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Background. With a heightened increase in concern for an influenza pandemic we sought to better understand the 1918
Influenza pandemic, the most devastating epidemic of the previous century. Methodology/Principal Findings. We use data
from several communities in Maryland, USA as well as two ships that experienced well-documented outbreaks of influenza in
1918. Using a likelihood-based method and a nonparametric method, we estimate the serial interval and reproductive number
throughout the course of each outbreak. This analysis shows the basic reproductive number to be slightly lower in the
Maryland communities (between 1.34 and 3.21) than for the enclosed populations on the ships (R0 = 4.97, SE = 3.31).
Additionally the effective reproductive number declined to sub epidemic levels more quickly on the ships (within around
10 days) than in the communities (within 30–40 days). The mean serial interval for the ships was consistent (3.33, SE = 5.96 and
3.81, SE = 3.69), while the serial intervals in the communities varied substantially (between 2.83, SE = 0.53 and 8.28,
SE = 951.95). Conclusions/Significance. These results illustrate the importance of considering the population dynamics when
making statements about the epidemiological parameters of Influenza. The methods that we employ for estimation of the
reproductive numbers and the serial interval can be easily replicated in other populations and with other diseases.
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INTRODUCTION
The emergence of the highly pathogenic avian influenza strain

H5N1 has raised concerns of an imminent influenza pandemic.

Public health workers, government officials and disaster planners

have an increasing interest in better understanding the potential

impact of an influenza pandemic and possible strategies for

containment. Crucial in this planning is an understanding of the

basic epidemiology of the disease in various settings. This has led to a

growing interest in the analysis and understanding of past epidemics,

particularly that of 1918, the most virulent and deadly influenza

epidemic of the 20th century. Mortality has been estimated at 50–

100 million people worldwide as a result of influenza in the 1918

pandemic [1]. It is reasonable to suppose that by better

understanding the transmission dynamics of the highly pathogenic

virus in 1918, we can gain greater insight into the dynamics, and thus

potential methods of control, for a future pandemic [2].

Important parameters for understanding disease transmission are

the reproductive number and the serial interval [3]. The basic

reproductive number is defined as the average number of secondary

infections created from a primary infection in an entirely susceptible

population [4, see also 5]. A more complex, but perhaps meaningful

parameter is the effective reproductive number which defines the

average number of secondary infections an infected will create at a

given point in the epidemic. This parameter takes into account that

not all contacts of an infected individual are with susceptible persons,

as well as the impact of public health control measures. Control

strategies are typically targeted to drive this number below one and

maintain it there, as this will lead to eventual extinction of the

epidemic. An example of this is herd immunity, or immunity to a

disease that is incurred from a sufficiently large proportion of the

population being immune to a disease. Modeling techniques are

often used to determine the proportion of the population that should

be vaccinated in order to have the reproductive number low enough

to avoid outbreaks of disease [6].

The serial interval can be defined as the time interval between a

primary case presenting with symptoms and its infectee developing

symptoms [7,8]. Thus this quantity is completely observable. This

is a mixture of the incubation period and the infectious period,

both of which are useful to understand, but difficult to measure.

The SARS outbreak of 2003 had a relatively long serial interval,

estimated to be between 8 and 10 days on average and following a

Weibull distribution [9] making case isolation extremely effective

in containing the epidemic.

Methods for the estimation of basic epidemiological parameters

are still in development phase. [10] provides a thoughtful summary

of methods for estimating the reproductive number. One particularly

interesting and useful method has been previously described by [7]

for estimating the daily reproductive number, Rt, or the average

number of cases an infected individual on day t would cause. One

interesting feature of this method is that for days where no cases are

observed, the estimated effective reproductive number is zero.

Another observation is that this method essentially estimates a curve

for the effective reproductive number that traces the epidemic curve,

lagged by the average serial interval length. This nonparametric

method presupposes information on the serial interval distribution.

This is typical as most methods for estimating the reproductive

number rely on knowledge of the serial interval.

Few have described analytical methods for estimating the serial

interval, making most methodologies dependent on contact tracing

data, which is often difficult and expensive to attain. [11] describe a

method to estimate the reproductive number that relies on limited

contact tracing information but not a full estimate of the serial
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interval. [12] have recently described a method to estimate the serial

interval and then used this estimate with the estimator proposed in

[7] of the daily reproductive number and have applied their method

to data from outbreaks of avian influenza in poultry farms in Europe.

Several researchers have studied the 1918 pandemic and

estimated some of these key epidemiological parameters. Estimates

have ranged from 2–3 for the basic reproductive number, R0,

when using an SEIR model with a mean latent period of 1.9 days

and infectious period of 4.1 days [13,14]. Using an exponential

model and assuming the serial interval to be four days (somewhat

based on the assumptions of [13]), [15] estimated R0 to be 2.6–

10.6 for confined settings (such as prison and ships) and 2.4–4.3 for

community settings. The estimates for the mean latent and

infectious periods come from [16] and were used again by [17]

and [18]. It appears that the original estimates were derived from

epidemic data, although their source is not well documented.

In what follows, we introduce new methodology for the

estimation of both the daily reproductive number and the serial

interval. We apply this method to data from two outbreaks on

military ships in the 1918 influenza outbreak, as well as well-

documented outbreaks in five Maryland communities. The results

from this method are compared to that of [12]. The results

illustrate the differences in infectious disease dynamics between

outbreaks in a closed population and a dynamic community.

METHODS

Data
We analyze data from several well-documented influenza

outbreaks in 1918. First we consider data from two troop ships

that embarked in the late fall of 1918 [19]. The Medic reported

two initial cases on November 11. Out of 989 passengers (156 crew

members, 829 soldiers, 4 civilians) 313 became sick with influenza

over a 40 day period (Attack Rate, AR, = 0.32), though most of the

cases occurred within the first fourteen days. The Boonah left

Durban and in five days, on November 29, reported the first three

definitive cases of influenza. Those who collected the data note

that there were likely some initial cases that were not identified.

Out of 1095 on board (164 crew members and 931 troops), 470

cases were reported (AR = 0.43) in the 40 days of the epidemic.

The United States Public Health Service created special surveys

of 18 localities during the pandemic [20]. Reported results from

six communities in Maryland are derived from house-to-house

surveys requesting the date of onset of influenza for all infected,

and the sex and age of each case of pneumonia and influenza. A

summary of these populations is provided in Table 1.

Statistical Methods
We describe a likelihood based methodology for estimating the

reproductive number at each day in the epidemic as well as the

serial interval. The method builds on that described by [21]. We

assume that the population is closed, that all cases are observed,

and use daily case counts only (i.e. number of new cases each day).

Let N = {N0, N1, N2,…, NT} represent the daily cases counts of

influenza for the T days of the epidemic and Xij represent the

number of cases that appear on day j that are infected by

individuals that appeared sick on day i. Following is a

representation of the disease transmission model in the population.

N0

N1~X01

N2~X02zX12

N3~X03zX13zX23

N4~X04zX14zX24zX34

..

.
~ ..

.

NT~
XT{1

i~T~ min (T ,k)

XiT

We assume that the total number of cases produced by those on

day i, Xi?, are Poisson distributed with parameter Ni Ri, where Ri

is the reproductive number for cases on day i. We further assume

that Xi = {Xi,i+1, Xi,i+2,…,Xi,i+k} follows a multinomial distribu-

tion with parameters Xi?, p, k, where p = {p1, p2,…,pk} represent

the distribution of the serial interval. Using these assumptions we

can construct a likelihood function (see details in the Supplemental

Information), which, when simplified, yields the following

convenient form

L(Ri,pjN)~
aT

i~1

exp (mi)m
Ni

i

Ni!
,

where mi~Ri(
Xk

j~1
pjNi{j) [21].

Maximization of this likelihood with respect to Ri and p yields

estimates of these parameters. To further simplify this process and

create a more parsimonious model, we parameterize p by allowing

it to follow a traditional parametric form for a serial interval (for

instance a Weibull, Gamma, Log Normal, or Exponential

distribution). Then the pj are functions of the parameters of the

density (for instance in the case of the Gamma distribution, the pj

only depend on the shape and rate parameters of the Gamma).

Similarly Ri can be modeled parametrically as a function of

time. One example of a reasonable model for this is the four

parameter logistic curve [22–24] given by

Ri~az
b

1z expfc(i{d)g :

Table 1. Demographic and survey information on the Maryland communities surveyed in the 1918 Influenza pandemic.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Community 1917 Population Number Surveyed Percent Surveyed Number of Cases Attack Rate

Baltimore 594,637 33,776 5.7 7,868 0.23

Cumberland 26,686 5,234 19.6 2,147 0.41

Frederick 11,225 2,420 21.6 777 0.32

Salisbury 6,690* 1,735 25.9* 796 0.46

Lonaconing 1,553* 1,840 - 1,093 0.59

doi:10.1371/journal.pone.0001498.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.
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The parameters of this curve describe the initial height of the

curve (approximately a+b), the point of inflection (d), the curvature

over the inflection (c) and the final height of the curve (a). These

parameters have biological meaning in this setting where the initial

height corresponds to the values of Ri prior to intervention and

significant depletion of the susceptible population. The inflection

point and its steepness would describe the timing of intervention and

the rapidity with which it impacts transmission. The final height

would describe the ultimate value of Ri, which typically is less than

one, indicating that disease transmission is in a sub epidemic state.

In our analysis, we also implement the method described by

[12] (hereafter referred to as the Garske et al. method) and

compare the results of the two methodologies. This method first

estimates the generation time distribution using a likelihood based

method. Then the effective reproductive number is estimated

using the method described by [7] (hereafter referred to as the WT

method). We fit the likelihood for both methods using a Nelder-

Mead maximization procedure and use 576 starting values in

order to ensure that we reach the global maximum. All analyses

were done using R 2.4.1.

Both methods assume homogenous mixing in the population, no

missing data (clearly violated with the data from the Maryland

communities), that a primary case experiences symptom onset prior

to any cases that it infects and a completely closed system where all

cases are infected by a case that has been observed. In the case of the

Maryland data, where only a sample of the total number of cases was

surveyed, we can observe the efficacy and robustness of these

methods with sample data. Certainly results should be interpreted

with caution, however, as we will show, the results that are obtained

are consistent with previous estimates for influenza.

Error Estimates and Residuals
Standard errors were calculated for the MLE method using a

parametric bootstrap. One thousand epidemics were simulated

using the parameter estimates and estimates were obtained from

each of these simulated epidemics. The standard deviation of the

1000 estimates was used as the standard error estimates. We used

the method described in [12] to estimate the standard error for

their estimates, however our simulations based on their assump-

tion of asymptotic normality yielded a large number of negative

estimates for the parameters. It is possible that this is due to the

non-independence in the data and lack of theoretical underpin-

nings for the method that they propose. These results make their

standard error estimates infeasible to estimate in this case.

Therefore we do not present standard error estimates for the

results obtained using their methodology.

In order to determine the accuracy and relative merit of the

estimates obtained from each methodology, we compute one-step-

ahead residuals and implement a cross validation approach to

analyze the generalizeability of the estimates obtained. The one-

step-ahead residuals were calculated by first using the estimates

from a particular location along with the data to predict the next

days’ number of cases,
~
Ni as follows:

~
Ni~

Xmin (k,i)

j~1
pjRi{jNi{j :

Each
~
Ni is calculated using N0, N1, …, Ni21. Then the one-step-

ahead residuals are calculated as

ei~
(Ni{

~
Ni)

2

~
Ni

:

We present these residuals averaged over the T days observed.

Generalizeability of the results was studied using an ad hoc cross

validation (CV) technique. This is done by using the estimates

obtained from one location to calculate the one step ahead

residuals for another location. Specifically we use the Boonah ship

estimates to calculate residuals with the Medic data and then use

the Medic estimates to calculate the residuals for the Boonah data.

For the Maryland communities, we report the average of the

residuals obtained using the estimates from one community to

predict the epidemics in each of the other four communities,

creating five CV estimates (one for each community).

RESULTS

Serial Interval Estimates
Table 2 gives the results for the serial interval distribution estimates.

Notable in these results is the striking consistency in the estimates of

the first moment, with the exception of Cumberland. The second

moments vary much more, however. In general they tend to be

much larger for the ships when using the Garske et al. method

compared to the MLE method. For the communities, we observe

that they are consistently around 10 for the Garske et al. method and

vary much more for the MLE method. Also of interest in these results

are the large error estimates, particularly for Cumberland, but also to

a smaller extent for Frederick. This is perhaps indicative of the model

not fitting the data as well, for instance the logistic model may not be

the best fit in this scenario, or that the lack of census data on cases

might be more problematic here.

Reproduction Number
In Table 3 and Figure 1, we present the results for estimation of

the effective reproductive number. Evident in these results, is the

large initial reproductive number for the Boonah ship. This is

likely due to some of the missing data at the beginning of the

epidemic and thus the model attributing the large number of cases

that rapidly develop to the few individuals who were initially

reported. The logistic model fits this as accurately as possible, but

perhaps the important message is the qualitative result, indicating

that initial transmission in this susceptible, non-quarantined

population was very high and rapidly decreased as many became

infected. The result is similar for Medic though the initial value is

not high. We also note that the reproductive number dropped to

sub epidemic levels rapidly (around 10 days for both ships).

In the Maryland communities the initial reproductive number

tended to be slightly lower (ranging from 1.34 in Salisbury to 3.21

Table 2. Serial interval estimates for the MLE method and the
Garske et al. method.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Location MLE Garske et al

m̂ (SE) ŝ2 (SE) m̂ ŝ2

Ships

Boonah 3.81 (3.69) 1.25 (2.83) 4.38 19.64

Medic 3.33 (5.96) 11.35 (4.60) 3.88 18.04

Communities

Baltimore 2.83 (0.53) 2.30 (1.28) 2.90 8.45

Cumberland 8.28 (951.95) 25.00 (6143.28) 3.61 10.71

Frederick 4.66 (10.68) 28.65 (157.78) 3.09 11.57

Salisbury 3.31 (1.94) 9.08 (14.80) 3.76 12.40

Lonaconing 4.02 (14.10) 3.25 (26.74) 3.99 12.69

doi:10.1371/journal.pone.0001498.t002..
..

..
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..
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in Cumberland). For the WT method, the initial values were also

small, but if one considers the maximal values, these were much

more varied (from 2.35 to 5.76), as shown in Table 2. In fact, we

observed that the effective reproductive number peaked relatively

late in the epidemic and assumed much higher values than that

observed with the MLE method. Overall it took longer for the

reproductive number to drop below one in these communities

(typically between 30–40 days).

Generalizeability
In Table 4, we present the results of the residual analysis. We

notice here that the Garske et al. method often does better than

the MLE method. It is important to point out that the WT method

of fitting the effective reproductive model over fits the model and

suffers from generalizeability. This method essentially traces the

epidemic curve, lagged by the mean of the generation time

distribution. Thus, according to the residuals, it appears that the

WT method outperforms the MLE. However, considering the

importance of external validation and reproducibility, the model

suffers somewhat as evidenced by the CV measures. The

exceptions to this are in the case of the Boonah where the CV

measure is impacted by the large initial MLE estimate of the

reproductive number and in Cumberland where it appears that

either the parametric model chosen may not represent the best fit

to the data or there were sensitivities to the survey data.
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Figure 1. Estimated effective reproductive number for each location, using the MLE method (solid black line) and WT method (dashed line). The
epidemic curve is shown in gray and its axis is on the right of the figure.
doi:10.1371/journal.pone.0001498.g001
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DISCUSSION
We have presented results that are informative with regard to the

dynamics of the 1918 influenza pandemic in different populations

and provide insight into two methodologies for estimating basic

epidemiological parameters. Both methods assume that the

population is closed, there are no missing cases and no migration

to or from the population. The second of these assumptions is

clearly violated with the data from Maryland; however the results

appear to be reasonably robust to this discrepancy, except in the

case of Cumberland.

The purpose of this exercise determines to some extent which

methodological approach we might favor. If the intent is to simply

estimate the parameters for a specific epidemic and better

understand what exactly was occurring in that setting, then the

method presented by [12] (Garske et al.) appears to provide good

fit. The caveat that we see in this method is that by estimating the

effective reproductive number with the methodology of [7] (WT)

there is an over fit of this parameter and it essentially traces the

epidemic curve, lagged by the mean of the serial interval. It is not

clear if this is a desirable or informative property. The MLE

method has greater promise for generalizeability. While it can be

argued that adhering to a parametric definition of the shape of the

effective reproductive number leads to a greater chance of lack of

fit, it can also lead to a result that can be interpretable for other

settings that are similar to that being studied.

One can choose any reasonable parametric form for modeling

the effective reproductive number. Here we have only shown the

four parameter logistic model, and feel that it is suitable in most

cases where the epidemic curve has a single peak. It is feasible that

this model may not apply well in all situations. Another approach

might be to analyze the data using the Garske et al. method and

then smooth the plot of the effective reproductive number and

from this determine a parametric form that closely approximates

the smoothed curve. Multiple models could be implemented, then

the residual analysis that we have shown provides a valuable tool

for model assessment and comparison.

The results of these models can be sensitive to underreporting

initially in the epidemic. We see this clearly in Boonah, where it

was acknowledged that there was underreporting early on and this

led to us getting very high estimates for the initial reproductive

number. Similarly, in Cumberland, if we remove the first five days

of data (three cases on the first day, six cases on the second and

then no cases the following three days) we get much more

reasonable estimates (m̂~6:00, ŝ2~10:32) with smaller residuals

(6.00). Therefore, it is important to note that unusual observations

in the first few days can impact the estimates and one should pay

careful attention to this possibility.

Overall both methodologies presented are valuable tools that

can be used in tandem for understanding the dynamics of

infectious disease epidemics. These methods are easy to implement

and interpret.

The results that we have presented suggest that the average serial

interval for pandemic influenza in 1918 was consistently between

three and four, regardless of the setting. The standard deviation for

the serial interval distribution varied much more for the MLE

method depending on the location. Garske et al. estimates indicate

that the value was consistently smaller in the communities than in the

ships. It is not clear exactly how to interpret this result. Further, we

consistently see a large initial value for the reproductive number. In

the ships, this value is higher and rapidly drops off, perhaps due to

the close quarters and extremely rapid transmission that could take

place in these very vulnerable populations. In the communities, the

reproductive number tended to drop off later, typically around day

thirty. This could be due to a larger initial susceptible population and

more complicated dynamics for the disease to spread, leaving large

pockets of susceptible individuals unexposed for a longer period of

time than in the ships.

Table 3. Effective reproduction number estimates for the MLE
method and the Wallinga and Tuenis (WT) method.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Location

Max WT R̂t

(day) Day 1 Day 10 Day 30 Day 70

Ships

Boonah

MLE (SE) 27.71 (8.04) 0.74 (0.71) 0.47 (0.03)

WT 4.74 (3) 4.27 0.68 0.53

Medic

MLE (SE) 4.98 (3.31) 1.83 (0.830) 0.21 (0.09)

WT 3.42 (1) 3.42 1.36 1.06

Communities

Baltimore

MLE (SE) 2.02 (0.12) 2.02 ( 0.12) 2.02 (0.12) 0.87 (0.12)

WT 2.90 (30)

Cumberland

MLE (SE) 3.21 (0.73) 3.21 (0.73) 2.88 (0.66) 0.39 (0.15)

WT 2.35 (22) 1.06 1.42 2.07 0.84

Frederick

MLE (SE) 1.82 (0.14) 1.82 (0.14) 1.82 (0.14) 0.82 (0.04)

WT 5.76 (24) 1.35 1.11 2.49 1.02

Salisbury

MLE (SE) 1.34 (0.18) 1.34 (0.18 1.34 (0.18) 0.55 (0.13)

WT 3.47 (15) 2.55 1.79 0.86 0.87

Lonaconing

MLE (SE) 2.70 (0.19) 2.70 (0.19) 2.70 (0.19) 0.54 (0.03)

WT 4.01 (24) 1.67 1.17 2.10 0.81

doi:10.1371/journal.pone.0001498.t003..
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Table 4. One step ahead residuals for both methods fitting
each epidemic.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Location Residual CV Measure

MLE Garske et al MLE Garske et al

Ships

Boonah 25.04 3.84 56.57 19.03

Medic 13.27 6.31 15.09 30.30

Communities

Baltimore 29.36 20.54 5.81 5.95

Cumberland 10.01 5.50 18.37 13.23

Frederick 3.80 14.67 13.48 16.37

Salisbury 6.32 3.38 20.08 66.84

Lonaconing 8.21 4.51 16.69 19.14

The cross validation measure for the ships is the one step ahead residuals
calculated from predicting one ship’s data using the estimates from the other
ship’s data. For the communities, it is the sum of the residuals predicting the
other four communities using the estimates from the community indicated. For
instance the CV measure for Baltimore is the sum of all the residuals that come
from using the estimates for Baltimore to predict the other four communities’
outbreaks.
doi:10.1371/journal.pone.0001498.t004..
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These results confirm the high pathogenicity of influenza and its

ability to rapidly spread through populations. It also appears that

the greatest difference between the spread of influenza in a closed

population without the ability to implement control measures is a

large initial reproductive number that declines rapidly. In more

diffuse communities with complicated dynamics, it is likely that the

reproductive number will not decline as rapidly.
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