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Abstract

Background: In studies of gene regulation the efficient computational detection of over-represented transcription factor
binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of
hypothesised co-regulated genes share a common regulatory regime based on the occurrence of the modelled
transcription factor binding sites. However there is little or no information available for guiding the end users choice of
method. Furthermore it would be necessary to obtain several different software programs from various sources to make a
well-founded choice.

Methodology: We introduce a software package, Asap, for fast searching with position weight matrices that include several
standard methods for assessing over-representation. We have compared the ability of these methods to detect over-
represented transcription factor binding sites in artificial promoter sequences. Controlling all aspects of our input data we
are able to identify the optimal statistics across multiple threshold values and for sequence sets containing different
distributions of transcription factor binding sites.

Conclusions: We show that our implementation is significantly faster than more naı̈ve scanning algorithms when searching
with many weight matrices in large sequence sets. When comparing the various statistics, we show that those based on
binomial over-representation and Fisher’s exact test performs almost equally good and better than the others. An online
server is available at http://servers.binf.ku.dk/asap/.
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Introduction

Efficient identification of transcription factor binding sites is a

crucial initial step in the study of gene regulation. We are often

interested in identifying over-represented transcription factor

binding sites (TFBSs) in some set of hypothesised co-regulated

genes as this indicates that the set share a common regulatory

mechanism. Modelling the binding of transacting proteins to cis-

regulatory sequences by computational approaches is becoming

increasingly important in hypothesis testing and generation.

The binding preference of a known transcription factor can be

described by the sequences to which it binds. Aligning the

sequences and counting the nucleotides at each position in the

alignment provides a count matrix similar to those found in

databases as TRANSFAC [1] and JASPAR [2]. Log-transforming

this count matrix, taking into account the background nucleotide

distribution of the genomic region of interest, provides the position

weight matrix (PWM). Various algorithms can then be used to

scan a set of sequence with this PWM to identify likely binding

sites. However, due to the short and degenerate nature of TFBSs a

typical PWM will detect a hit every 500–5000 base-pair depending

on parameter settings [3]; leading to a genome-wide number of

predictions that are much higher than estimates from experimen-

tal data [4].Two different approaches are frequently employed to

decrease the large number of presumably false positives. One is

phylogenetic footprinting where conservation of the detected sites

in orthologous promoters are used as evidence for functionality,

see the review in [5] and examples of tools in [6–8]. A disadvantage

of this method is its inability to detect species-specific regulatory

mechanisms and the sensitivity to the alignment of the regulatory

regions. The other approach is to ignore the mapping of the specific

binding sites and calculate an over-representation statistic for the

transcription factor to assess whether it is the likely cause of the

observed co-regulation. Here we focus on a handful of methods for

assessing over-representation.

The assumption behind an over-representation statistics is that

functional TFBSs will be over-represented in the set of co-

regulated genes as compared to a background set [9] (by the term

co-regulated we refer to a set of genes hypothesized to be co-

regulated either based on expression data or some other

information). Several methods exist for assessing the significance

of over-representation [10–13], but most of these methods are
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implemented in distinct tools for promoter analysis making a

comparison between the different statistics cumbersome. However,

these methods all rely on some comparison of the distribution of

TFBSs, modelled by PWMs, between two sequence sets and they

can therefore be implemented in a common framework. We here

present such an implementation: A fast search algorithm coupled

with an easily extendable framework for calculating the different

test-statistics.

When interested in finding a common regulatory regime for a set

of co-regulated genes, the main objective is to find the representative

regulators, whereas the mapping of their actual binding sites in the

DNA sequences as a secondary objective that may require different

statistics. Our goal is to systematically test various parameters on

diverse but controlled sequence sets in order to establish a guideline

for conducting optimal promoter analysis. In doing so, we focus on

the hypothesis testing capability of the statistics rather than their

ability to map the location of the actual TFBSs.

An important caveat of this entire framework is that even if a

TFBS is significantly over-represented it does not imply biological

function directly as several epigenetic features may further

modulate the transcriptional events [14–16].

Materials and Methods

Computational identification of transcription factor binding

sites consists of two parts: scoring and assessment. We will deal

with each in turn.

Scoring
Scoring is done using a PWM representing a specific TFBS. To

take into account the base composition of the promoters a

background model from a relevant set of sequences is estimated.

The background model is usually a Markov model representing

either the relative frequencies of the nucleotides A, C, G, and T

(zeroth order); the 16 di-nucleotides (first order) or any word-

length of nucleotides (n-th order). Often there is too little

information in the original alignments to estimate anything but a

zeroth order model for the transcription factor binding site,

however it can be combined with a higher order background

model to take into account dependencies in the nucleotide

composition. Effectively the PWM is the log ratio of the

conditional pattern probabilities and conditional background

probabilities (see supplementary material, text S1)

Having defined the PWM it becomes a matter of finding all sub-

sequences of length W (the width of the PWM) scoring above a

given threshold. These sub-sequences are considered the predicted

binding sites for the transcription factor in question. If the

sequence sets (positive and background set) are large, or if we wish

to search with several PWMs, this can be a computationally taxing

problem. We have implemented a C library using a data structure

called enhanced suffix arrays (ESA). Using a modified version of

the ESAsearch algorithm, introduced by Beckstette et al. [17], we

are able to solve the scoring problem with a speedup of as much as

a factor 1000 compared to a naı̈ve implementation (see supple-

mentary material, text S1). The primary benefit of ESAsearch is

that whenever two or more W-sub-sequences share a prefix the

score for that prefix is only calculated once. Additionally, a look-

ahead principle is used: The scoring of any given sub-sequence is

stopped if the intermediate score of any of its prefixes plus the

highest possible score for the rest of the sub-sequence is below the

threshold. Combining these two principles are especially advan-

tageous; when the scoring of a sub-sequence is stopped due to the

look-ahead principle, ESAsearch also discards all other sub-

sequences that share the prefix that led to the stop.

Further speedup is achieved by utilizing the fact that TFBSs,

and thus PWMs, are short. We can use this to impose an upper

bound on the prefixes (currently set to 50) which efficiently speeds

up the sorting when building the ESA by a factor two compared to

the sophisticated lcp algorithm by T. Kasai et al. [18] (see

supplementary material, text S1).

A disadvantage of using an ESA is that the data structure uses

nine times as much memory as the size of the input sequences.

Since the building time is linear in the size of the input sequences,

it is only advantageous when searching the sequence set with

multiple PWMs (see table 1 and supplementary material, text S1,

for speed comparisons).

Assessment
The strength of over-representation can be expressed by a test-

statistic. Here we have implemented and rigorously tested the

performance of several published methods that are used within the

field: The binomial over-representation used by TOUCAN [12],

the Fisher’s exact test and z-score used by oPOSSUM [10,11], the

area under the ROC used by Clarke et al [10], the log-ranking

employed by PAP [13], and finally the Wilcoxon rank sum test.

We include the Wilcoxon rank sum as it represents a formalized

statistic in the same genre as those employed by [10] and [13]. To

the best of our knowledge no current tool uses Wilcoxon rank sum

test for assessment of over-represented TFBSs.

As the statistics are sensitive to the sequence lengths we

concatenate the background sequences after searching for matches

and then partition the concatenated sequences into sequences of

equal length – the mean length of the positive sequences. By

concatenating after all instances have been found, we avoid

forming ‘new’ words in the boundaries of the sequences.

Finally our statistics module is interfaced to R [19] using Rpy.

This enables the user to take advantage of the rich statistical

framework provided by R and easily extend the currently

implemented methods.

Results

We test all implemented statistics on an artificial data set,

somewhat similar to Tompa et al. [20], in order to control all

variables. Originally these methods where tested on diverse data sets

and a direct comparison based on the original literature is therefore

impossible. However, we do acknowledge that our artificial data set

may indeed promote some statistics compared to others. E.g. the

ranking statistics, area under ROC and ln-rank, both rely on a sum of

PWM scores within each sequence. Thus these statistics would benefit

from several TFBSs in each positive sequence, and here we only place

one. As we are aware that the artificial data set may not fully

represent the complex structure of a true biological data set we also

assess the different statistics on a ChIP data set from Wei et al. [21].

Table 1. Speed comparison to naı̈ve search

File size Our ESAsearch Naı̈ve Searches

36 MB 0.20 2.44 15

8 MB 0.13 1.22 14

4 MB 0.04 0.27 12

1 MB 0.01 0.07 8

Search time for our implementation compared to a naı̈ve search. The final
column indicates the number of PWMs to search with to ‘break-even’ with the
naı̈ve search taking into account the building time of the enhanced suffix array
doi:10.1371/journal.pone.0001623.t001
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Data
Our data set consists of 117 positive sequence sets from dbTSS

[22], each with a total 100 sequences. Each sequence in a specific

sequence set have a probability of having an embedded site from a

specific JASPAR CORE 2008 PWM [23]. The probability is

100% for the performance test on the order of the background

model, 50% for the tests of statistics across multiple thresholds and

finally between 10–90% in the dilution test. Our background set

consists of 1000 sequences also from dbTSS. For testing the speed

of the implemented search algorithm we choose a set of ,31000

dbTSS sequences.

The data from Wei et al. [21] consists of DNA fragments from a

p53 ChIP experiment that are converted into pair-ended di-tags

(PETs) and mapped back to the human genome. Here we use all

323 PET tag clusters with 3 or more counts as our positive set.

Speed test
To test the speed of our implemented algorithm we partition the

master file (the 31000 sequences) into several smaller ones. Using

50 randomly chosen PWMs with a threshold giving an expected

match every 10000 base pair we compare our implementation to a

naı̈ve search. The results are given in table 1. The last column

indicates the number of PWMs one would need to search with in

order to ‘break-even’ with the naı̈ve method when taking into

account the building time of the enhanced suffix array, (see

supplementary material, text S1, for a more detailed comparison).

All tests were done on a 2.4 GHz Intel Pentium 4 processor with

1.5 GB of memory running Linux. We used the sum of user and

sys times as reported by the Linux time command.

Background model order
It has been shown in [24] that a high-order Markov chain is a

better background model than the standard zeroth order. To find

the appropriate order we scan all data sets with the respective

PWM and record the number of true instances found in the

positive sequences (all sequences have an embedded site) and the

mean number of instances found in the background set. Figure 1

shows a small increase in performance by order, and we decided to

continue comparing order 0 and order 3.

Based on this we test all statistics with a sequence set with 50%

chance of an embedded site with both zeroth order and third order

background models. For each positive data set we calculate all over-

representation statistics for all matrices and record if the true matrix

was found (the one corresponding to the embedded sites) and the

number of possibly false matrices, that is, other matrices also showing

significant over-representation in the set. Thus we have an overall

number of 117 true predictions and (1176138)–117 = 16029

possible false predictions. We use a p-value threshold of 0.05, a z-

score threshold of 3, an area under the ROC above 0.5, and ln-rank

score above 2 as suggested by the original papers. We do not correct

for multiple testing. Results are summarized in table 2.

The trend (previously observed in [24]) of higher background

giving higher performance is not present in our test. In fact only

the poorly performing statistics seems to borrow strength from the

higher order background, while the better performing statistics are

hurt by the increase in background model. Thus we select zeroth

order background models to further boost the better performing

statistics. Also when testing across a series of thresholds (0.9, 0.8,

0.7, and 0.6) of each PWM specific scoring range ((max2min)*

Figure 1. Performance of PWMs based on background model. Average number of false hits in the background sequences per hit in the
positive sequences across 117 JASPAR CORE PWMs.
doi:10.1371/journal.pone.0001623.g001
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threshold+min) it is clear that the optimal statistic is the Fishers

exact test, data not shown. Finally, in the dilution test it is evident

that this statistic is also relatively robust with respect to the number

of sites in the positive set never dropping below a sensitivity of 50%

as shown in table 3.

ChIP data
We partition the data from Wei et al. [21] into four groups

based on the number of counts in the PET tag cluster. The first

data set consists of all sequences with six counts, the next of all

sequences with five or more counts, etc until all 323 sequences

with 3 or more counts are included. Thus we successively weaken

the p53 signal. For each of the four data sets we search with all the

JASPAR 2008 CORE PWMs using a loose threshold of 0.8 of the

maximum scoring range. We then rank the significance values

from each statistic and record the rank of the PWM for p53, see

table 4. As other transcription factors may be present in the

positive set our major concern is the statistics ability to specify p53

as being the most significantly over-represented feature. The

results correspond with our results obtained on the artificial data

sets: the best performing statistics is the binomial over-represen-

tation and Fisher’s exact test.

Discussion

The apparently contradictive result that the zeroth order PWM

performs better than the third order highlights some of the

problems of over-representation statistics, or more generally PWM

scoring. Confounding factors are numerous and include: the

threshold value, PWM to PWM similarity, and the information

content of the PWM.

Firstly, calculating the threshold of the PWM based on the scoring

range of the model it is clear that including a higher order

background model will effectively lead to an altered scoring range

and thus affect the absolute threshold value. In our specific case this

affects the performance differences of over-representation statistics

between the zeroth order and third order PWMs. Secondly, since

transcription factors of similar function sometimes bind to similar

sequence patterns they are not independent. In other words, if PWM

A is very similar to PWM B both of them will likely be deemed

significantly over-represented in the sequences with the embedded A

sites and vice versa. Thirdly comparing performance across a set of

different PWMs all with different information content is difficult.

Obviously different information content leads to different binding

affinities and how to interpret the p-values derived from low and

high information content PWMs is not trivial. All these confounding

effects influence the final value calculated by the over-representation

statistics and influence our ability to compare the values obtained by

different PWMs.

In reality the problem of promoter analysis is further complicated

by different promoter architectures [25], and therefore sub-

partitioning the sequences and background models as suggested by

Down and Hubbard [26] would be justified. However, this further

limits the ability to compare the resulting over-representation

without expert biological knowledge. Furthermore we have, in the

current work, not considered the effect of overlapping and/or

palindromic sites. Such sites will clearly affect the resulting test-

statistics. However, further analyses are required to quantify the

effects and find solutions to handle such sites intelligently.

Despite the severe difficulties related to promoter analysis in

mammalian genomes, our analysis shows that over-represented

transcription factors are detectable using current methods even for

low sites to sequences ratios.

As for the program package it can be easily extended to include

various other types of genomic data. An obvious extension would

be to include conservation tracks and other data tracks from the

UCSC genome browser in a coherent manner.

Here we focus on the usage of the program package within the

field of promoter analysis, however, all patterns that can be

represented by a PWM can potentially benefit from our framework.

Our current implementation provides the community with a basic

framework for fast searching with PWMs and integrated analyses of

the results either through the current implemented methods or by

use of the rich statistical framework provided by R. Finally our

Table 2. Comparison of over-representation statistics based
on background model.

Order 0 Binomial Z-score Fisher’s ROC Wilcoxon Ln-rank

TRUE 99 67 95 54 21 53

FALSE 1046 4073 539 10386 2871 2326

Ppv. 0.0865 0.016 0.150 0.005 0.007 0.022

Sens. 0.846 0.573 0.812 0.462 0.180 0.453

FPR 0.065 0.254 0.034 0.648 0.180 0.145

Spec. 0.935 0.746 0.966 0.352 0.821 0.855

Order 3 Binomial Z-score Fisher’s ROC Wilcoxon Ln-rank

TRUE 92 59 87 59 26 48

FALSE 1522 3878 1219 5387 5785 2035

Ppv. 0.057 0.015 0.067 0.011 0.004 0.023

Sens. 0.786 0.504 0.744 0.504 0.222 0.410

FPR 0.095 0.242 0.076 0.336 0.361 0.127

Spec. 0.905 0.758 0.924 0.664 0.639 0.873

Performance of the different over-representation statistics based on a zeroth
and third order background model. The PWM threshold is 0.9 of the scoring
range.
doi:10.1371/journal.pone.0001623.t002

Table 3. Dilution test using Fisher’s exact test.

Prob. 10% 20% 30% 40% 50% 60% 70% 80% 90%

TRUE 61 75 85 87 95 97 97 102 102

FALSE 395 433 465 492 539 573 604 652 681

Sens. 0.521 0.641 0.726 0.744 0.812 0.829 0.829 0.872 0.872

Spec. 0.975 0.973 0.971 0.969 0.966 0.964 0.962 0.960 0.958

Sensitivity and specificity measures based on the probability of embedded
JASPAR sites across all 138 PWMs and 117 sequence sets, no correction for
multiple testing.
doi:10.1371/journal.pone.0001623.t003

Table 4. Rank of the p53 PWM on ChIP data

PET count Binomial Z-score Fisher’s ROC Wilcoxon Ln-rank

6 1* 1* 1* 94 25* 1*

5 1* 1* 1* 79 97 1*

4 1* 1* 1* 73.5 137 1*

3 1* 62 8* 1* 36.5 1*

The rank of the PWM for p53 using the different statistics, * indicates that the
significance value provided is significant at the 0.05 level.
doi:10.1371/journal.pone.0001623.t004
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framework can be use directly from our web interface at: http://

servers.binf.ku.dk/asap/

Supporting Information

Text S1 Higher order background models and detailed speed

comparison.

Found at: doi:10.1371/journal.pone.0001623.s001 (0.07 MB

PDF)
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