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Abstract

In order to clear the body of infecting spirochetes, phagocytic cells must be able to get hold of them. In real-time phase-
contrast videomicroscopy we were able to measure the speed of Borrelia burgdorferi (Bb), the Lyme spirochete, moving back
and forth across a platelet to which it was tethered. Its mean crossing speed was 1,636 mm/min (N = 28), maximum,
2800 mm/min (N = 3). This is the fastest speed recorded for a spirochete, and upward of two orders of magnitude above the
speed of a human neutrophil, the fastest cell in the body. This alacrity and its interpretation, in an organism with
bidirectional motor capacity, may well contribute to difficulties in spirochete clearance by the host.
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Introduction

Borrelia burgdorferi (Bb) locomote by the beating of two opposing

sets of endoflagella which alternatively drive them in opposite

directions along their axes. They swim using backward propagat-

ing flat waves, much like the waves found in eukaryotic cells such

as sperm [1]. Their speed in liquid media has been estimated at

4.25 mm/sec, or 255 mm/min [1]. They are much faster (up to

,2000 mm/min) in gel-like viscous media such as methylcellulose

(simulating tissue ground substance) [2] or on surfaces, where they

are thought to have something to push against [3,4].

Results and Materials and Methods

Bb are known to engage activated platelets via alpha IIb beta 3

integrin receptors [5]. For phagocytic studies [6] we took platelet-

rich plasma from (sodium) heparinized human blood, added a low

passage clonal isolate of B. burgdorferi strain N40 cultivated as

described [7], sealed the suspension with paraffin between a glass

slide and cover slip, and examined the preparation on the warmed

(33uC) stage of a Zeiss phase-contrast photomicroscope connected

via a IEC800 Microscope Video Camera (elc, Annecy, France) to

a Panasonic Time Lapse Video Recorder AG6720 (Matsushita

Electric Industrial Co., Osaka). Platelets adhered to the slide;

many spirochetes, to the platelets.

We noted that spirochetes tethered to platelets are easier to

ingest, as they cannot leave the field as free spirochetes can. In still

photographs of these negotiations we noted that with time,

different regions along the length of the spirochete are in contact

with the platelet. In time-lapse videomicrocopy (Video S1) Bb were

moving back and forth across the surface of the platelet, sometimes

changing direction during translocation, but stopping short on

reaching either end and remaining there until the reverse

propulsion kicked in (the control of these reversals is unknown).

Then they moved back across the platelet in the opposite

direction. These translocations could happen repeatedly.

Examples filmed in real time are seen in Figure 1. In this

preparation the tethered spirochete made repeated complete

crossings from one of its ends to the other. This made its speed

amenable to analysis. We examined frame by frame the time it took

for the Bb to cross the platelet in either direction, and, having

crossed, how long it spent at either extremity. We made these

measurements for 14 crossings (7 in each direction) over 34 sec, and,

a little later, another 14 crossings over 42 sec. Combining the two

sets, we calculated a mean crossing time of 0.55 sec (S.D.60.19 sec),

compared to a mean time between crossings of 1.71 sec (S.D.61.23).

The difference between these means is highly significant (n = 28;

P,0.0001, paired t test, two tailed). Moreover, the spirochete

measured 15 mm in length; therefore, its mean crossing speed was

,27 mm/sec, or 1,636 mm/min. Its fastest crossing, measured in

three of the 28 crossings, was 0.32 seconds, giving a fastest crossing

speed of 46.88 mm/sec, or ,2800 mm/min, which we believe to be

the most rapid spirochete speeds so far measured.

Discussion

There is good previous evidence that antigens can move

longitudinally with some facility along spirochetal membranes–from

antibody-coated latex beads attached to the spirochete, Leptospira

interrogans–but their estimated speeds were only up to 660 mm/min

[8]. All these speeds must seem blindingly fast to neutrophils, which

crawl (they do not swim) at ,20 mm/min [9,10] in liquid media.

The disparity in speed is likely to be even more marked in the

extravascular space, as spirochetes move easily in gel-like viscous

media [2] but neutrophils average only ,4 mm/min [11]. The most

likely explanation for what we are seeing is that the ligand-receptor

complexes, as in Leptospira [8], are freely movable along the

spirochete’s outer membrane sheath. Receptors on Bb appear well

distributed about their surface but may become concentrated in

patches when given antibody [12]. We suspect that these

translocations can occur rapidly. If, instead of its receptors moving,

Bb were rapidly exchanging receptors as it moved along the platelet
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surface, we might expect it to fly off the platelet when it reached its

end. The fact that Bb stop short at each of their ends is compatible

with its accumulating and dragging ligand-receptor complexes to the

Bb’s end, where they constrain the spirochete from departing. In

addition to their alacrity and bidirectional motor capabilities, if

movable receptors on spirochetes prove to be a general phenom-

enon, then strong ligation, or locomotor disabling, would also seem

to be required if it is to be internalized efficiently by phagocytes.

Supporting Information

Video S1 Bb moving back and forth along a platelet. Time-lapse

(16x normal) phase-contrast videomicrocopy.

Found at: doi:10.1371/journal.pone.0001633.s001 (10.30 MB

MOV)
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Figure 1. Sequential translocations of Bb across a platelet (see text). Total elapsed time, A-H: 9 sec. Measured crossing speeds were as fast
as 2800 mm/min, upward of two orders of magni-tude above the speed of a human neutrophil, the fastest cell in the body. Images from real-time
phase-contrast videomicroscopy. Approx. 61,000.
doi:10.1371/journal.pone.0001633.g001
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