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Abstract

Osteopontin (SPP1) is an important bone matrix mediator found to have key roles in inflammation and immunity. SPP1
genetic polymorphisms and increased osteopontin protein levels have been reported to be associated with SLE in small
patient collections. The present study evaluates association between SPP1 polymorphisms and SLE in a large cohort of 1141
unrelated SLE patients [707 European-American (EA) and 434 African-American (AA)], and 2009 unrelated controls (1309 EA
and 700 AA). Population-based case-control association analyses were performed. To control for potential population
stratification, admixture adjusted logistic regression, genomic control (GC), structured association (STRAT), and principal
components analysis (PCA) were applied. Combined analysis of 2 ethnic groups, showed the minor allele of 2 SNPs
(rs1126616T and rs9138C) significantly associated with higher risk of SLE in males (P = 0.0005, OR = 1.73, 95% CI = 1.28–2.33),
but not in females. Indeed, significant gene-gender interactions in the 2 SNPs, rs1126772 and rs9138, were detected
(P = 0.001 and P = 0.0006, respectively). Further, haplotype analysis identified rs1126616T-rs1126772A-rs9138C which
demonstrated significant association with SLE in general (P = 0.02, OR = 1.30, 95%CI 1.08–1.57), especially in males
(P = 0.0003, OR = 2.42, 95%CI 1.51–3.89). Subgroup analysis with single SNPs and haplotypes also identified a similar pattern
of gender-specific association in AA and EA. GC, STRAT, and PCA results within each group showed consistent associations.
Our data suggest SPP1 is associated with SLE, and this association is especially stronger in males. To our knowledge, this
report serves as the first association of a specific autosomal gene with human male lupus.
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Introduction

Systemic Lupus Erythematosus (SLE) is a prototypic human

autoimmune disease characterized by impaired T cell responses,

dysregulated B cell activation, hyperactive B cells and autoanti-

body production leading to inflammation and potential end-organ

damage. While the etiology of SLE remains complex, genetic

factors are known to be important in the pathogenesis of SLE

[1,2]. The current collection of genetic information suggests that

SLE susceptibility arises from specific combinations of multiple

gene-gene and gene-environment interactions. Among the genetic

factors believed to influence SLE susceptibility, the major

histocompatibility complex (MHC) alleles show the most signifi-

cant association, but these do not explain the total genetic

background of the disease. Importantly, several recent studies

show that non-HLA genes play a role in SLE development [3–7].

Recently, several lines of evidence suggest that secreted phospho-

protein 1 (SPP1) located at 4q22, also called osteopontin and early

T-lymphocyte activation 1, may have a role in the pathogenesis of

SLE as well as other autoimmune disorders.

SPP1 plays a key role in bone biology and has recently found to

also be important in regulating inflammation and immunity. The

immunologic functions of SPP1 include enhancing the proin-

flammatory Th1 cell response and inhibiting the Th2 responses

[8–9]. In addition, some studies have suggested that SPP1 plays a

role in the survival of activated T cells by inducing apoptosis, while

others have demonstrated the essential role of an intracellular form

of SPP1 in the production of interferon-alpha by plasmacytoid

dendritic cells [10,11]. Humans with SLE and autoimmune prone

mice over express osteopontin suggesting that abnormal expres-

sion of this protein may participate in SLE disease pathogenesis

[12,13]. Further, polymorphic osteopontin alleles have been

implicated in the development of a mouse model of lupus [14].

SNPs in the SPP1 gene have also been reported to be associated

with human SLE, adding further support to the role of this gene in

SLE pathogenesis [15]. A significant association between

rs11226616 and SLE was first demonstrated in a small North

American Caucasian cohort study [15]. Two SNPs (rs1126772

and rs9138) in the 39 UTR in the SPP1 gene were associated with

high levels of SPP1 and elevated risk of developing autoimmune/
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lymphoproliferative syndrome (ALPS), a disorder which leads to

an autoimmune pattern similar to lupus prone strains of mice [16].

The same group later showed significant associations between SLE

and 2 SPP1 SNPs (rs7687316 and rs9138) in an Italian population

[17]. This information prompted us to test association between

SPP1 polymorphisms and SLE in a large, multi-ethnic collection.

Results

Marker information, minor allele frequency and the statistical

significance for allele distributions between cases and controls are

presented in Table 1. The only significant difference in allele

distribution was observed in the combined male-female group for

rs6840362, which showed a significant difference allele distribu-

tion in EA (P = 0.015). However, significant differences were

evident in the male subgroup. This finding was especially strong in

EA males, where 3 SNPs (rs1126616, rs1126772 and rs9138)

showed significant differences in allele distributions. Similarly, in

AA males, 2 SNPs (rs1126616 and rs9138) demonstrated

significant differences in allele distribution.

We evaluated the association of each polymorphism with SLE,

adjusting for the admixture proportion utilizing logistic regression

under the multiplicative genetic model for minor alleles by

combined analysis. Considering the gender effect in allele

distributions and possible race specific effect in disease suscepti-

bility, subgroup analysis stratified by gender and race were also

performed. Table 2 shows the association results in detail. Briefly,

2 SNPs’ minor alleles (rs1126616T and rs9138C) showed

significant associations with SLE in AA and EA combined males,

but not in females, both of which conferred a high risk of SLE

(P = 0.0005, OR = 1.73, 95%CI 1.28–2.33). Indeed, significant

gene-gender interactions in the 2 SNPs, rs1126772 and rs9138,

were detected (P = 0.001, P = 0.0006, respectively). Subgroup

analysis by race revealed the same trend in AA and EA. For

AA, 3 SNPs (rs11728697, rs1126616, and rs9138) showed

significant association in males only (P = 0.02, P = 0.027,

P = 0.027, respectively). In EA males, 3 SNPs (rs1126616,

rs1126772, and rs9138) also showed significant association

(P = 0.003, P = 0.028, P = 0.003). Furthermore, to exclude the

false positive association which can arise from hidden population

substructure, we utilized GC, STRAT, and PCA to verify the

association result in each population. All associations remained

consistent with the admixture adjusted logistic regression analysis

(Table 3).

To assess the effect of any particular clinical feature on the

genetic association, we have performed a subgroup analysis

classified by eight clinical characteristics (Cutaneous manifesta-

tions, arthritis, serositis, renal involvement, neuro-psychiatric

manifestations, hematological features, anti-dsDNA, antinuclear

antibody) available for males (91 male SLE) and females (754

female SLE) separately. Although we did not find any significant

association in females, we did observed evidence of association in

males for some of the clinical features; however, these associations

are not stronger than the overall male-specific analysis. Therefore,

there seems to be no evidence that the overall effect is dominated

by a particular subset.

Haplotype analysis was performed to further evaluate the role of

SPP1 in SLE susceptibility. We conducted haplotype reconstruc-

tion and linkage disequilibrium analysis incorporating all 11 SNPs

in the SPP1 gene. The LD map and each SNP associated P value

are depicted in Fig. 1. Notably, rs1126616 and rs9138 are almost

in complete LD in both AA (Fig. 1A) and EA (Fig. 1B), which

explained their similar behavior in the association with SLE.

Initially, we included all selected 11 SNPs for haplotype analysis in

combined data and each race specific population adjusted by

admixture proportion. In accordance with the results of single

SNP analysis, no significant global association was detected either

in the combined analysis or in each specific population. The same

trend remained in the female subgroup. However, significant

haplotype association was observed in the male subgroup for the

combined, AA and EA (P = 0.001, P = 0.003, P = 0.028, respec-

tively).

To further explore the haplotype effect in male subgroup, we

performed conditional analysis to detect if there was a specific SNP

or a subset of SNPs which can explain the global haplotype

association. Interestingly, the last 3 SNPs (rs1126616, rs1126772,

and rs9138) explained the whole association for each significant

group. When we performed haplotype association analysis

conditional on these 3 SNPs, all significant associations disappear

in the combined AA and EA subgroup. We next focused on these

3 SNPs for haplotype analysis. Detailed results are presented in

Table 4. Although single SNP analysis revealed only marginal

significant association, it is notable that in AA males the haplotype

analysis demonstrated a much stronger association (P = 0.002).

Specifically, the haplotype TAC confers a high risk of SLE in AA

males (P = 0.001, OR = 3.37, 95%CI 1.65–6.92). In EA males, the

TAC haplotype is not significant, but there is a trend in the same

direction towards association with SLE (P = 0.079, OR = 1.84,

95%CI 0.96–3.53). Furthermore, in the combined male subgroup,

the haplotype TAC significantly increases the risk of SLE

(P = 0.0004, OR = 2.42, 95%CI 1.51–3.89). All the association

P-values were also verified by 10,000 permutations. Accordingly,

interaction analysis between haplotype and gender also showed

significant interactions in AA, EA, and the combined analysis

(P = 0.018, P = 0.02, P = 0.0018, respectively).

Discussion

Our study confirms the previously reported genetic association

with SLE and presents additional support in a large multiethnic

cohort. Previous studies have suggested that increased SPP1

plasma concentration, as a result of increased gene/protein

expression and local production, was associated with SLE [13].

Therefore, SPP1 is a reasonable candidate gene for SLE

susceptibility. In the first report, Forton et al found that a silent

polymorphism (rs1126616) in exon 7 was significantly associated

with SLE [15]. Subsequently, 2 SNPs in the 59 (rs7687316) and 39

(rs9138) ends of the SPP1 gene were reported to contribute to SLE

susceptibility [16]. Although our combined male-female results

were marginally significant, associations with SLE were found for

haplotype analysis of 3 SNPs (rs1126616, rs1126772, and rs9138).

Since significant interactions were detected between gender and

the SPP1 SNPs, haplotypes were analyzed separately for males and

females. Our unique findings focus on stronger associations found

in male SLE patients from the combined analysis of samples from

2 different ethnic populations. Haplotype analyses revealed that

the last 3 SNPs in 39UTR explain the global association in males

and supports the hypothesis that the causal variant of SPP1 might

be near 39UTR, which could affect the expression level of SPP1.

SLE is at least nine times more prevalent in female compared to

male subjects; however, the underlying cause of the gender effect

has not been clearly established. There is evidence that gender-

specific genetic effects exist, both from the many differences in

animal models of lupus and from other previous work in humans

[18–21]. In a recent study by our group [22], a SLE linkage at

13q32 was identified and replicated by restricting the samples to a

relatively homogenous population of African-American families

containing at least one male affected. Therefore, taken all the
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evidences together, the evolving data suggest unique clinical

courses and genetic predispositions in male lupus. Further study is

warranted to see if differences in osteopontin regulation are

involved in these differences.

Our haplotype analyses findings could also be significant due to

possible functionality of the three 39UTR SNPs. Recent years have

seen an increased appreciation for the importance of post-

transcriptional regulation in eukaryotic organisms [23]. The

untranslated region at the 39 end of a gene (39UTR) is involved

in regulating gene expression at both the pre-mRNA level and the

mature mRNA level. In the former, the 39UTR plays a central

role in mRNA 39 processing and polyadenylation, whereas in the

latter cis-elements in the 39UTR are bound by trans-acting factors

which modulate mRNA stability, nuclear export, subcellular

localization, and translation efficiency [24–27]. Micro-RNA target

sites in 39UTRs have been shown to be highly conserved [28].

Polymorphisms in microRNA target sites within the 39UTR may

influence gene expression in complex phenotypes, such as lupus

Table 1. Marker information and minor allele frequency in African-American and European-American sample.

African-American sample European-American sample
434/700{ 707/1309{

F: 403/475; M: 31/225{ F: 617/936; M: 90/373{

SNP Position Type Alleles STRATA Case Control Case Control
MA MAF MAF P* MA MAF MAF P*

rs2728127 89252294 59 near gene G/A All A 0.476 0.475 0.97 G 0.296 0.288 0.59

Female A 0.471 0.496 0.31 G 0.301 0.284 0.31

Male A 0.533 0.431 0.13 G 0.261 0.298 0.33

rs2853744 89253427 59 near gene G/T All T 0.252 0.240 0.52 T 0.060 0.058 0.79

Female T 0.252 0.240 0.57 T 0.061 0.060 0.88

Male T 0.258 0.241 0.77 T 0.050 0.052 0.90

rs11730582 89253600 59 near gene T/C All C 0.141 0.131 0.49 C 0.477 0.502 0.12

Female C 0.147 0.138 0.59 C 0.472 0.500 0.12

Male C 0.065 0.116 0.22 T 0.489 0.493 0.92

rs2853749 89254993 intron_0 C/T All T 0.393 0.393 0.98 T 0.294 0.289 0.71

Female T 0.392 0.387 0.84 T 0.299 0.285 0.38

Male T 0.403 0.406 0.96 T 0.261 0.299 0.32

rs11728697 89256120 intron_3 C/T All T 0.244 0.230 0.44 C 0.423 0.412 0.50

Female T 0.238 0.242 0.85 C 0.429 0.412 0.34

Male T 0.323 0.204 0.03 C 0.382 0.413 0.45

rs6840362 89257099 intron_3 C/T All T 0.354 0.337 0.42 T 0.258 0.295 0.01

Female T 0.354 0.330 0.29 T 0.259 0.285 0.11

Male T 0.355 0.353 0.98 T 0.256 0.322 0.08

rs6811536 89259584 intron_4 C/T All T 0.418 0.405 0.53 T 0.280 0.307 0.07

Female T 0.413 0.399 0.56 T 0.281 0.297 0.32

Male T 0.500 0.418 0.23 T 0.272 0.332 0.12

rs10516799 89260372 intron_5 G/C All C 0.344 0.328 0.44 C 0.279 0.308 0.05

Female C 0.346 0.324 0.32 C 0.279 0.298 0.26

Male C 0.317 0.338 0.74 C 0.272 0.332 0.12

rs1126616 89261032 exon_6 C/T All T 0.209 0.185 0.17 T 0.288 0.270 0.22

Female T 0.202 0.190 0.50 T 0.280 0.285 0.79

Male T 0.290 0.176 0.03 T 0.344 0.235 0.002

rs1126772 89261365 39 UTR A/G All G 0.053 0.061 0.45 G 0.220 0.218 0.86

Female G 0.056 0.061 0.65 G 0.214 0.229 0.31

Male G 0.016 0.060 0.15 G 0.267 0.190 0.02

rs9138 89261521 39 UTR A/C All C 0.205 0.184 0.23 C 0.286 0.271 0.31

Female C 0.198 0.188 0.60 C 0.277 0.285 0.64

Male C 0.290 0.176 0.03 C 0.344 0.235 0.002

MAF = minor allele frequency;
MA = minor allele;
* = chi-square test or Fisher exact test where appropriate, significant associations at the 0.05 significance level are bold.
{case/control number in all, male and female subgroup respectively.
doi:10.1371/journal.pone.0001757.t001
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[29]. 39UTRs are also preferred sites of cis-encoded natural

antisense transcripts [30]. A search of the PolyA_DB2 database

shows that there is supporting cDNA/EST evidence for 2

transcripts with different polyadenylation sites in the SPP1 gene

[31]. In addition, the PolymiRTS (polymorphic microRNA Target

Site) database revealed evidence that suggests that SNP rs1126772,

which shows association with lupus in this report, is predicted to

disrupt a non-conserved microRNA target site [32]. Two 39UTR

SNPs, rs1126893, and rs2853754, which are not tested in the

present association study, are predicted to disrupt two evolution-

arily conserved microRNA target sites. Interestingly, the

rs1126893 is in complete LD and within the same haplotype

block with our associated SNPs (rs1126772 and rs9138 at the

39UTR) based on Hapmap data of CEPH families. In fact, the

distance between rs1126893 and rs2853754 is only 30 bp, the

alternative allele for SNP rs2853754 is predicted to create

microRNA target sites for 2 microRNAs. A more extensive

analysis of these potential mechanisms for the 39UTR control of

SPP1 gene expression will be required to determine if these

predicted sites may be responsible for this genetic association.

However, we acknowledge that the current study suffers from

some shortcomings. First, the samples size for the male SLE

patients is small (121 males); the association results in male

subgroup analysis might arise by chance. However, the possibility

of false positives arising from the multiple testing problems should

be small since the reported P value is significant enough to survive

even the most conservative Bonferroni correction. Second, none of

the previously published functional studies were performed to

Table 2. Associations of SNPs with SLE by logistic regression under multiplicative genetic model

SNP Strata AA samples EA samples Combined sample

P OR(95% CI) P OR(95% CI) P OR(95% CI)

rs2728127 All 0.72 0.97 (0.81–1.16) 0.59 1.04 (0.90–1.20) 0.56 1.03 (0.92–1.16)

Female 0.34 0.91 (0.75–1.10) 0.29 1.09 (0.93–1.28) 0.16 1.09 (0.97–1.23)

Male 0.10 1.56 (0.91–2.68) 0.35 0.84 (0.59–1.21) 0.10 0.78 (0.57–1.05)

rs2853744 All 0.61 1.05 (0.86–1.29) 0.9 1.02 (0.77–1.34) 0.65 1.04 (0.88–1.22)

Female 0.62 1.06 (0.85–1.32) 0.85 1.03 (0.77–1.38) 0.61 1.05 (0.88–1.25)

Male 0.98 1.01 (0.56–1.82) 0.92 0.96 (0.46–2.01) 0.90 1.03 (0.65–1.63)

rs11730582 All 0.63 1.07 (0.82–1.40) 0.17 0.91 (0.80–1.04) 0.35 0.95 (0.84–1.06)

Female 0.44 1.12 (0.84–1.48) 0.12 0.89 (0.77–1.03) 0.29 0.93 (0.82–1.06)

Male 0.35 0.62 (0.21–1.80) 0.99 1.00 (0.73–1.37) 0.78 0.96 (0.71–1.29)

rs2853749 All 0.92 1.01 (0.84–1.21) 0.69 1.03 (0.89–1.19) 0.72 1.02 (0.91–1.14)

Female 0.87 1.02 (0.84–1.23) 0.36 1.08 (0.92–1.26) 0.42 1.05 (0.93–1.19)

Male 0.87 0.96 (0.56–1.64) 0.33 0.84 (0.58–1.20) 0.39 0.88 (0.65–1.18)

rs11728697 All 0.44 1.09 (0.88–1.35) 0.57 1.04 (0.91–1.19) 0.97 1.00 (0.89–1.12)

Female 0.95 0.99 (0.79–1.25) 0.33 1.07 (0.93–1.24) 0.40 0.95 (0.84–1.07)

Male 0.02 2.03 (1.13–3.63) 0.53 0.90 (0.65–1.25) 0.10 1.28 (0.95–1.71)

rs6840362 All 0.33 1.10 (0.91–1.32) 0.03 0.85 (0.73–0.99) 0.30 0.94 (0.84–1.06)

Female 0.29 1.11 (0.91–1.36) 0.10 0.87 (0.74–1.03) 0.56 0.96 (0.85–1.09)

Male 0.86 0.95 (0.55–1.63) 0.06 0.70 (0.48–1.02) 0.15 0.80 (0.59–1.09)

rs6811536 All 0.37 1.09 (0.91–1.31) 0.12 0.89 (0.77–1.03) 0.52 0.96 (0.86–1.08)

Female 0.57 1.06 (0.87–1.28) 0.31 0.92 (0.78–1.08) 0.67 0.97 (0.86–1.10)

Male 0.31 1.33 (0.77–2.30) 0.09 0.73 (0.51–1.06) 0.49 0.90 (0.67–1.21)

rs10516799 All 0.41 1.08 (0.90–1.31) 0.09 0.88 (0.76–1.02) 0.43 0.96 (0.85–1.07)

Female 0.32 1.11 (0.91–1.35) 0.25 0.91 (0.78–1.07) 0.78 0.98 (0.87–1.11)

Male 0.68 0.89 (0.5–1.56) 0.09 0.73 (0.51–1.06) 0.14 0.80 (0.59–1.08)

rs1126616 All 0.16 1.18 (0.94–1.47) 0.34 1.07 (0.93–1.25) 0.13 1.10 (0.97–1.25)

Female 0.48 1.09 (0.86–1.39) 0.81 0.98 (0.83–1.15) 0.84 1.01 (0.89–1.16)

Male 0.027 2.01 (1.10–3.69) 0.003 1.71 (1.2–2.44) 0.0005 1.73 (1.28–2.33)

rs1126772 All 0.45 0.86 (0.59–1.27) 0.98 1.00 (0.85–1.17) 0.73 0.97 (0.84–1.13)

Female 0.70 0.93 (0.62–1.38) 0.30 0.91 (0.76–1.09) 0.27 0.91 (0.78–1.07)

Male 0.19 0.32 (0.04–2.44) 0.028 1.54 (1.05–2.26) 0.10 1.36 (0.95–1.95)

rs9138 All 0.20 1.16 (0.93–1.45) 0.44 1.06 (0.91–1.23) 0.19 1.09 (0.96–1.23)

Female 0.58 1.07 (0.84–1.36) 0.65 0.96 (0.82–1.13) 0.96 1.00 (0.87–1.14)

Male 0.027 2.01 (1.10–3.69) 0.003 1.71 (1.2–2.44) 0.0005 1.73 (1.28–2.33)

Significant associations at the 0.05 significance level are bold. For Combined sample, P value and OR were adjusted for admixture proportion and gender; for each
gender-specific sample, only admixture proportion was used as a covariate
doi:10.1371/journal.pone.0001757.t002
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evaluate the role of SPP1 in males and females separately. While

this experiment is beyond the scope of the present study, we hope

to assess SPP1 gene and protein expression in male and female

lupus patients in future. It is worth noting that sex-specific

differences in SPP1 gene expression have been observed in rats

[33,34]. Third, an independent replication study should be

performed to further verify the male association. Like many other

association studies with complex phenotype, no matter how large,

validation in a second cohort is needed.

In summary, our data suggest the SPP1 gene might be

associated with the development of SLE in general and especially

in males. To our knowledge, this report serves as the first

description of a gender-specific human lupus genetic association.

Further in-depth molecular, genetic, and functional studies should

improve our understanding of the disease, and hopefully will

provide a more accurate diagnostic algorithm and improved

genetic counseling and management strategies.

Materials and Methods

Patients and controls
Genomic DNA samples from SLE patients and control subjects

were collected after obtaining written, informed consent from

1141 unrelated SLE patients [707 European-American (EA), 434

African-American (AA)], including 121 males (31 AA male

patients and 90 EA male patients), and 2009 unrelated controls

(1309 EA, 700 AA), including 598 males (225 AA male controls

and 373 EA male controls). Coded DNA samples were obtained

Table 3. Associations of SNPs with SLE by genomic control (GC), structured association test (STRAT), and principle components
analysis (PCA).

SNP Strata African-American sample European-American sample

GC STRAT PCA GC STRAT PCA

rs2728127 ALL 0.96 0.48 0.83 0.57 0.78 0.63

Female 0.31 0.67 0.31 0.29 0.18 0.38

Male 0.13 0.20 0.03 0.38 0.25 0.23

rs2853744 ALL 0.55 0.72 0.67 0.77 0.89 0.80

Female 0.55 0.65 0.25 0.85 0.93 0.91

Male 0.91 0.88 0.85 0.91 0.92 0.71

rs11730582 ALL 0.49 0.78 0.29 0.12 0.15 0.13

Female 0.60 0.59 0.59 0.11 0.06 0.20

Male 0.32 0.32 0.48 0.92 0.99 0.88

rs2853749 ALL 0.93 0.50 0.83 0.69 0.88 0.75

Female 0.83 0.66 0.73 0.36 0.22 0.43

Male 0.75 0.96 0.63 0.37 0.24 0.22

rs11728697 ALL 0.43 0.70 0.24 0.48 0.67 0.56

Female 0.83 0.79 0.79 0.33 0.44 0.49

Male 0.033 0.095 0.005 0.46 0.61 0.32

rs6840362 ALL 0.45 0.73 0.53 0.012 0.011 0.013

Female 0.30 0.57 0.65 0.11 0.07 0.12

Male 0.96 0.26 0.75 0.11 0.07 0.14

rs6811536 ALL 0.55 0.81 0.62 0.06 0.06 0.07

Female 0.58 0.77 0.29 0.31 0.41 0.36

Male 0.29 0.25 0.37 0.15 0.099 0.18

rs10516799 ALL 0.47 0.75 0.51 0.049 0.047 0.054

Female 0.34 0.66 0.56 0.25 0.34 0.30

Male 0.70 0.19 0.61 0.15 0.10 0.18

rs1126616 ALL 0.16 0.19 0.11 0.21 0.34 0.18

Female 0.51 0.82 0.31 0.81 0.87 1.00

Male 0.046 0.084 0.016 0.006 0.002 0.004

rs1126772 ALL 0.47 0.72 0.55 0.88 0.98 0.83

Female 0.65 0.89 0.62 0.29 0.30 0.48

Male 0.26 0.19 0.30 0.039 0.025 0.032

rs9138 ALL 0.22 0.25 0.15 0.29 0.47 0.26

Female 0.61 0.89 0.54 0.65 0.79 0.83

Male 0.046 0.079 0.016 0.006 0.002 0.004

Significant associations at the 0.05 significance level are bold.
doi:10.1371/journal.pone.0001757.t003
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from the Lupus Family Registry and Repository (LFRR: http://

lupus.omrf.org/). The study was approved by the Institutional

Review Boards (IRB) at the Oklahoma Medical Research

Foundation and University of Oklahoma Health Sciences Center.

All patients utilized in the study met SLE classification based upon

the revised criteria of the American College of Rheumatology

(ACR) [35].

Genotyping
Initially, we evaluated 32 SNPs in the SPP1 gene on the

Illumina SNP platform (San Diego, CA) at the University of Texas

Southwestern Microarray Core Facility (Dallas, TX) using

standard methods described in more detail (www.illumina.com).

A summary of the genotyping information for all the markers is

shown in supplementary Table S1. We included 11 SNPs in the

final analysis in which the controls in Hardy-Weinberg equilib-

rium, and a minor allele frequency of .1% in both the

populations. Marker information, genotype, and allele distribu-

tions of the 11 SNPs in cases and controls are summarized in

supplementary Table S2. Of the SNPs that failed quality control,

13 SNPs were monomorphic in 2 studied populations, 6 SNPs had

minor allele frequencies which were below 1% at least in one

population, 2 SNPs failed genotyping, and 1 SNP deviated

significantly from HWE in the black control group.

To know how much of the genetic variation of the SPP1 gene

that is captured by the 11 successfully genotyped SNPs, we

downloaded the tagged SNPs of SPP1 from the CEU population

from Hapmap database (http://www.hapmap.org) using Tagger

Pairwise method, in which MAF and LD (r-squared) cutoffs were

set to 0.05 and 0.8, respectively. We found 4 tagged SNPs,

rs6840362, rs9138, rs2853749, and rs11728697, which can

capture all other 10 genotyped SNPs by Hapmap project across

the gene. Actually, all these 4 tag SNPs were included in our

analyzed marker list. Therefore, all the known genetic variation of

the SPP1 gene should be captured by the 11 SNPs we analyzed,

especially for the European population.

Statistical analysis
Departures from Hardy–Weinberg equilibrium in cases and

controls were tested for SNPs with a Pearson Chi-square test.

Allele frequencies in SLE cases were compared to those in control

subjects using the Chi-square test or Fisher’s exact probability test,

where appropriate. Statistical evaluations for testing genetic effects

were performed using multivariate logistic regression analysis with

adjustments for gender and admixture proportions under

multiplicative genetic model. Interaction analysis was performed

by introducing the interaction term into the logistic regression

model including admixture proportion as a covariate. Statistical

significance was obtained by the likelihood ratio test comparing

the models with and without the interaction term. Haplotype-

based association analysis and conditional analysis were performed

by the WHAP program [36].

To control for possible confounding due to population

stratification, a panel of 221 ancestry informative markers (AIMs)

was genotyped using the same Illumina SNP platform for an

ongoing association study project in these LFRR samples.

Frequencies of the AIMS in the ancestry population European

and African are shown in supplementary Table S3. These AIMs

were selected based on the criteria of large allele frequency

differences (20% or greater allele frequency difference) between 2

ancestral populations, HWE in ancestral populations and all 221

AIMs were separated by al least 1 cM to minimize the possibility

of strong LD between AIMs. We used the STRUCTURE

program to estimate the admixture proportion for each individual

Figure 1. Linkage disequilibrium (LD) structure and association
P value in AA. LD is calculated from the genotype data in AA healthy
control population. Fig. 1B: LD structure and association P value in EA.
LD is calculated from the genotype data in EA healthy control
population.
doi:10.1371/journal.pone.0001757.g001
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in AA and EA separately [37]. The log likelihood of each analysis at

varying number of population groups (k) was estimated from the

average of 3 independent runs (20,000 burn in and 30,000

iterations). As expected, the results favored a two-ancestry

population model in both AA and EA. The average proportion of

European ancestry was 0.17 in AA samples and 0.99 in EA samples.

We included the European ancestry proportion in each individual as

a covariate in the logistic regression model to control the population

stratification in subgroup and combined analysis. Additionally,

genomic control (GC) [38], structured association (STRAT) [39],

and principal components analysis (PCA) [40] were applied to

control for population stratification in race specific analysis.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0001757.s001 (0.02 MB

XLS)

Table S2

Found at: doi:10.1371/journal.pone.0001757.s002 (0.02 MB

XLS)

Table S3

Found at: doi:10.1371/journal.pone.0001757.s003 (0.05 MB

XLS)
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