

showed no spatial bias or geographic clustering of overestimated

fadeouts (figure S2). This indicates that the basic gravity metapopulation is

unable to capture the relatively high level of stochastic persistence seen in coastal

measles. We now explore possible extrinsic and mechanistic epidemiological

explanations for this discrepancy.

Seasonality
The epidemic seasonality of coastal and inland towns were not

significantly different; the epidemics both began and peaked at

similar times during the same years, which correspond to school

terms (figure 3a). The similar timing of epidemics implies that

contact rates between inland and coastal locations were high

enough to cause inland core cities to spark coastal epidemics.

Extremely low contact rates between inland and coastal towns

would have resulted in highly uncorrelated measles epidemics

along the coast of England and Wales, relative to inland town

epidemics. The data show that these contact rates were higher

than predicted by the gravity model because the inland and coast

were in epidemic synchrony.

Public Transportation
These data revealed no abnormal relationship between train use

and measles persistence that could not be explained by population

size, a component that the gravity model already considers (figure

S3 and figure 4). We also saw no explanatory spatial patterns in

the passenger train volume.

Model Adjustments
Although we found no statistically significant difference between

train use and population size (figure S3b and S3c), we adjusted the

spatial coupling coefficient for only the coastal towns with

passenger train volume that exceeded 10,000 passengers per week

(which we categorized as high train use) and repeated the

simulations. We used least squares to compare our adjusted model

predictions to the data for the 109 coastal cities with high train use

that we identified (figure S3a and figure 4a). We found that

increasing the basic coupling parameter (H) by 1.3 times the initial

fitted value allowed the model to more accurately predict the

fadeouts along the coast. The model simulations with this

adjustment did not significantly overestimate the total number of

coastal fadeouts (figure 4b and 4c).

The volume of passenger traffic clearly highlights the mobility of

individuals in England and Wales at this time. In order to model

this level of host mobility, we repeated the model simulations with

another adjustment. We optimized the gravity model to reflect

equal numbers of individual contacts in coastal and inland towns.

The data suggested a conservation of contacts created a more

accurate map of social space over geographic space. We addressed

Figure 3. Epidemic Seasonality: Inland and Coastal. (a) The biennial epidemic seasonality does not differ between the inland towns (dark
green line indicates inland seasonal mean, light gray shading is +/2 one standard deviation) and the coast (magenta line indicates coastal seasonal
mean and pink shading is +/2 one standard deviation); both peak at the same times and the cycle repeats every two years. Time is shown as biweeks
on the x-axis, where 26 biweeks are equal to one year. (b) The biennial outbreaks in London, the largest city in this system, drive the cycles of England
and Wales. Susceptibles are depleted during large outbreaks and accumulate during epidemic troughs until the next outbreak. Major peaks occur at
the beginning of the school term every second year. Time is shown as biweeks on the x-axis, where 26 biweeks are equal to one year.
doi:10.1371/journal.pone.0001941.g003
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this by minimizing the difference of the sum of squares between

adjusted model predictions and the data. For all 184 coastal towns,

we found the simulations fit best when we increased the spatial

coupling by 1.3 times our initial H for all 184 coastal towns. With

this adjustment, the model simulations no longer showed a bias

towards coastal fadeouts and predictions more accurately matched

the observed fadeout rate distribution (figure 2c and figure S1).

Discussion

In this study, we demonstrate a discrepancy between modeled

and observed coastal epidemics and we ask what drives this

breakdown of the gravity model assumptions. Because our

question address spatial transmission, detailed human movement

data to parallel the epidemic time series would be ideal for

comparison but these are not available, particularly for children,

during the 1940s and 50s [3]. Instead, we used local population

heterogeneities to test the gravity model predictions of epidemic

persistence and synchrony.

Our initial, basic gravity model may have incorrectly predicted

coastal persistence for two possible reasons. First, the towns along the

coast may have had contact rates that were different from those of

inland towns. For example, we considered the possibility that coastal

locations may have experienced relative isolation-by-distance and

low contact rates for most of the year, alternating with high contact

rates during the summer months, due to travelers [17]. In inland

towns, contact rates are highest at the beginning of each school term,

when epidemics take place. Cyclic demographic flux could cause the

model to underestimate seasonal movement and coastal contacts,

resulting in overestimated fadeout rates caused by not considering

summer cases and predicting only school term epidemics, sparked by

core cities. In this situation, coastal towns would show measles

outbreaks in the summer, unique from the rest of the island, where

contact rates and epidemics rise and peak during the school term.

The data do not show this.

If coastal towns showed epidemic seasonality that indicated

summer outbreaks, this would imply that they were somewhat

isolated from inland towns and were not influenced by inland

epidemic cycles as a result of unique contact rates. However, our

analysis shows that coastal towns measles epidemics followed the

term time forcing of the large inland cities and that coastal towns

were not at all isolated from inland towns. Therefore, the data show

us that coastal epidemic cycles were likely driven by core cities, which

were only found inland, indicating that coastal and inland towns did

not have different seasonal contact rates (figure 3a). It has further

been shown that the coast was an attractive location for suburban

residences year round, as well as for seasonal holidays [19], not a

continuously isolated edge as the model predicted in both our

simulated ‘artificial metapopulation model’ and our England and

Wales simulations. The data clearly show that coastal towns did not

have reduced contact rates with inland towns.

A second possible reason that the gravity model overestimated

fadeouts along the coast is that coastal and inland per capita

contact rates are relatively similar. The distance-weighted, size-

dependent spatial coupling element of the basic gravity model will

always predict lower overall contact rates for coastal than for

inland towns. Because coastal towns are partially surrounded by

water, they have fewer populations at close proximity (small Dij in

equation 3), which greatly impacts the flux of infection between

towns. However, if each coastal town approximately averages the

same number of contacts per capita as inland locations (as the

public transportation data suggest in figure S3), and the model is

unable to map social space over geographic space by assuming the

opposite, then the prediction of reduced contacts along the coast

would create a false ‘‘edge effect’’ of increased fadeouts. It is both

unrealistic and counterintuitive to assume reduced individual

coastal contacts; living along the coast does not reduce the need,

for example, for medical attention, commerce, or social compan-

ionship. If observed contact rates are reasonably similar between

coastal and inland towns, the model will underestimate contacts,

transmission, and persistence along the coast. In this case, the

observed coastal epidemic seasonality would not differ from inland

seasonality, as it does not in this system.

If host mobility resulted in high contact rates along the coast

year-round, even for distant cities, this would result in multiple

measles introductions during local epidemics troughs. While these

introductions would not have sparked new measles epidemics

because of low susceptible density resulting from regular biennial

outbreaks, they would have sparked isolated cases and led to

decreased fadeout rates in coastal towns. However, it is very

difficult to determine actual contact rates; even though we were

able to obtain passenger train use volume, we did not have bus or

road use data. Further, even with all those data, we would still fail

to quantify the actual movement of children. Thus, while our train

use data give us a good idea of host mobility and train use by town

size, it is still only a vague approximation of the contacts we are

actually interested in.

Figure 4. Adjustments to gravity model using train use data. (a)
Map of England and Wales. Red dots show coastal locations, size of dots
reflects amount of train use, black dots in the center of red dots indicate
train use .10,000 weekly passengers. (b) Left Panel: Left shows data,
right shows initial gravity model predictions, gray = coast, black = in-
land. Right Panel: Left shows model predictions with increased spatial
coupling along entire coast, right shows model with increased spatial
coupling for towns along coast with .10,000 weekly train passengers
(red), gray = coast, black = inland. (c) Total number of fadeouts against
log population size as predicted by gravity model when the spatial
coupling coefficient is increased for only the coastal towns which
average .10,000 weekly train passengers per week. This adjustment
results in an even distribution of coastal fadeouts (red), as they appear
in the data. Initial model predictions show coastal fadeouts are
clustered along the top of the distribution (figure 2b).
doi:10.1371/journal.pone.0001941.g004
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In the gravity model, the spatial coupling coefficient (H,

equation 3) represents the amount of human movement from one

town to another; as H increases, contacts increase and spatial

synchrony increases. Based on our model predictions, the spatial

coupling parameter estimation fits inland towns well but

underestimates the connectivity of coastal towns.

In figure 4b, we compare the residuals of the fadeouts on

population size between the observed data, initial gravity model

predictions, adjusted gravity model predictions for high train use

coastal towns, and adjusted gravity model predictions for all

coastal towns. Although the high train use adjustment gravity

model predicts a slight bias towards coastal fadeouts, it corrects

for most of the bias in the initial, unadjusted gravity model

predictions and more accurately reflects the observed data. When

we increased the coastal spatial coupling coefficient to more

accurately map social space over geographic space for the purpose

of increasing coastal contact rates, the adjustment corrected for the

model’s bias of reduced coastal contacts and increased coastal

fadeouts (figure 1d and 1e, figure 2c, and figure 3).

Conclusions
Contact from core cities to coastal regions introduced isolated

measles cases during the troughs between epidemics. These

stochastic introductions did not lead to out-of-phase epidemics

along the coast; instead they resulted in a low level of persistence

[20]. When this occurred, coastal towns did not fade out as the

model predicted because of the model’s inaccurate assumption

that locations at the edge of a system have reduced contact rates,

simply because of their position. The observed data do not support

this assumption, implying that (at least childhood) behavior and

movement in this landscape do not isolate geographic edges.

The adjustments we have shown here crudely illustrate the

gravity model’s potential to accommodate spatial heterogeneities

and host behavior in stochastic metapopulations by identifying

important geographic features, which can influence host mixing

behavior and affect disease transmission [21]. The spatial coupling

coefficient for edges can be increased when host mobility results in

reduced isolation-by-distance.

In realistic landscapes, habitats often include variation in

accessibility, land quality and resource availability. Populations

establish centers and edges with respect to these features. The

methods presented here can be applied as a first step to

understanding disease dynamics and host movement across

heterogeneous landscape peripheries. Dissecting the applied impli-

cations of these results is an important area for future work, especially

in developing countries [22]. It is clear that more sophisticated

methods need to be developed to address these specific issues with

spatial models but these findings make a satisfactory first step in

identifying the problem and exploring solutions.

Supporting Information

Figure S1 Residuals from ‘proportion of fadeouts against log

population size’ against log population size. Another view of the

observed data, the bias in the original model predictions, and the

model predictions with our adjustments.

Found at: doi:10.1371/journal.pone.0001941.s001 (0.26 MB DOC)

Figure S2 Spatial distribution of coastal fadeouts from model

predictions. The model is not spatially biased in predicting

fadeouts. Fadeouts were overestimated as well as underestimated

along all parts of the coast and in all population sizes.

Found at: doi:10.1371/journal.pone.0001941.s002 (0.13 MB DOC)

Figure S3 Measles persistence, population size, and train use

along the coast. Population size, measles persistence, and train use

are all strongly correlated for coastal towns. This is true in both the

observed data and model predictions. There was no unsual

movement of people (as approximated by train use) that affected

coastal measles persistence in a way that could not be explained by

population size.

Found at: doi:10.1371/journal.pone.0001941.s003 (0.18 MB DOC)
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