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Abstract

Background: We present a series of simulation studies that explore the relative performance of several phylogenetic
network approaches (statistical parsimony, split decomposition, union of maximum parsimony trees, neighbor-net,
simulated history recombination upper bound, median-joining, reduced median joining and minimum spanning network)
compared to standard tree approaches, (neighbor-joining and maximum parsimony) in the presence and absence of
recombination.

Principal Findings: In the absence of recombination, all methods recovered the correct topology and branch lengths nearly
all of the time when the substitution rate was low, except for minimum spanning networks, which did considerably worse.
At a higher substitution rate, maximum parsimony and union of maximum parsimony trees were the most accurate. With
recombination, the ability to infer the correct topology was halved for all methods and no method could accurately
estimate branch lengths.

Conclusions: Our results highlight the need for more accurate phylogenetic network methods and the importance of
detecting and accounting for recombination in phylogenetic studies. Furthermore, we provide useful information for
choosing a network algorithm and a framework in which to evaluate improvements to existing methods and novel
algorithms developed in the future.
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Introduction

Phylogenies are of central importance in testing comparative

hypotheses in a wide variety of fields [1]. Yet, at the population level,

there are biological phenomena, such as recombination and

hybridization that lead to reticulated relationships. Furthermore, at

the population genetic level, lower levels of diversity sometimes lead

to a lack of phylogenetic resolution and representing this uncertainty

is important. Ignoring these issues may lead to erroneous estimation

of evolutionary relationships [2] and/or poor estimates of param-

eters based on those phylogenies [3]. Therefore, a number of

approaches have been developed to represent genealogical relation-

ships as reticulating networks, either by explicitly modeling reticulate

events or non-explicitly by representing phylogenetic ambiguity or

incompatibility [reviewed in 4,5].

A wide range of network methods are now available and heavily

used by researchers in fields as disparate as phylogeography [6],

virology [7], and human quantitative genetics [8]. Nevertheless,

the ability of these methods to accurately [sensu 9] estimate the

true underlying genealogical relationships has not been thoroughly

tested (i.e., assessing consistency, efficiency, and robustness).

Indeed, we know of only a few such studies. First, Crandall [10]

explored a single method (statistical parsimony) relative to

maximum parsimony using an empirically generated data set

from a known phylogeny of the bacteriophage T7 [11]. He found

that the statistical parsimony approach outperformed maximum

parsimony when levels of variation were low. More recently,

Cassens et al. [12] provided a more extensive evaluation of three

different network algorithms (statistical parsimony, median-joining

network, and minimum-spanning network) compared to a newly

developed union of maximum parsimony trees approach using

simulated data over four known tree topologies. They showed that

maximum parsimony performed as well or better than the network

approaches under all four tree topologies, that the minimum

spanning network algorithm often performed significantly worse

with a greatly increased number of errors in the estimation, and

that the statistical parsimony and minimum spanning network

approaches performed significantly worse when the evolutionary

history had many missing intermediates. However, neither study

investigated the performance of methods under conditions where

reticulating relationships would be an expected evolutionary

outcome (e.g., under recombination). It is presumably under such

conditions where network approaches have an advantage in terms

of estimating genealogical relationships.

Indeed, these notable differences among network approaches,

coupled with the report of conflicting inferred histories from
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empirical data [13], invite a more thorough evaluation of network

methods. Previous studies were limited by the number of

topologies tested and the number of methods compared, due to

difficulty in automating the comparisons (as well as the lack of

recombination as indicated above). Therefore, we have embarked

on a more extensive study that uses computer simulation to

evaluate the performance of seven ‘‘non-explicit’’ network

approaches: statistical parsimony [SP], minimum spanning

network [MSN], split decomposition [SD], NeighborNet [NN],

median network [MED], reduced median joining [RMD], and

union of maximum parsimony trees [UMP], as well as one discrete

method (shrub-gc) [SHB] which explicitly models recombination

and gene-conversion. We also included two standard bifurcating

phylogenetic approaches (maximum parsimony [MP] and neigh-

bor-joining [NJ]). We explored the effect of a variety of

substitution and recombination rates, sequence lengths, numbers

of taxa, and models of substitution on the relative accuracy of these

network and standard phylogenetic approaches.

Materials and Methods

Our basic approach was to simulate DNA sequences using the

neutral coalescent with and without recombination [see 14] and

then run the resulting alignments through a variety of algorithms

for estimating network relationships among sequences (Figure 1).

We then compared the resulting subtrees within these networks to

those under the true history and tabulated the frequency of correct

subtrees for different approaches. Each of these phases, data

simulation, tree processing, performance measures, and estimation

approaches explored are detailed below. While simulations can

provide general predictions about the behavior of the methods

studied, as well as some sense of their robustness (insofar as

differing models are explored in the simulations), it is rarely

possible to simulate the entire universe of relevant models and the

models simulated may represent real data only to a given extent.

Data Simulation. DNA sequence alignments were simulated

under 18 different sets of conditions (‘‘sets’’) selected to represent a

range of intraspecific data sets, including some extreme cases. We

explored different sequence lengths (500 and 1000 base pairs),

numbers of taxa (10, 20 and 50), substitution rates (6.2561026,

6.2561027 expected substitutions per site per generation),

recombination rates (0, 2.561025, 1610 26, 461026

recombination events per site per generation) under a simple

Jukes Cantor nucleotide substitution model [15] with and without

a gamma distributed site-rate heterogeneity [16] (Table 1). The

substitution rates modeled here are typical for nuclear genes across

a diversity of organisms [17]. Recombination rates, on the other

hand, have not been widely estimated across loci or organisms.

However, in one extensive study examining recombination rates

across a diversity of studies involving multi-locus sequence typing

from a variety of organisms (and therefore across a range of loci),

Pérez-Losada et al. [18] estimated a wide range of recombination

rates similar to those modeled here. The effective population size

was always 1000. One thousand histories and alignments were

simulated under each one of these scenarios to afford reasonable

statistical comparisons among the different methods.

Tree Processing. In order to make appropriate comparisons

between the simulated and inferred trees, branch lengths from the

simulated trees were expressed as the number of realized changes

rather than as the number of expected changes. This is because at

low substitution rates it is very common that no changes occur

along short branches in the simulated trees, and therefore they

would be impossible to infer. Moreover, datasets with no realized

changes at all were discarded from the analysis. To compare

simulated and inferred trees, branches with zero length were

collapsed. This was necessary since the tree comparisons described

below would consider a zero length branch present in one tree but

absent in another as a topological difference.

Measures of Performance. Comparing the estimated

relationships to the simulated (‘‘true’’) underlying relationships is

simple when there is no recombination because the simulated

evolutionary history is a single tree (sets 1–12, Table 1). However,

when recombination is present (sets 13–18, Table 1), the simulated

history cannot be represented by a single tree anymore, but by

multiple trees that correspond to each of the recombinant

fragments. In fact, this set of trees conforms to an ancestral

recombination graph [19,20]. This presents a certain difficulty in

that the standard phylogenetic methods will be incorrect, by

definition, as they will only return a single tree (or set of bifurcating

trees in the case of maximum parsimony).

In order to compare the inferred trees or networks with the

simulated trees or networks, we first needed to devise a method for

comparing both single trees and sets of trees to single trees and

networks. While several metrics have been proposed to compare

‘‘idealized’’ networks (i.e., galled [21], tree-child or tree-sibling

[22]), networks estimated from real data (or networks simulated

under meaningful models like the coalescent) seldom conform to

the restrictions imposed by such representations. For example, in

the most general of these, the tree-sibling networks, every hybrid

node has at least one sibling that is a tree node; an assumption

often violated by empirical data and lacking any evolutionary

meaning. Moreover, even under these rather mathematical

restrictions, none of these metrics can assure that they only take

a value of 0 when two networks are isomorphic, i.e., they are

‘‘imperfect’’ [22]. Another method that has been employed to

compare networks with networks or networks with trees is

comparison of their list of splits [e.g. 23], which in principle, does

not take into account branch lengths, but provides a simple

calculation of type I and type II errors. We used related measures,

which compare the splits of each tree embedded within a network

or tree while accounting for branch lengths associated with each

split (see below). We chose to work with tree enumerations or tree

lists, regardless of whether the size of these enumerations was just

one (for single trees) or more (for networks). For the simulated

networks, the coalescent with recombination automatically

provides the enumeration of the trees within the simulated

network (or ancestral recombination graph). We wanted to

measure how often the underlying tree(s) from the simulation

(from now on, the ‘‘model trees’’) were contained somewhere

within the inferred tree(s) or network. For this, we used the optimal

spanning tree algorithm of Shioura et al. [24], which enumerates

all the trees contained in an undirected graph (‘network’)

efficiently in terms of computational time and memory. Since

the spanning trees from the inferred network may contain inferred

internal nodes as tips, they were further processed to remove

superfluous internal nodes (unobserved internal nodes with less

than three connected branches). Also note that duplicate trees can

arise from networks when reticulations can be broken at multiple

edges, potentially leaving internal nodes as leaves, which are later

pruned such that only input sequences are represented as leaves in

the trees. If the number of trees contained within a single network

exceeded 5,000,000, that network was excluded from the analysis

due to time/resource constraints. Once the set of all trees

contained within a network was created, all duplicate trees were

removed, leaving only one copy of each tree with a given topology

and branch lengths. Furthermore, duplicates were also removed

from each set of MP trees (see below). For those methods that give

a visual representation of splits (SD, NN, MED and RMD), we

Phylogenetic Network
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Figure 1. Flowchart outlining our simulation and comparison method.
doi:10.1371/journal.pone.0001913.g001
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used the representation provided, even though that representation

may not necessarily be unique. It is not clear whether different

representations of the same split system must always embed the

same trees.

Once we enumerate the trees contained within the estimated

networks, or within the set of trees estimated by the traditional

phylogenetic approaches, we need to compare these trees to the

model tree(s). We used two related measures for tree comparison,

the Robinson-Foulds (RF) score [25] and the branch score (BS)

[26]. The RF score is the total number of clades present in one

tree but absent in another and does not take into account branch

lengths. Therefore, the higher the score, the worse the topological

match between the compared trees. The BS, on the other hand,

computes the sum of the squares of the differences between each

branch’s length in each tree. Branches that appear in one tree but

not in the other are scored as if compared to a branch of length

zero. Two trees are equal when the BS between them is zero (and

hence the RF is also zero). Two topologies are the same when the

RF is zero. Thus, a tree t ‘‘exists’’ in a set of trees T if and only if

there is a tree s in T such that the BS between t and s is zero.

Similarly, a topology t ‘‘exists’’ in a set of trees T if and only if there

is a tree s in T such that the RF distance between t and s is zero. In

addition, we calculated a number of statistics to characterize

different aspects of the relative performance of the different

approaches. If we let T be the enumeration of model trees and N

be the enumeration of inferred trees, then for each replicate we

calculated the:

1) NTR - size of N (0, 56106);

2) FPTOP – fraction of topologies in N that do not exist in T (0, 1);

3) FNTOP – fraction of topologies in T that do not exist in N (0, 1);

4) FP – fraction of trees in N that do not exist in T (0, 1);

5) FN – fraction of trees in T that do not exist in N (0, 1);

6) Mean branch length difference between matching branches.

where (#,#) indicates the range of each statistic and FP are false

positives (type I error) and FN are false negatives (type II error).

Additionally, we calculated several other statistics (see Data S1):

a) Mean RF score between each tree in N and each tree in T (0,

1);

b) Mean BS distance between each tree in N and each tree in T

(0, ‘);

c) Mean RF for false positives and false negatives;

d) Mean BS for false positives and false negatives;

For measure 1 above, we calculated the median across all 1000

replicates for each method and simulation scenario. For measures

2–5, we plotted the mean (with Standard Error) across all

replicates. Measure 6 is calculated as follows: for each tree t in T

compared with each tree n in N, for each branch that exists in both

n (call it bn) and t (call it bt) (meaning that bn splits the terminal

nodes of n into the same two disjoint subsets as bt in t) we compute

the mean of l(bt) - l(bn) where l(b) is the length of branch b.

However, when interpreting the results of this measure one should

remember that this is the average of all branches that were actual

matches (meaning that if the method found very few matches, with

very similar branch lengths between true and inferred trees, it will

appear to do better than if it inferred many of the same branches

with larger differences in branch lengths. For measures 6 and a–d

above, we plotted the distribution for the 1000 replicates using

box-and-whisker plots displaying the median, first and second

quartiles, and outliers (points further than 3/2 times the inter-

quartile range of the first and third quartiles). Additionally, we

Table 1. Simulation parameters for the neutral coalescent simulations with and without recombination.

Parameter
Set

Sequence
Length

Number of
Taxa

Substitution
Ratea

Substitution
Modelb

Recombination
Ratec

Mean Number of
Haplotypes

Mean Number of
Unique Histories

1 500 10 6.25e-7 JC 0 3.390 1

2 500 20 6.25e-7 JC 0 4.160 1

3 500 50 6.25e-7 JC 0 5.260 1

4 500 10 6.25e-6 JC 0 7.540 1

5 500 20 6.25e-6 JC 0 12.220 1

6 500 50 6.25e-6 JC 0 20.550 1

7 1000 10 6.25e-7 JC 0 4.460 1

8 1000 20 6.25e-7 JC 0 5.990 1

9 1000 50 6.25e-7 JC 0 8.200 1

10 1000 10 6.25e-6 JC 0 8.540 1

11 1000 20 6.25e-6 JC 0 15.000 1

12 1000 50 6.25e-6 JC 0 27.830 1

13 1000 20 6.25e-6 JC 0.25e-6 15.054 3.825

14 1000 20 6.25e-6 JC 1.0e-6 15.254 11.85

15 1000 20 6.25e-6 JC 4.0e-6 16.114 40.387

16 1000 20 6.25e-6 JC+C 0.25e-6 14.891 3.831

17 1000 20 6.25e-6 JC+C 1.0e-6 15.267 11.96

18 1000 20 6.25e-6 JC+C 4.0e-6 16.126 39.387

aSubstitution rate is expressed in number of substitutions per site per generation.
bIn the JC+C, a was always set to 0.2.
cRecombination rate is expressed in number of recombination events per site per generation.
doi:10.1371/journal.pone.0001913.t001

Phylogenetic Network

PLoS ONE | www.plosone.org 4 April 2008 | Volume 3 | Issue 4 | e1913



performed a set of paired Mann-Whitney tests to determine

whether the results from each method were significantly different.

We used an experiment-wise error rate of 0.05 with the Dunn-

Sidak multiple test correction.

We also considered several measures designed specifically for

networks (both maximum likelihood measures [27] and extensions

of a bipartite measure to networks [28]), but each of these requires

a rooted phylogenetic network, which only one of the methods we

tested (SHB) provides, therefore precluding its use here. Our

choice of metric does have some deficiencies (RF tends to reward

lack of resolution, since a star tree will receive no penalty for false

positives, only penalties for false negatives, see [29]). Unresolved

trees are penalized by their false negatives (and thus will have

lower accuracy) but highly reticulated networks (i.e., those that

imbed numerous trees) will have increased false negatives (due to

inferring many incorrect branches). Furthermore, it is perhaps not

ideal to give all possible trees imbedded within a network equal

weight when comparing two phylogenetic networks (since some

trees will be much more likely than others); however, we feel using

all imbedded trees captures the essence of both accuracy (whether

the simulated history was represented) and precision (how many

inferred trees do we have to look at to find the true history), even

though the exact number of trees and averages across all

imbedded trees should be interpreted carefully with this in mind.

Also, due to the poor performance of all methods on the medium

and high recombination sets, particularly in inferring correct

branch lengths, we included measure 6 above to help distinguish

how well the individual branch length estimates compared to the

true branch lengths.

Finally, we were also interested in the broad scale effect of the

type of data on the performance of each method. We measured

the relationship between characteristics of the simulated data and

the inferred trees using the Spearman correlation coefficient (r).

We considered the relationship between the number of inferred

trees and the number of unique simulated haplotypes used to infer

those trees. In the sets with recombination, we also measured the

relationship of the number of simulated trees in T with the number

of model topologies found. In addition, we measured the

relationship between the number of inferred trees and the number

of trees simulated in T in the recombination sets.

Network Methods Evaluated. We evaluated ten different

approaches commonly used to infer evolutionary relationships at

the intraspecific level, including two traditional bifurcating tree-

building approaches and eight network building approaches. The

bifurcating tree approaches employed in this study were maximum

parsimony (MP) [30] and neighbor-joining (NJ) [31] as

implemented in PAUP* v4.b10 [32]. MP was run with

‘‘maxtrees’’ set to 5,000,000 and 1000 random sequence

additions and NJ trees were built using uncorrected sequence

distances. The implicit network building approaches tested were

the union of maximum parsimony trees (UMP) [12] as

implemented in the software CombineTrees, statistical

parsimony (SP) [33] as implemented in the software TCS v1.17

[34], split decomposition (SD) as implemented in SplitsTree (also

known as Jsplits) 4 beta 4 [35], Neighbor-Net (NN) and unreduced

median networks (MED) as implemented in SplitsTree4 version

4.7 [36], reduced median-joining (RMD) [37] as implemented in

Network version 4.2.0.1 [38] and minimum-spanning network

(MSN) [39] as implemented in the software Arlequin v2.001 [40].

The explicit network building method tested seeks to calculate

the upper bound on the minimum number of recombination

events (and gene conversions) while simultaneously computing the

most parsimonious tree, as implemented in the shrub-gc software

(SHB) [41]. The CombineTrees software takes as input all inferred

MP trees and combines them into a single reticulated network

merging branches, tip haplotypes, and interior haplotypes that are

identical among all trees. CombineTrees was run as in [12], by

randomizing the order of the input trees 10 times and picking the

smallest network (i.e., with the least number of branches). (Note

this does not necessarily mean the smallest number of loops.) On

some datasets, CombineTrees was unable to find a network for

some orderings of the input trees. In these instances, we still used

the smallest network, although in such instances there were less

than 10 from which to choose. SD networks were built using

default settings. NN was run with two configurations: first, using all

defaults and then using a weight threshold set to the inverse of the

input sequence length. In the latter case, splits with low support

were not included, resulting in a more refined network, and

branch lengths greater than or equal to one. We only included

results from the former case, since they were much more accurate,

even when accounting for the increase in FN. MED was run with

default settings. For SP, the maximum connection limit was ignored,

forcing all sequences to be connected in a single network. RMD and

MSN were run with default settings. Shrub-gc was also run with

default settings, but using as input the set of sites where only one or

two nucleotide states was observed, since it requires biallelic site data.

The resulting ancestral recombination graphs were converted to a

list of trees in two manners. For the zero recombination sets,

recombination edges were treated as branches defined by the sites

derived from that edge’s parent that differed from the other parent.

For the simulations with recombination, the recombination edges

were treated as defining alternative trees such that any tree could

only contain one of the two edges associated with each inferred

recombination event, resulting in 2n trees for a network with n

recombination events (note, some of these trees may not be unique

and only one copy of each tree was used in further analyses). For the

SD, NN, and NJ methods, branch lengths were multiplied by the

number of sites and rounded to the nearest integer.

Results

No Recombination
Topological Type I Error. Topological false positive rate was

measured as described above, and the mean over the 1000 replicates

per dataset were plotted (Figure 2). All of the methods (except MSN

which did noticeably worse) had roughly the same mean topological

FP (less than 0.05) with low substitution rates. When the substitution

rate was higher, MP had lowest mean topological FP (0.12–0.29),

followed by UMP and NJ (0.14–0.39). MSN performed worst, with a

mean topological FP always above 0.93. With low substitution rates,

the methods performed slightly worse with an increasing number of

unique sequences (or haplotypes). This decrease was much greater

with higher substitution rates.

Tree Type I Error. The mean tree false positive rate (over the

1000 replicates) is shown for each method on each set of data

(Figure 2). With a low substitution rate, the mean branch score

accuracy of all methods was roughly the same (except for MSN,

which once again was significantly higher). All methods but MSN

had a false positive rate of less than ,0.07 with a low substitution

rate. The FP rates with higher substitution rates however were much

worse. The lowest error rates in this case were achieved by MP

(0.35–0.63). UMP had the next lowest mean FP (0.36–0.65), with SP

and NJ following (0.40–0.76). The FP rate of MSN was again the

worst, always above 0.94. Increasing the number of sequences

substantially increased the mean false positives in all methods.

Number of trees inferred. The previous two measures give

us a sense of how many incorrect trees are inferred by a given

method. We also measured the total number of unique trees

Phylogenetic Network
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(NTR) contained within each inferred network and the median of

these totals for each method and simulation set (Table 2). At first

glance, we can see that some methods generated many more trees

than others. This means that while an inference may in fact

include the true tree, it may do so by inferring thousands of

potential trees. When the substitution rate was low, all methods

had a median NTR of 1, while MP inferred fewer trees on average

when the substitution rate was higher (except NJ which always

infers a single tree). SP and UMP had lower NTR on average on

all simulations. When the substitution rate was high, SD, NN and

MSN had median NTR above 100 in most simulations, but the

remaining methods typically had NTR below 10, except SHB and

MED in sets 11 and 12 where they too had significantly higher

median NTR. We also found that at the higher substitution rate,

several methods (SD, MSN, NN, SHB, MED, RMD) inferred

highly reticulated networks (containing more than 5,000,000 trees)

on one or more of the simulated histories (Table 2). The number of

networks containing this large NTR ranges from a few to over 672

for NN in set 12 (Table 1).

All methods (except NJ, which infers a single tree in all cases)

showed a highly significant positive correlation between the NTR

and the number of unique sequences. This was especially true for

SD and MSN, with Spearman’s r= 0.664 and 0.637 respectively.

NN, SHB, and MED were slightly less correlated, with r= 0.59,

0.527 and 0.509 respectively. For SP, MP, RMD and UMP, the

correlation was lower with r= 0.356 for SP and r= 0.316 for MP,

RMD and UMP.

Topological Type II Error. We also computed the mean

topological FN rate and the mean tree FN rate (Figure 3). (Note, the

fraction of true positives is simply 1-FN). The mean topological FN

with a low substitution rate was not qualitatively different from the

topological FP (Figure 2). However, a higher substitution rate

resulted in FN patterns different from the FP rates. The first

conspicuous but expected result was that all methods (except NJ) had

lower FN when compared to FP since there was a single model tree,

but all methods (except NJ) could potentially infer more than a single

tree, which may not match the model topology (increasing the FP

rate). This effect was most dramatic on the SD method, whose mean

FP was sometimes double its FN rate. NN also had much larger FP

than FN rates with a higher substitution rate.

Tree Type II Error. We also calculated the mean tree FN

(Figure 3). When the substitution rate was low, the results were

again very similar to the tree FP. The most pronounced difference

was again the lower mean FN of SD and NN, compared to FP.

Smaller increases in FN, relative to FP occurred in all other

methods (except NJ, in which FP and FN are by definition equal

with only one simulated tree). The tree FN of UMP and MP were

the lowest (0.31–0.57), followed by SP (0.36–0.70).

Figure 2. Mean fraction of false positive topologies (FPTOP) inferred (those topologies inferred but which did not match the
simulated topology) and false positive trees (FP) without recombination. The left margin shows the number of nucleotides in each
simulated sequences. The top margin shows the number of sequences simulated. The right margin shows the substitution rate of the sequences.
doi:10.1371/journal.pone.0001913.g002
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Recombination
Topological Type I Error. With the simulated history

potentially containing multiple distinct trees for different sites,

we now can potentially recover more than one model tree or

topology. In order to evaluate how well the simulated topologies

were inferred, we again calculated the mean topological FP rate

(Figure 4). Thus, if all inferred topologies were found in the list of

true simulated trees for a given method in all 1000 simulations for

a particular set of parameters, this value would be 0.0. In the

simulations with no rate heterogeneity, MP and UMP exhibited

the lowest mean topological FP at 0.31 and 0.34, respectively, for

low recombination, but MP, UMP and NN had the lowest

topological FP (0.87) with the medium recombination rate. With

site rate heterogeneity, the relative topological FP among methods

was similar to the constant rate simulations, but all methods had

much higher mean topological FP. MP had the lowest FP with

both low and medium recombination (0.69 and 0.94 respectively).

Notably, all of the methods had mean topological FP rates of 1.0 at

high recombination.

Tree Type I Error. We also computed the mean tree FP rate

in the presence of recombination (Figure 4). It is noteworthy that

none of the methods achieved a mean tree FP less than 0.95. In

Table 2. The median number of trees (NTR) inferred by each method for each set of simulated sequences (number of simulations
out of 1000 that were used).

SP MP UMP MSN SD NJ NN SHB MED RMD

1 1 1 1 1 1 1 1 1 1 1

(1000) (1000) (1000) (1000) (1000) (1000) (1000) (999) (999) (1000)

2 1 1 1 1 1 1 1 1 1 1

(1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)

3 1 1 1 1 1 1 1 1 1 1

(1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)

4 1 1 1 1 1 1 1 1 1 1

(1000) (1000) (1000) (1000) (1000) (1000) (967) (1000) (1000) (1000)

5 1 1 1 3 4 1 4 1 1 1

(1000) (1000) (1000) (1000) (998) (1000) (871) (1000) (996) (1000)

6 1 1 1 9 16 1 129 1 1 1

(1000) (1000) (1000) (1000) (989) (1000) (666) (1000) (985) (1000)

7 1 1 1 1 1 1 1 1 1 1

(1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)

8 1 1 1 1 1 1 1 1 1 1

(1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)

9 1 1 1 1 1 1 1 1 1 1

(1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)

10 1 1 1 3 4 1 4 1 1 1

(1000) (1000) (1000) (1000) (1000) (1000) (895) (1000) (1000) (1000)

11 1 1 1 8 16 1 169 4 4 1

(1000) (1000) (1000) (1000) (985) (1000) (638) (999) (975) (1000)

12 1 1 1 48 244 1 * 14 41 1

(1000) (1000) (1000) (988) (917) (1000) (327) (997) (889) (998)

13 1 1 1 8 52 1 30861 2 36 4

(1000) (1000) (997) (1000) (938) (1000) (509) (1000) (842) (993)

14 1 2 4 4 2183 1 * 9 * 16

(1000) (1000) (975) (1000) (775) (1000) (182) (999) (391) (956)

15 1 3 72 4 1308 1 * 227 * 1456

(1000) (1000) (825) (1000) (821) (1000) (8) (983) (18) (751)

16 3 2 4 9 208 1 * 6 3562.5 4

(1000) (1000) (984) (1000) (901) (1000) (76) (1000) (623) (981)

17 3 2 9 8 1369.5 1 * 16 * 16

(1000) (1000) (933) (999) (816) (1000) (24) (1000) (286) (941)

18 4 4 201 8 624 1 * 206 * 1008.5

(1000) (1000) (781) (999) (843) (1000) (0) (969) (20) (770)

Those in bold are combinations in which one or more data set contained more than 5,000,000 trees.
*Less than 50% of inferred networks contained less than 5,000,000 so the median NTR cannot be determined.
doi:10.1371/journal.pone.0001913.t002
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fact, for medium and high recombination rates, on average all

methods had tree FP of 1.0. With low recombination, NN had the

lowest mean tree FP (0.95 and 0.97 with homogenous and

heterogeneous rate variation, respectively).

Number of trees inferred. In order to compare the number

of trees inferred by each method, Table 2 shows the median NTR

for each method on each recombination simulation (sets 13–18,

Table 1). As expected, NJ was the lowest, since it always infers one

and only one tree. MP and SP on average inferred the second and

third lowest NTR respectively, except in set 16 (Table 1), when

SHB inferred fewer trees than SP on average. The median NTR

for MP and SP was always less than five. The difference between

the mean number of trees inferred with MP and SP was not

significant in sets 14, 15 or 18 (Table 1). Some of the median

values for NTR for NN and MED could not be accurately

calculated due to the inability to enumerate all trees within their

output (see Table 2).

All methods (except NJ which infers a single tree in all cases,

and NN probably due to our inability to enumerate all trees in

many of the simulations with recombination) showed a highly

significant positive correlation of the number of trees inferred with

the number of unique sequences simulated when all recombina-

tion sets were analyzed together. The smallest spearman

correlation was with NN (r= 0.042) followed by SD, with

r= 0.051 and SHB had the greatest correlation with r= 0.351.

RMD, MP, MSN, UMP, SP and MED had r= 0.218, 0.195,

0.176, 0.155, 0.147, 0.117, respectively. The number of trees

inferred by a method when the sequences have undergone

recombination should ideally be positively correlated with the

number of simulated trees. The association between the number of

trees inferred and the number of trees simulated with recombi-

nation were statistically significant for all methods tested. SHB had

the largest correlation with r= 0.829. RMD, MED, UMP, MP,

NN, SD and SP had r= 0.612, 0.368, 0.304, 0.299, 0.296, 0.167

and 0.123, respectively. Surprisingly, MSN had a r= 20.076

(meaning that as the number of trees simulated increases, the

number of trees inferred by MSN tends to decrease).

Topological Type II Error. In order to assess the fraction of

false negative inferences (FN) of each method in finding the

simulated topology in the presence of recombination, we calculated

the mean topological FN for each method on each simulation set

(Figure 5). (Note, the fraction of true positives is simply 1-FN). NN

had the lowest mean topological FN in all the low and medium

recombination simulations. In the constant site substitution rate

simulations, NN had mean topological FN of 0.56 and 0.90 for low

and medium recombination respectively and 0.65 and 0.94 with

heterogeneous substitution rates among sites. For the highest

recombination rate, all methods had mean topological FN of 1.0.

Figure 3. Mean fraction of false negative topologies (FNTOP) inferred (fraction of times that the simulated topology was not
correctly inferred) and false positive trees (FN) without recombination. The left margin shows the number of nucleotides in each simulated
sequences. The top margin shows the number of sequences simulated. The right margin shows the substitution rate of the sequences. Note, the
fraction of true positives is 1 - FN.
doi:10.1371/journal.pone.0001913.g003
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Tree Type II Error. Similarly, the fraction of false negative

inferences of the simulated trees was calculated. (Again, the

fraction of true positives is simply 1-FN). The mean tree FN across

each set of 1000 simulations is shown in Figure 5. Mean tree FN

was very near 1.0 for all methods tested (over 0.93), and like the

topological FN, NN was the lowest with low and medium

recombination.

Comparison of branch lengths. Since the error rates for

inferring true trees (both FN and FP) with recombination were so

high (see mean tree FN and FP in Figure 4 and Figure 5), we

Figure 4. Mean fraction of false positive topologies (FPTOP) inferred (those topologies inferred but which did not match the
simulated topology) and false positive trees (FP) with recombination. The top row was simulated with a constant substitution rate among
sites, while the bottom row was simulated with gamma distributed site-rate heterogeneity. The top margin shows the recombination rate.
doi:10.1371/journal.pone.0001913.g004

Figure 5. Mean fraction of false negative topologies (FNTOP) inferred (fraction of times that the simulated topology was not
correctly inferred) and false positive trees (FN) with recombination. The top row was simulated with a constant substitution rate among
sites, while the bottom row was simulated with gamma distributed site-rate heterogeneity. The top margin shows the recombination rate. Note, the
fraction of true positives is 1 - FN.
doi:10.1371/journal.pone.0001913.g005
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present another view of the accuracy of estimating the branch

lengths with recombination. For each branch in an inferred tree

that was found to be a match (e.g., induced the same split) in a

simulated tree, we calculated the difference between the true

branch length and the inferred branch length. We then averaged

this value over all matching branches between compared trees and

over all 1000 simulations for each set (Figure 6). Thus, if the

method consistently overestimates branch lengths, we will have a

negative mean, and if it underestimates branch lengths, we have a

positive mean. All methods overestimated branch lengths with

recombination (Figure 6) and without (see Data S1). The branch

lengths estimated by SHB were the closest to the true matching

branch’s length on average, and had the smallest variance.

However, one should be careful interpreting this result, since we

can only compare two matching branch’s lengths if they actually

exist in both model and inference. Thus, a method that had very

few matching branches would not necessarily perform poorly in

this respect (i.e., if it only inferred one correct branch, with the

correct branch length, it would have zero variance and zero mean,

even though it would likely have large FP and FN).

Discussion

No Recombination
The common use of phylogenetic inference in population

studies warrants a thorough analysis of the strengths and

weaknesses of network methods. This study was designed to assess

the relative performance of ten commonly used network methods

on data simulated in a variety of biologically meaningful scenarios.

Our analyses have shown that not all methods fare equally well in

many circumstances. One important but expected finding is that

increasing substitution rate resulted in a significant increase in

error (both topologically and in terms of inferring the correct

branch lengths) in all methods. Increasing the number of sites also

resulted in an increase in mean topological error rates for all

methods except MP and UMP when the number of sequences was

20 or 50. When taking into account branch lengths, all methods

had increased error as the number of sites increased. We speculate

that this decrease in accuracy with an increasing number of sites is a

result of the increasing number of unique haplotypes that result from

longer sequences. Since we found that an increase in the number of

unique haplotypes correlated with an increase in the number of

inferred trees, which increases the type II error, we also speculate

that with a larger number of sequences to connect there is more

uncertainty as to how they are related (and more internal nodes), and

thus the error rates are higher. Increasing the number of sequences

also resulted in an increase in error for all methods. Overall, MP had

at least as low, if not lower error rates than the other methods tested

under all circumstances. With low substitution rates, however, the

difference in accuracy of MP over UMP, NJ, SP, and SD in general

faded away. At higher substitution rates, MP was always significantly

less erroneous than all other methods.

One major advantage, however, of the network approaches, is

the ability to display ambiguity in the inference in a single

graphical representation. MP does not provide such a view,

beyond the total number of equally parsimonious trees. However,

the method of UMP was designed specifically to facilitate

visualization of the set of MP trees in a single graphical

representation. The UMP method, by definition, will always

result in the same or lower FN as MP with one caveat: increasing

the number of trees imbedded in the network may increase the FP

rate. This minor limitation is apparent with higher substitution

rates when the FP rate is increased in UMP as compared to MP.

The accuracy of SD, NN and MSN suffered, although the overall

accuracy of the other methods (except NJ) also decreased

somewhat due to ambiguity (higher FP rates). It is apparent from

Figure 6. Mean branch length difference between matching branches with recombination. The top row was simulated with a constant
substitution rate among sites, while the bottom row was simulated with gamma distributed site-rate heterogeneity. The top margin shows the
recombination rate. Vertical lines separate those methods that were significantly different in a paired Mann-Whitney test (see Measures of
Performance).
doi:10.1371/journal.pone.0001913.g006
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the results that MP and/or UMP should be preferred when lower

error rates (e.g., higher reconstruction accuracy) is the goal,

particularly with relatively divergent sequences. The relative level

of topological error as compared to overall tree error was slightly

different between all methods, but again, MP and UMP generally

had lower error than the rest.

Recombination
As only one of the inference methods tested (SHB) explicitly

accounts for recombination, it is not surprising that the results on the

sets simulated with recombination were quite poor. However, even

SHB performed poorly in the presence of recombination. Further-

more, as the recombination rate increased, error rates increased to

100% in all methods. When the branch length accuracy was

considered (tree FP and FN), no method had mean error below 0.94

(see Figure 4 and Figure 5). This was attributable in part to the

difficulty in estimating branch lengths for the entire length of a set of

sequences when only certain sites within those sequences actually

share the same history, as is the case with recombination. When we

only measured each method’s topological error, it was much lower,

though still not as low as in the simulations without recombination.

NN, MP, UMP and NJ were the least erroneous in inferring

topology with recombination (see Figure 4 and Figure 5). It was

much less clear which method did best when estimated branch

lengths in the presence of recombination. In order to better judge the

branch length estimates for the methods tested, we calculated the

mean difference between branches that matched between the

inferred and simulated trees (Figure 6 with recombination and Data

S1 for no recombination). This gives us some sense of whether a

method consistently over or under estimated the branch lengths.

SHB had the smallest mean difference in branch lengths and the

smallest variance, which may imply that it does quite well in

estimating certain branches accurately, but still can not globally infer

all branches in the simulated histories.

Another important consideration in the recombination infer-

ences is the proportion of sites that support a given tree. One

might value accuracy in inferring the tree or trees that underlie a

large number of sites over one that is only representing a few sites.

Trees could be weighted based on this to achieve a more useful

measure of accuracy, penalizing a method more for not finding

those trees that are supported by a majority of the sites, for

example. This should be an area of additional focus in future

comparisons and benchmarking of new methods. However, our

results indicate that estimates of branch lengths from data with

recombination should not be relied upon, at least at the level of the

full tree. In addition, rate variation increased the error of all

methods significantly. While these results do not look promising

for inferring histories from sequences that have undergone

recombination in their history, they certainly highlight the

importance of detecting recombination within a sample of

sequences before confidence is placed on any histories inferred

using these methods. Alternatively, methods that explicitly account

for recombination during inference could be used, although SHB as

tested here showed no general advantage over the other methods

(although the strong correlation between the number of trees

inferred by SHB with the number of unique simulated histories in

the ARG and lower individual branch length inference error, do give

some hope for better characterizing its sources of error).

Conclusion
The method that was consistently the least erroneous in our

simulations was MP and the related UMP method. While, nearly

all methods exhibited similar performance on sequences with low

substitution rates, MP and UMP outperformed the other methods

in terms of both lower topological and overall tree error in nearly

every case. The development of the UMP method to combine

maximum parsimony trees into a single network appears to be

quite appropriate. Particularly, if the UMP method can be refined

in such a way as to 1) not depend on the order of the input trees, 2)

not choke on particular sets of trees ordered in a particular

manner, 3) reduce the ambiguity to only that ambiguity existing in

the input trees and 4) express the confidence of particular branches

within the combined network, it looks very promising for the

accurate estimation and visualization of intraspecific phylogenies.

While there were some instances where UMP inferred highly

reticulated networks on the simulations with recombination, it was

not as common as with NN or SD (see Table 2).

As for the other methods tested, the biggest drawback for SD and

NN was their highly reticulated representations and their less

accurate estimation of branch lengths. However, NN did have

slightly lower FN in the recombination sets, indicating that it may

still have some potential to capture correct relationships. Since both

SD and NN aim to represent the compatible splits in the sequence

data, resolution is not necessarily their primary goal, but our results

indicate that quite frequently the model tree is not included within

their representations, a finding that needs closer inspection.

RMD, MED, and SHB performed fine with low substitution

rates, but were significantly less accurate than the best methods

when the substitution rate was higher. SHB, in spite of being

designed to deal with recombined sequences, performed poorly,

even in sets with recombination, although the number of trees it

inferred was highly correlated with the number of unique trees

simulated in the ancestral recombination graph and its average

branch length estimation with recombination was promising.

SHB’s increased error rates might be due in part to its requirement

for binary state alleles as input, reducing the amount of

information available for reconstruction.

NJ performed marginally well, although its obvious drawback is

its inability to represent ambiguity, either by reticulations, or by

inferring multiple trees. This could possibly be addressed by

building NJ trees from various partitions of the alignment, and

combining the results in a manner similar to UMP, or by including

ties or suboptimal NJ trees [e.g. 42], although NN also uses an

agglomerative approach similar to NJ, but appears to do worse

than NJ in most of our simulations.

SP’s performance was not as good as the tree approaches (MP,

UMP and NJ) under higher substitution rates, but in most of our

simulations, it had lower error than the other network methods

(except for topological FN). This gives us hope for improvement,

particularly with these benchmarks on which to assess its deficiencies.

One possible reason for the method’s lower accuracy could be the

effect of ignoring the parsimony limit and forcing the software to

connect all sequences. This act violates the theoretical advantage of

SP over MP, but was necessary in order to compare the performance

of all methods on equal ground. One potential improvement of SP

(or more accurately, the TCS software) would be the ability to use the

statistical parsimony connection limit to connect the less divergent

sequences, followed by use of MP to complete the disconnected

networks, as was originally proposed by Templeton et al. [43].

Finally, the performance of MSN was by far the worst on all

simulated data sets. This finding, as pointed out by Cassens et al. [12],

is likely due to the inability of the minimum spanning network

method to infer unsampled historical individuals. The Median

Joining Network (RMD) reconstruction method had much better

performance than MSN, due to its ability to infer ancestral

haplotypes. We strongly discourage the use of MSN for any analyses

that rely on the topology of the inferred relationships. Furthermore,

when the phylogenetic relationship of any set of sequences is being

Phylogenetic Network

PLoS ONE | www.plosone.org 11 April 2008 | Volume 3 | Issue 4 | e1913



inferred, it is important that several methods be used and their

inferences inspected and compared for discrepancies.

It is clear that there is much room for improvement in the

development of methods that infer the historical relationship of

intraspecific sequences, particularly when the sequences might have

undergone some level of recombination. We look forward to

experimenting to increase the accuracy of the existing methods and

developing novel methods to more accurately deal with such data.

Supporting Information

Data S1 Document describing and displaying additional infor-

mation (Summary statistics of RF and BS from all simulations).

Found at: doi:10.1371/journal.pone.0001913.s001 (1.87 MB

DOC)
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