
Automatic Physiological Waveform Processing for fMRI
Noise Correction and Analysis
Daniel J. Kelley1,2,3*, Terrence R. Oakes1, Larry L. Greischar1, Moo K. Chung1, John M. Ollinger1,

Andrew L. Alexander1, Steven E. Shelton4, Ned H. Kalin4, Richard J. Davidson1,4

1 Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America, 2 Neuroscience Training

Program, Center for Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America, 3 Medical Scientist

Training Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America, 4 Department of Psychiatry, University of

Wisconsin, Madison, Wisconsin, United States of America,

Abstract

Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share
power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process
physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of
physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain
activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called
PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on
resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI
noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.
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Introduction

Physiological noise [1] describes a known low-frequency

component of brain signals collected with functional MRI [2]

(fMRI) that contaminates brain activation [3] and connectivity

studies [4]. Retrospective removal of physiological noise from

fMRI signal [5,6] requires simultaneous collection of functional

brain images along with cardiac and respiratory signals, typically

using a pulse oximeter and a respiratory bellows belt, respectively.

Further processing of the physiological signals is necessary to

remove acquisition artifact and to prepare them for use in existing

fMRI noise correction and analysis software like AFNI [7] [http://

afni.nimh.nih.gov/afni/] . However, open-source software is not

currently available to fill the gap between raw and processed

physiological noise signals. We sought to fill this gap (Figure 1) by

writing a fully automated, physiological noise processing program

called PhysioNoise (download source code from Text S1) in the

python language that enables interactive visualization of cardiac

and respiratory time series, automatic detection of cardiac and

respiratory peaks, and generation of processed cardiac and

respiratory time series for both retrospective fMRI correction

and covariates for analyses of brain activation and connectivity.

Materials and Methods

Algorithm
PhysioNoise was developed in python [8] using MacPython 2.5

[http://www.pythonmac.org/packages/] on the Mac OS X

platform and requires scipy [9] [http://www.scipy.org/], numpy

[10] [http://numpy.scipy.org/], and matplotlib [11] [http://

matplotlib.sourceforge.net/] libraries. The program was also

implemented and tested on a linux workstation running Scientific

Linux [12]. PhysioNoise removes high frequency noise from both

respiratory and cardiac waveforms with a user specified, zero

phase, low pass Butterworth filter and calculates the residual (raw

signal–Butterworth filtered signal). Acquisition artifacts are

identified as time course regions with large residuals. A window

around each artifact is removed and the entire filtered, cleaned

dataset is fit with a spline such that clean peaks are modeled and

the windowed gaps are replaced with values from the spline

interpolation to produce a clean, spline waveform (Figure 2).

Processing for Retrospective Physiological fMRI Noise
Correction

Respiratory Waveform. Respiratory peaks are detected in the

respiratory spline dataset (RW) using a slightly modified version of

the open-source peakdet.m algorithm of Eli Billauer [13] which we

translated to python. This algorithm alternately detects peaks and

troughs in a periodic signal. We adapted this algorithm to detect

respiratory (RPpd) and cardiac (CPpd) peaks by adding optional,

user specified thresholds to limit peak detection to physiologically

relevant timings and magnitudes. The downsampled respiratory

spline waveform (RW) is output for use in retrospective fMRI noise

correction software such as AFNI’s 3dretroicor.

Cardiac Waveform. The denoised cardiac spline was then

subject to peak detection. For fMRI analysis there is a need to identify

the ejection timing of the heart based on the pulse oximeter signal.

The cardiac signal has several features that can be analyzed (Figure 3).

A common method is to use the cardiac TTL pulse (CPttl) delivered
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by the scanner to estimate the R-wave, which is only detectable using

EKG. Since the scanner records the peak times, PhysioNoise converts

these times to a spike wave time series whose duration matches that of

the fMRI brain scan. However, the CPttl peak detection contains

artifactual errors of peak omission and commission and the CPttl

onset time lags the R-wave [14]. Prior studies using Doppler

measures of aortic flow confirmed that the timing of ventricle

contraction and the onset of systole and diastole can be detected by

taking the third derivative of the pulse oximeter waveform and are

identifiable as two small peaks separated by a larger trough [15]. The

trough is readily detectable even in noisy data, corresponds to the

time when ventricular ejection occurs, and may be a closer

approximation to R-wave onset that precedes the CPttl peaks. We

identified the ventricular contraction time (CPd3) as the large trough

of the cardiac waveform’s third derivative. After implementation we

determined that smaller troughs were detected which needed to be

removed from CPd3. To do so, the envelope of the cardiac

waveform’s third derivative peaks was used to threshold the absolute

value of the third derivative’s troughs. Only troughs whose absolute

magnitude was greater than that of the third derivative’s peak

envelope and at least half the mean envelope magnitude were

reported as CPd3 peaks. The R-wave estimate (CPd3R) was then

determined by selecting the nearest third derivative peak that

preceded the large trough. The CPttl, CPd3, and CPd3R are saved to

disk as options for retrospective fMRI correction.

Processing for fMRI Functional Analysis of Activation and
Connectivity

To prepare physiological noise covariates of no interest (nuisance

variables) for connectivity analyses, further processing of the

respiratory and cardiac peaks is required. First, the top and bottom

Figure 1. PhysioNoise Fills Physiological Signal Processing Gap.
PhysioNoise processes physiological noise signals for existing software
(AFNI) used in retrospective fMRI physiological noise correction and
connectivity analyses. The inputs to PhysioNoise are represented by the
blue arrow and the outputs from PhysioNoise are identified with the red
arrows. (RW = Downsampled respiratory spline waveform; CPttl = Car-
diac peak based on the TTL pulse from the scanner; CPd3 = Cardiac peak
based on trough of the third derivative; CPd3R = Cardiac peak R-wave
estimate based on small peak of third derivative preceding the CPd3;
RVT = Respiratory volume over time based on peakdet peaks; RRT = Re-
spiratory rate over time; CVT = Cardiac volume over time based on
peakdet peaks; CRTttl = Cardiac rate over time based on the TTL pulse
from the scanner; CRTd3 = Cardiac rate over time based on CPd3;
CRTd3R = Cardiac rate over time based on CPd3R).
doi:10.1371/journal.pone.0001751.g001

Figure 2. Plot of Physiological Signal Artifact. The raw respiratory
and cardiac waveforms are plotted along with their filtered versions.
Signal artifacts with large residuals (Raw Signal-Filtered Signal) are
replaced with a spline interpolation. The series of green spline circles
are the thick black waveform.
doi:10.1371/journal.pone.0001751.g002

Figure 3. Cardiac Peaks. The CPpd, CPttl, CPd3, and CPd3R are
displayed on the cardiac spline (black) and third derivative (cyan). The
envelope of the third derivative peaks is shown in yellow. The plot also
shows an example of the scanner TTL error of commission in which an
extra CPttl was detected during one cardiac cycle. The differentiation
method correctly produced one CPd3 peak (CPttl = Cardiac peak based
on the TTL pulse from the scanner; CPd3 = Cardiac peak based on
trough of the third derivative; CPd3R = Cardiac peak R-wave estimate
based on small peak of third derivative preceding the CPd3).
doi:10.1371/journal.pone.0001751.g003

Automatic Waveform Processing
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respiratory envelopes and their difference, known as respiratory

volume per time (RVT), are generated from their peaks (RPpd) as

previously reported by Birn [16] using the peakdet algorithm. The

cardiac volume per time curve (CVT) is also generated using peaks

(CPpd) detected with peakdet algorithm (Figure 4). Second, cardiac

rate time (CRT) courses based on the TTL (CRTttl), the third

derivative (CRTd3), and the third derivative’s R-wave estimate

(CRTd3R) are generated as the inverse change in time between CP

centered points on the initial peak [14]. The respiratory rate (RRT)

over time was also calculated using the RPpd in the same manner as

CRT (Figure 5). Third, the RVT and CRT waveforms are sampled

on the TR and half TR and output for later use in fMRI activation

and connectivity analyses.

Results

With RARC approval, rhesus monkeys (n = 13) were sedated

and restrained during simultaneous 3.0 Tesla GE Signa scanner

acquisitions of functional MRI, pulse oximetry, and respiratory

bellows signals. Respiration was monitored with a respiratory belt

and cardiac contraction with a pulse oximeter on a 3.0 Tesla

scanner (GE Medical Systems; Waukesha, WI). Both were

collected at a 1000 Hz sampling rate. Artifacts in the physiological

signal were automatically detected and corrected (Figure 2) using

PhysioNoise prior to identifying RPpd, CPpd, CPttl, CPd3, and

CPd3R (Figure 3). The downsampled signal and peaks were then

available for use in retrospective fMRI physiological noise

correction in AFNI. The respiratory and cardiac envelopes

derived from the peakdet peaks of the spline waveforms

(Figure 4) were successfully used to generate the RVT and CVT

curves. The CRT curves were also successfully generated from the

CPttl, CPd3, and CPd3R peaks. In short, PhysioNoise produced

useful waveforms for fMRI analysis of activation or connectivity

(Figure 1). Statistical tests were conducted in SPSS 14.0 (SPSS,

Inc; Chicago) and R [17].

To evaluate the peakdet algorithm, we tested the null hypothesis

that the period of both the respiratory and cardiac waveforms

calculated from the peakdet peaks would be comparable to the

period derived from the frequency of the maximum density in

their respective power spectra. The temporal period (seconds) for

the respiratory waveform determined by the peakdet algorithm

[mean = 2.47; SD = 1.26] was comparable to the peak power

[mean = 2.06; SD = 0.532; paired t(12) = 1.08; p = 0.301 ]. The

temporal period of the cardiac waveform from the power spectra

[mean = 0.868; SD = 0.133] was comparable to the period using

CPpd peaks determined by peakdet [mean = 0.866; SD = 0.138;

paired t(12) = 20.201; p = 0.844].

Figure 4. Respiratory and Cardiac Envelopes. The peaks identified by peakdet (RPpd,CPpd) are shown along with the respiratory and cardiac
waveforms, top envelope, bottom envelope, and the absolute value of their means.
doi:10.1371/journal.pone.0001751.g004

Automatic Waveform Processing
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To evaluate the differentiation method for improved R-wave

onset approximation, we compared the period from the CPttl

peaks [mean = 0.805; SD = 0.225] to the period derived from the

CPd3 [mean = 0.853; SD = 0.125] and CPd3R [mean = 0.853;

SD = 0.133] peaks generated from the differentiation method and

found them to be equivalent [F(2,24) = 0.989; p = 0.387] based on

a one way ANOVA blocked across monkeys.

To determine whether CPd3 would provide a better estimate of

R wave onset than CPttl, we evaluated the latency of CPd3 by

testing the null hypothesis that the CPd3 time would be

comparable to the CPttl onset. To do so, we measured the time

change from CPd3R to the onset of both CPd3 [mean = 195.3 ms;

SD = 51.1] and CPttl [mean = 232.2 ms; SD = 58.4] and took

their difference. We determined that the CPd3 preceded CPttl by

about 37 ms [mean = 236.8 ms; SD = 23.1] and this time lag was

significantly different from zero [paired t(12) = 25.74; p = 0.00].

To quantify the spike reduction in the CRT waveforms, we

tested the null hypothesis that the CRTttl, CRTd3, and CRTd3R

would have comparable numbers of outliers (SD.4) and those

outliers would have equal variance. The mean number of outliers

for these methods were not equal [F(2,24) = 5.30; p = 0.012] when

tested in a one way ANOVA blocked across monkeys. The CRTttl

[mean = 6895; SD = 7228] had significantly more outliers than the

CRTd3 [mean = 1662; SD = 3039; paired t(12) = 3.34; p = 0.006]

and marginally more significant outliers than CRTd3R [mean =

1963; SD = 3607; paired t(12) = 2.13; p = 0.055] methods. To

demonstrate outlier dispersion, we tested the ratio of each

method’s outlier variances pooled across monkeys using an F-test.

The CRTttl variance [mean = 0.312; SD = 0.833] was significantly

more variable than the CRTd3 [mean = 0.036; SD = 0.068;

F(1,24) = 6.37; p = 0.019] and the CRTd3R [mean = 0.026;

SD = 0.046; F(1,24) = 15.6; p = 0.000].

Discussion

PhysioNoise is a fully automated physiological noise processing

program in the python language that processes physiological

fluctuations and fills a gap between physiological noise signal

acquisition and its use in fMRI neuroanalysis. Although

PhysioNoise is fully automated, users have several options to

control processing. Furthermore, PhysioNoise is open-source,

modifiable by the users themselves, and may serve as a base

program for further algorithm implementations. The utility of the

program was validated using anesthetized monkey cardiac and

respiratory signals. PhysioNoise detects and corrects acquisition

artifact in the physiological signal and returns several processed

waveforms suitable for fMRI correction and analysis.

PhysioNoise is available for download (Text S1) as a stand alone

program. The open source algorithms we adapted as functions for

use in PhysioNoise are contained within the PhysioNoise source

code. Prerequisites to use PhysioNoise include a working installa-

tion of python [8] and access to scipy [9] [http://www.scipy.org/],

numpy [10] [http://numpy.scipy.org/], and matplotlib [11]

[http://matplotlib.sourceforge.net/] libraries. The PhysioNoise

program was tested with physiological and fMRI signals collected

from monkeys using a 3.0 Tesla GE Signa MRI scanner and a

respiratory bellows belt. The algorithms we packaged into

PhysioNoise are generalizable to other fMRI scanners and

respiratory bellows equipment.

In summary, PhysioNoise outputs the RW, CPd3, CPd3R, and

CPttl time courses as options for retrospective fMRI brain signal

correction of physiological noise and the RVT, RRT, CVT,

CRTd3, CRTd3R, and CRTttl curves as options for neuroana-

lysis. Prior studies have noted that the CPttl lags the R-wave by

about 120 ms and produces CRT waves with intermittent spikes

which are due to the detection of false peaks or omission of true

peaks [14]. We detected the CPd3R about 230 ms prior to the

CPttl R-wave estimate. This suggests that the CPd3R may precede

the actual R-wave. Future studies should use PhysioNoise to

directly compare the R-wave onset times from pulse oximetry

using the differentiation method, the CPttl from the scanner, and

the actual R-wave from EKG measurements during fMRI

acquisition. The CPd3 may be a more appropriate choice for R-

wave estimation for fMRI noise correction and analysis compared

to the CPttl because the CPd3 preceded the CPttl by about 37 ms

and the CRTd3 has fewer outliers with less outlier dispersion.

Figure 5. Cardiac and Respiratory Rates and Volumes over
Time. Representative RVT, RRT, CVT, CRTttl, CRTd3, and CRTd3R
waveforms are displayed in PhysioNoise. Note that the CRTd3 contains
fewer outliers than the CRTttl and the CRTd3R. Dynamic visualization of
these curves in PhysioNoise is possible using the zoom and scroll
features (RVT = Respiratory volume over time based on peakdet peaks;
RRT = Respiratory rate over time; CVT = Cardiac volume over time based
on peakdet peaks; CRTttl = Cardiac rate over time based on the TTL
pulse from the scanner; CRTd3 = Cardiac rate over time based on CPd3;
CRTd3R = Cardiac rate over time based on CPd3R).
doi:10.1371/journal.pone.0001751.g005

Automatic Waveform Processing
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Supporting Information

Text S1 PhysioNoise Source Code

Found at: doi:10.1371/journal.pone.0001751.s001 (0.05 MB

DOC)
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