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Abstract

Allometric equations are widely used in many branches of biological science. The potential information content of the
normalization constant b in allometric equations of the form Y = bXa has, however, remained largely neglected. To
demonstrate the potential for utilizing this information, I generated a large number of artificial datasets that resembled
those that are frequently encountered in biological studies, i.e., relatively small samples including measurement error or
uncontrolled variation. The value of X was allowed to vary randomly within the limits describing different data ranges, and a
was set to a fixed theoretical value. The constant b was set to a range of values describing the effect of a continuous
environmental variable. In addition, a normally distributed random error was added to the values of both X and Y. Two
different approaches were then used to model the data. The traditional approach estimated both a and b using a regression
model, whereas an alternative approach set the exponent a at its theoretical value and only estimated the value of b. Both
approaches produced virtually the same model fit with less than 0.3% difference in the coefficient of determination. Only
the alternative approach was able to precisely reproduce the effect of the environmental variable, which was largely lost
among noise variation when using the traditional approach. The results show how the value of b can be used as a source of
valuable biological information if an appropriate regression model is selected.
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Introduction

Allometric scaling laws, which can be used to characterize many

biological systems [1–3], take the form Y = bXa, which represents

the dependence of the variable Y on the variable X as a function

that involves the normalization constant b and the scaling

exponent a. This exponent has been the focus of theoretical and

empirical studies because it often seems to have a constant value

specific to a particular biological relationship.

In the process of exploring a, only a few studies have directly

considered the potential information content of the normalization

constant b [3–6], and unexplored potential for using the

normalization constant b to depict biologically important infor-

mation remains. An example can be drawn from Mäkelä and

Valentine [7], who used empirical data to demonstrate how crown

ratio (rc) influences the scaling relationship in trees, suggesting that

the scaling between foliage mass (MF) and woody mass (MT) can be

approximated by the relation MF / (rc
2MT)z/(az+1), where z is the

fractal dimension of foliage and a is defined through the

relationship rk+1 = n2a/2 rk, where n is the number of daughter

branches and rk is the diameter of branches at the k’th branching

level. In their recent paper [6], Enquist et al. also suggest a number

of direct biological interpretations for the value of b.

In traditional approaches, the values of both a and b are

estimated by one of the several regression methods available [8].

In the process of parameter estimation, however, the values of the

two parameters, a and b, are essentially mathematically dependent

on each other [9]. If a fixed value is used for a instead of an

empirical one, the estimation algorithm will change the value of b

so that the amount of residual variation remains as small as

possible. I will show how this property of allometric equations can

be used to derive biological information from the value of b by

assuming a fixed theoretical exponent a, and how this information

may be lost if both a and b are empirically determined by

regression.

I have deliberately chosen to consider the scaling laws as models

for biological phenomena [10]. A model can be considered a

useful representation of a biological system [11], if it 1) is useful for

system management, 2) provides insight, 3) gives accurate

predictions, 4) is simple and elegant, 5) bears generality, 6) is

insensitive to assumptions and 7) has a low construction cost.

Models based on simulated datasets will demonstrate that there is

great potential for using the normalization constant b as a simple

measure for characterizing environmental variability that seems

typical of comparisons involving the allometric scaling relation-

ships observed in different sets of biological data [12–15].

Results and Discussion

In the present analysis, I ignored the details of the relation used

by Mäkelä and Valentine [7] and assumed a system that has a

constant scaling exponent 0.75 and a biological phenomenon

comparable with crown ratio affecting the scaling relation. This

can be represented by the formula MF = b(rc
2MT)0.75, which can be

rewritten as MF = brc
1.5MT

0.75. The effect of rc can now be

incorporated into a single normalization constant badj = brc
1.5,
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where it is assumed that an otherwise constant biological

relationship is modified by an environmental variable rc that is

included in the value of the normalization constant. This enables

the use of the empirically detected values of b for characterizing

the effect of the environment on the system, i.e., detecting the

actual value of badj.

When both a and b were allowed to vary during the estimation

of the parameter values, nonlinear regression systematically

underestimated the true scaling exponent (0.75), especially in

small datasets where the data range was narrow (i.e., the

relationship between Y and X was often weak) (Table 1). When

the scaling exponent a was set to the fixed value of 0.75, the effect

of rc on normalization constant was portrayed clearly even with a

narrow data range, as can be seen in the values of ba = 0.75, which

now closely match the actual value of badj (Fig. 1). In contrast, a

large amount of noise remained in the value of b (shown as

ba = estimated in Fig. 1), where both a and b were determined by

regression. Both analysis methods produced an almost equal

coefficient of determination (r2) with slight but biologically

unimportant differences detectable only at the third decimal place

(Table 1). Instead, in the regressions with fixed a, the variability

that would otherwise have characterized the value of a (Table 1)

became included in the value of ba = 0.75 in a way that allowed the

capture of additional biological information from the data (Fig. 1).

Taken altogether, the use of a fixed a enabled an efficient way of

detecting and modeling the true value of normalization constant

(i.e., badj, or ba = 0.75 in Fig. 1). The resulting model clearly meets

the quality criteria listed by Haefner [11]: it is useful for system

management, because it captures the value of the parameter that

actually controls the scaling relationship; it provides insight,

because it enables the detection and modeling of the actual

biological process, which would otherwise have remained largely

camouflaged by noise variation; it is at least as simple and accurate

as the traditional approach; it has great potential for generality,

because it reduces the number of unknown parameters in the

equation from two to one and provides a robust basis for the

biological interpretation of the remaining one; it also has as low a

construction cost as the traditional approach. What remains

arguable is the sensitivity of the approach to the assumption of a

constant scaling exponent a, because there may be no consensus

about its true value [12–15]. If a varies instead of b, then the

approach will fail to produce informative results. However, even

this will be only a matter of testing the model fit with different

theoretically predicted values of a.

These findings have two important biological consequences.

First, they show how the value of the normalization constant may

be an important source of biological information. It is possible to

foresee a whole set of biological models rewritten to include the

effect of environmental factors in the value of the normalization

constant. Currently all this information may be lost among the

noise variation that characterized the values of the allometric

parameters obtained using the traditional approach. Second, the

findings also demonstrate that the value of the scaling exponent

may be misleading if it is allowed to vary during the parameter

estimation, which is a result that also holds true with the common

linear regression methods [10]. This implies that it may be

informative to test the fit of the scaling models by using a set of

fixed exponents before rejecting any of its theoretical values [16].

It should be noted, however, that modeling the allometric

relationships operates with different criteria than examining the

scaling relationships statistically. Statistical tests require that the

data meet several specific assumptions that should be checked

before making any inference about the values of parameters.

Materials and Methods

A set of artificial datasets were generated using the SAS

statistical software package (SAS Institute Inc., Cary, NC, USA).

The sets resembled those that are often encountered in biological

studies, i.e., relatively small samples, which include measurement

error or uncontrolled environmental variability. Two sample sizes

of X, small and moderate, were repeatedly generated such that

there were 600 instances with N = 20 and 600 instances with

N = 120. The values of X in the allometric equation with the form

Y = bXa were generated using the function ranuni, which produces

any value within a given range with equal probability, hence

assuming a uniform distribution. The data generated represented

six categories of range that the variable X might have in organisms,

starting from the minimum value X = 5 and ranging maximally

from 3- to 25-fold differences (i.e. between 5 and 15 and 5 to 125).

The actual range of X within each category was variable because

of the use of uniformly distributed random values for generating X,

and the addition of normally distributed error (see below), but in

more than 50% of the individual datasets the true range within

each category was at least 56(range multiplier 2 1), where the range

multiplier was 3 for 3-fold differences, 4 for 4-fold differences, etc.

This method was sufficient for incorporating the effect of data

range in the analysis.

Values of Y for each X were first calculated with the equation

Y = 2X0.75, i.e., using b = 2 and a = 0.75. After the calculation of Y

with the allometric equation, the normally distributed random

error was added to each value of both X and Y using the SAS

function rannor, and assuming that the error variance equaled 25%

of the value of both X and Y. The addition of the random error

was done as the last step after calculating the actual values of X

and Y to avoid unnecessary error propagation. The effect of a

Table 1. The fit of allometric models with either a fixed
(subscript 0.75) or an empirical scaling exponent (subscript a).

Approximate
data range r0.75

2 r0.75 (SD) ra
2 ra (SD) a (SD)

a) N = 20

2 0.488 0.698 (0.116) 0.487 0.698 (0.117) 0.562 (0.142)

3 0.676 0.822 (0.068) 0.677 0.823 (0.067) 0.642 (0.110)

4 0.757 0.870 (0.056) 0.759 0.871 (0.055) 0.672 (0.095)

5 0.808 0.899 (0.042) 0.810 0.900 (0.049) 0.692 (0.087)

9 0.897 0.947 (0.025) 0.898 0.947 (0.025) 0.718 (0.069)

24 0.968 0.979 (0.009) 0.968 0.979 (0.009) 0.739 (0.042)

b) N = 120

2 0.488 0.699 (0.044) 0.489 0.699 (0.044) 0.554 (0.054)

3 0.677 0.823 (0.027) 0.678 0.824 (0.027) 0.635 (0.042)

4 0.760 0.872 (0.019) 0.761 0.872 (0.019) 0.668 (0.036)

5 0.810 0.900 (0.016) 0.810 0.900 (0.016) 0.687 (0.035)

9 0.896 0.946 (0.009) 0.896 0.947 (0.009) 0.715 (0.025)

24 0.958 0.979 (0.004) 0.958 0.979 (0.002) 0.743 (0.017)

Both the coefficient of determination (r2) and the correlation coefficient (r with
its standard deviation SD) between the actual and model-predicted values are
shown. Column a shows the average scaling exponent when it was empirically
estimated. Each cell in the table shows the mean values for 600 simulated
datasets where the number of observations (N) was either 20 or 120. SD
indicates the amount of variability in the model fit obtained (columns after r) or
in the estimate of a (column after a).
doi:10.1371/journal.pone.0001932.t001

Normalization Constant
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range of values of rc (0.1 to 0.9 with 0.1 steps) was added to the

artificial datasets by multiplying the values of Y with rc
1.5 to achieve

badj = 2 rc
1.5.

Nonlinear allometric models were fitted to the data generated in

two different ways using the SAS procedure NLIN: either both a

and b were determined by the procedure, or only b was

determined and a was directly set to its ‘‘theoretical’’ value of

0.75. The corresponding differences in the values of b and model

fit were examined. The coefficient of determination r2 was used as

the measure of model fit. In each dataset, its calculation was based

on the correlation coefficient between the original values and the

values of Y calculated with the model-estimated parameters a

and b.
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