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Background. HLA class-I alleles differ in their ability to control HIV replication through cell-mediated immune responses. No
consistent associations have been found between the breadth of Cytotoxic T Lymphocytes (CTL) responses and the control of
HIV-1, and it is unknown whether the size or distribution of the viral proteome-wide epitope repertoire, i.e., the intrinsic ability
to present fewer, more or specific viral epitopes, could affect clinical markers of disease progression. Methodology/Principal

Findings. We used an epitope prediction model to identify all epitope motifs in a set of 302 HIV-1 full-length proteomes
according to each individual’s HLA (Human Leukocyte Antigen) genotype. The epitope repertoire, i.e., the number of predicted
epitopes per HIV-1 proteome, varied considerably between HLA alleles and thus among individual proteomes. In a subgroup of
270 chronically infected individuals, we found that lower viral loads and higher CD4 counts were associated with a larger
predicted epitope repertoire. Additionally, in Gag and Rev only, more epitopes were restricted by alleles associated with low
viral loads than by alleles associated with higher viral loads. Conclusions/Significance. This comprehensive analysis puts
forth the epitope repertoire as a mechanistic component of the multi-faceted HIV-specific CTL response. The favorable impact
on markers of disease status of the propensity to present more HLA binding peptides and specific proteins gives impetus to
vaccine design strategies that seek to elicit responses to a broad array of HIV-1 epitopes, and suggest a particular focus on
Gag.
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INTRODUCTION
Although attempts to correlate the breadth of the CTL antiviral

response and control of HIV-1 infection in vivo have been

equivocal [1,2,3,4,5,6,7,8,9], accumulating evidence support the

beneficial role of Gag-specific CTL responses in HIV-1 contain-

ment [2,10,11,12,13,14,15,16,17,18] - alluding to differences in

antiviral efficacy among specific CD8+ T-cell responses. Addition-

ally, certain HLA genes are associated with different rates of

disease progression [19,20,21,22,23,24,25,26,27,28,29]. In partic-

ular, HLA alleles B*27 and B*57 seem to confer a survival benefit

whereas HLA B*35_Px confers a survival disadvantage [22].

While HLA-B alleles appear to impact disease progression more

than other alleles [25], possessing heterologous HLA alleles, and

thus possibly allowing the individual to present broader arrays of

epitopes, has also been associated with delayed/slower disease

progression [24].

The extent of polymorphisms in HIV sequences and in HLA

loci underscores that a vast array of HLA/viral peptide

combinations can be generated during infection. HIV-1 is

characterized by its extensive diversity both among and within

infected individuals due to its extreme capacity to mutate, its

persistent replication, and the important role of CD8+ lymphocyte

responses in driving viral evolution [30,31,32]. In addition, the

HLA region is one of the most polymorphic loci in the human

genome. HLA class I molecules are codominantly expressed on

antigen-presenting cells such that all six allotypes (if the person

expresses heterologous HLA-A, -B and -C proteins) can present

viral epitopes.

The fine-mapping of epitopes, typically 9 amino acid (AA) long

but ranging from 8 to 11 AA, together with data on their binding

properties to HLA molecules, has allowed definition of HLA class

I allele-specific sequence motifs that are able to prime virus-

specific CD8+ T-cell responses. Consistent associations between

HLA alleles and disease outcomes suggest an underlying

mechanistic function, and prompted us to question whether the

scope of the epitope repertoire contributes to the composite

effectiveness of the CTL response. ‘‘Epitope repertoire’’ here refers

to all viral peptide sequences that fulfill HLA class I allele-specific

binding motifs for a specific whole HIV-1 proteome.

Epitope mapping data has been used to develop computational

methods of epitope prediction, which are important for the

development of diagnostic tools and the design and evaluation of

vaccines. Identification of novel HIV-1 epitopes simultaneously

fuels our greater understanding of the immune recognition of the

HIV proteome and incremental improvements of epitope

prediction algorithms [33,34,35,36]. Here, we predicted HLA
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class I epitopes using a new method based on logistic regression

and designed to leverage data across HLA alleles and/or

supertypes ([37] available at http://atom.research.microsoft.

com/hlabinding/hlabinding.aspx). The prediction method pro-

duces approximately 10% false positive results when set to yield

10% false negatives.

We predicted the epitope repertoire in 302 full-length HIV-1

proteomes, isolated from 302 untreated individuals infected with

HIV-1 subtype C and B, based on each subject’s HLA genotype

[32,38,39,40,41,42,43,44]. We report that a larger epitope

repertoire was associated with lower levels of viremia. Further-

more, alleles associated with reduced viral loads tended to target

particularly Gag when compared to alleles associated with a lack

of control of viral replication.

RESULTS

The size of the epitope repertoire differed between

HLA alleles and thereby between autologous HIV-1

proteomes
Scanning 302 HIV-1 proteomes, corresponding to 2,718 HIV-1

protein sequences, resulted in the identification of 22,779 epitope

motifs, including 8,208 experimentally defined CTL epitopes

compiled in databases prior to our study (the latter two figures

include redundancies from detection of the same epitopes in

multiple individuals). The number of predicted epitopes varied

greatly among alleles, i.e., between 1 and 47 per allele per

proteome, and henceforth among individuals ranging between 14

and 186 per proteome (mean = 75; median = 72). Given that the

vast majority of known epitopes were defined experimentally using

peptides corresponding to subtype B, more CTL epitopes are

known for subtype B than for subtype C. Thus in turn, more

motifs were identified in proteomes from subtype B (mean = 113

per proteome, including 60 previously known epitopes) than in

subtype C (mean = 71, including 23 previously known epitopes).

To rule out this experimental bias toward HIV-1 subtype B in our

study, we verified that the number of epitopes restricted by an

allele was not associated with the allele frequency in the

population. There were no associations between the number of

epitopes restricted by an allele and its frequency in the population

in a subgroup of 32 individuals from the Seattle Primary Infection

Cohort (r2 = 0.0280; p = 0.2307), nor in a subtype C infected

South African cohort from Durban (r2 = 0.0347; p = 0.1998;

n = 270 individuals) or in a representative Sub-Saharan population

(r2 = 0.0319; p = 0.2197). However, there was a positive relation-

ship between the number of epitopes and the allele frequency in

the overall North American population (r2 = 0.1153; p = 0.0129;

n = 1021 individuals), likely reflecting the focus of HIV/AIDS

research on this population. Interestingly, HLA B*27, an allele

repeatedly associated with favorable disease outcomes [22] and

found 3 times in our dataset, presented the third largest epitope

repertoire with 42 predicted epitopes per HIV-1 proteome, i.e.,

over 3 times the average repertoire size (Mean number of

epitopes/HLA allele = 13.87; Confidence Interval (CI) with

a = 0.99, Lower CI = 9.46; Upper CI = 18.27).

Relationship between epitope repertoires and

clinical data
We compared numbers of predicted epitopes per proteome to viral

loads and CD4 counts in subtype C infected individuals from the

South African cohort. We found that the more epitopes predicted

for an individual, the lower the observed viral load (r2 = 0.0446,

p = 0.0005; Spearman’s correlation factor: Rho = 20.1751,

p = 0.0039). In particular, we found a stronger negative relation-

ship between the size of the epitope repertoire and the viral loads

among the 81 individuals who had CD4 counts above 400, i.e.,

when we excluded from the analysis the individuals with vanishing

T cell numbers, and presumably function (r2 = 0.1009, p = 0.0038;

Spearman’s correlation factor: Rho = 20.3090, p = 0.0050)

(Figure 1A). Additionally, larger epitope repertoires were associ-

ated with higher CD4 counts (r2 = 0.0620, p = 0.0250; Spearman’s

Rho = 0.1549, p = 0.0395) (Figure 1B). A relatively weaker

association was observed for CD4 than for viral loads, possibly

due to CD4 counts being available for only 177 of the 270

individuals evaluated.

By grouping individuals according to their plasma viral loads,

we found significantly different numbers of predicted HIV-1

epitopes in individuals within the lowest (,16,437 viral RNA

copies/ml; n = 67) and highest (.186,250 copies; n = 67) quartiles.

HIV-1 proteomes from individuals in the quartile with the lowest

viral load had a mean number of 80 predicted epitopes, compared

to 67 in the highest quartile (p = 0.0047) (Figure 1C). There was

also a trend for individuals with higher CD4 counts to have more

predicted epitopes, the mean number was 76 for individuals in the

highest quartile (n = 45; CD4.521.5), and 65 in the lowest

quartile (n = 44; CD4,234.5) (p = 0.0686).

The least frequent alleles in the cohort were found to be

associated with lower viral loads (Spearman’s Rho = 0.2880;

p = 0.0448), in agreement with Trachtenberg and colleagues

[21]. And, we found a trend indicating that HLA alleles restricting

larger repertoires were associated with lower viral loads in HLA-

matched individuals (Figure 1D) (Spearman’s Rho = 20.2952;

p = 0.0517).

Distribution of epitope repertoires vary between

HLA alleles associated with different viral loads
Next, we ranked HLA alleles by the average viral loads of subjects

in the Durban cohort: the quartile with the lowest viral loads

(,125,437 viral copies; mean = 65,384; median = 58,229) includ-

ed 12 alleles, herein referred as ‘‘good’’ alleles; the quartile with

the highest viral loads (.320,643 viral copies; mean = 971,587;

median = 531,20) included 12 ‘‘bad’’ alleles. Interestingly, the

distribution of predicted epitopes among HIV-1 proteins revealed

that ‘‘good’’ HLA alleles focused more on Gag (Figure 2A) and less

on Nef (Figure 2B). For ‘‘good’’ HLA alleles, predicted Gag

epitopes increased 1.69 fold (p = 0.036) compared to the

distribution found for ‘‘bad’’ HLA alleles, while predicted Nef

epitopes decreased 2.35 fold (p = 0.038). When analyzed by

individual protein, Gag- and Rev-specific repertoires showed

more epitopes restricted by ‘‘good’’ HLA alleles than by ‘‘bad’’

ones, whereas there were more epitopes restricted by ‘‘bad’’ HLA

alleles than by ‘‘good’’ ones in Nef, Env, Pol, Tat, Vif, Vpu, and

also Vpr (albeit marginally) (Figure 2C). Nef- and Gag-specific

epitope repertoires showed similar percentages of epitopes

restricted by ‘‘good’’ alleles, however, the proportion of epitopes

restricted by ‘‘bad’’ alleles was significantly higher in Nef

compared to its proportion in Gag.

DISCUSSION
We systematically examined the immunogenic potential of HIV-1

at the population level through in silico estimation of the epitope

repertoire of 302 HIV-1 proteomes. The number of predicted

HIV-1 epitopes per proteome varied considerably between HLA

alleles and thereby among individuals. Additionally, there were

more epitopes identified in subtype B viruses than in subtype C,

reflecting the existing bias of databases for inclusion of data from

HIV-1 Epitope Repertoire

PLoS ONE | www.plosone.org 2 January 2008 | Issue 1 | e1424



subtype B viruses and subtype B-infected individuals. Importantly,

while we demonstrated that our analysis was not confounded by

this experimental bias, it also highlights the need for better

characterization of CTL responses against HIV-1 subtype C in the

affected population (i.e., with typical motifs and HLA allele

restrictions). Nonetheless, limitations to epitope prediction analyses

intrinsically include biases derived from their training datasets, the

fact that certain epitopes are not optimally defined or have

incorrect HLA alleles restrictions (e.g., due to linkage disequilib-

rium) and pervasive of HLA class I allele promiscuity [45]. Despite

those potential shortcomings, our findings corroborate those from

immunological studies in this cohort. Principally, individuals with

high viral loads tended to target preferentially Env and

Accesssory/Regulatory proteins [18,27,44,46], while individuals

with low viral loads tended to make strong CTL responses against

Gag [18,27,44,46]. Additionally, by comparison with subtype B

infected individuals Frahm and colleagues showed the importance

of subdominant CTL responses for the control of replication in

subtype C infected individuals [18,27,44,46]. Collectively, those

studies lend support to our in silico approach, especially in the

context of a relatively limited knowledge of CTL responses in

HIV-1 subtype C infection.

We also explored whether specificities of the epitope

repertoires could affect clinical markers of disease progression.

By integrating HIV-1 proteome-wide epitope mining to clinical

and laboratory data in a South African cohort, our data showed

a trend indicating that the number of HLA/epitope pairs was

correlated both negatively with viral loads and positively with

CD4 counts. Hence, HLA alleles associated with lower viral

load in this cohort, referred to as ‘‘good’’ alleles, tended to

present larger predicted epitope repertoires, than HLA alleles

associated with high viremias, the ‘‘bad’’ alleles. This suggests

that the inherent ability to present more epitopes could be a

contributing factor to better clinical disease status. Alternatively,

certain sets of epitopes may be needed to control the infection

and thus, the more epitope motifs presented, the more likely

individuals are to cover those epitopes. Our data alludes to a

mechanistic paradigm in the cell-mediated immune response,

supporting the intuitive assertion that control of HIV infection

would capitalize on a broad repertoire while control would be

stymied by a narrower epitopic pool. However, a nettlesome

HIV characteristic is that despite eliciting relatively broad CTL

responses, this generally does not result in the containment of

the virus. Although attempts to correlate the breadth of the CTL

antiviral response and control of HIV-1 infection in vivo have

been equivocal [1,2,3,4,5,6,7,8,9,18], it could nonetheless be

beneficial for the host to have a larger epitopic pool to choose

from – maybe not as a means to broaden the CTL response but

rather to increase the probability of producing the more limited,

effective set of CTL responses, since a diverse panoply of

epitopes can be available for CTL recognition simultaneously

and/or successively.

Figure 1. HIV-1 epitope repertoires and clinical data. Putative epitopes were identified in silico within full-length autologous HIV-1 proteomes and
combined with previously described optimally defined CTL epitopes found in the LANL and IEDB databases. (A) and (B) respectively show the log viral
loads and the CD4 counts plotted as a function of the number of predicted HIV-1 epitopes identified per proteome for the individuals with CD4
counts above 400 (n = 81). (C) Shows the number of predicted HIV-1 epitopes for individuals belonging to the highest (mean = 65) and lowest
(mean = 76) viremia quartile. (D) Shows the average viral loads of individuals presenting a specific allele as a function of the average number of HIV-1
predicted epitopes for that allele (only alleles presented by at least 3 individuals in the South-African cohort were included).
doi:10.1371/journal.pone.0001424.g001
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While the efficacy of the CTL response does not appear to rely

solely on its breadth, it is widely believed that CTL escape has a

major impact on disease outcome. As such, the limited epitope

repertoire we identified for individuals/alleles associated with high

viremia could reflect escape mutations that eliminated binding

motifs from the autologous viral sequences.

In addition to quantitative distinctions, there were also

qualitative differences between epitope repertoires restricted by

specific HLA alleles: Those associated with better control of HIV

replication were likely to present more Gag epitopes in their

repertoire than ‘‘bad’’ alleles did; ‘‘bad’’ alleles were instead

associated with a higher proportion of Nef epitopes. Interestingly,

a recent study by Kiepiela and colleagues showed that Nef-specific

CTL responses were associated with higher viral loads, unlike

Gag-specific CTL responses, which were associated with lower

viral burdens [2,44]. While numerous reports have emphasized

that CTL responses targeting Gag are the most tightly associated

with the control of HIV replication [2,10,11,12,13,14,15,16,17],

little is known about the underlying mechanism. Our study

indicates that ‘‘good’’ alleles preferentially target Gag, and that

within Gag there is an over-representation of epitopes restricted by

‘‘good’’ alleles instead of ‘‘bad’’ ones, as seen for all other HIV-1

proteins (except Rev). Interestingly, our results using clinical and

laboratory data from infected individuals agrees with a very recent

in silico study showing that HLA alleles with a low Relative Hazard

(RH) of disease progression preferentially presented p24 epitopes

[47]. Thus, discordant viral loads depending on specific protein

targeting are apparently associated with particular HLA allele

restriction sets for each protein. Nonetheless, this leaves open the

question of what accounts for the beneficial effect on viremia: CTL

responses focusing specifically on Gag, or CTL responses restricted

by certain ‘‘good’’ alleles, or both.

The potential shortcomings of in silico epitope predictions

cannot be entirely dismissed. And, notwithstanding the composite

aspect of the cell-mediated immune response and the difficulty in

ascertaining the relative importance of each attribute, evidence

that the CTL response is in part mechanically predetermined

could be significant in on-going efforts to define more palatable

criteria of the immune response to assist vaccine design. Our

findings are therefore relevant for vaccine design as they suggest

Figure 2. Distribution of epitopes by HLA alleles and by protein. Distribution of epitopes among HIV-1 proteins for HLA alleles associated with
lowest/highest viral loads. The ratio of predicted epitopes predicted for each protein corresponded to the number of epitope-fulfilling motifs
identified in each protein over the total number of epitopes identified for the whole proteome. (A) Shows the distribution of epitopes for ‘‘good’’
alleles, i.e., those associated with the lowest viral loads in the cohort (lowest quartile: VL,125,437; mean = 65,384; median = 58,229). (B) Shows the
epitope distribution for ‘‘bad’’ alleles, those associated with the highest viral loads in the cohort (highest quartile: VL.320,643; mean = 971,587;
median = 531,208). For each allele belonging to a quartile, average values per allele were calculated based on the viral loads of HLA-matched
individuals). (C) Illustrates the percentage of epitopes restricted by ‘‘good’’ and ‘‘bad’’ HLA alleles for each protein.
doi:10.1371/journal.pone.0001424.g002
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the need to 1) maximize the number of possible epitopes to include

in a vaccine candidate and to 2) direct the immune response

toward Gag rather than Nef proteins [44,48,49].

MATERIALS AND METHODS

Dataset
We evaluated 302 HIV-1 full-length plasma-derived genome

sequences along with the HLA genotypes of the infected individuals.

270 subjects were from Durban (South Africa) infected with HIV-1

subtype C [38,39] and 32 subjects from the Seattle PIC cohort

(USA)[43] infected with HIV-1 subtype B [32,40,41,42](and

unpublished). Immunological and clinical data (viral loads and

CD4 counts) were available at the time of virus sampling for a

subgroup of the Durban cohort; details were described elsewhere

[44]. HIV-1 amino acid sequences were derived for all recognized

protein coding sequences of the 302 HIV-1 genomes. HLA allele

frequencies in different ethnicities were obtained at http://www.

ncbi.nlm.nih.gov/projects/mhc/ihwg.cgi?cmd = PRJOV&ID = 9.

Epitope Prediction
We employed an implementation of our previously described

model [37] that uses logistic regression and leverages data across

HLA alleles to predict CTL epitopes (http://atom.research.

microsoft.com/hlabinding/hlabinding.aspx). The predictor was

trained on all T-cell epitope data from the LANL [50] and IEDB

(http://www.immuneepitope.org/home.do) databases in July

2006. Examples of non-epitopes (nine for each positive example)

were obtained by randomly sampling proteins from UniProt [51].

Eight-, nine-, ten-, and eleven-mer predictors were trained

separately. The prior probability of an epitope for each allele

was set to 0.1. The prior probability of an epitope for a given allele

of length k was proportional to the number of positive examples

found for that length-allele combination in the datasets. A peptide-

HLA pair was deemed a potential epitope if its posterior

probability according to the predictor was greater than 0.5.

Statistical analysis
Statistical analyses were done using JMPH version 5.1.2.

Relationships between 2 variables were analyzed using Spear-

man’s correlation factor Rho. Parametric Student’s t tests were

used to compare each pair of means.
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