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Background. Transcriptional profiling using microarrays provides a unique opportunity to decipher host pathogen cross-talk
on the global level. Here, for the first time, we have been able to investigate gene expression changes in both Mycobacterium
tuberculosis, a major human pathogen, and its human host cells, macrophages and dendritic cells. Methodology/Principal

Findings. In addition to common responses, we could identify eukaryotic and microbial transcriptional signatures that are
specific to the cell type involved in the infection process. In particular M. tuberculosis shows a marked stress response when
inside dendritic cells, which is in accordance with the low permissivity of these specialized phagocytes to the tubercle bacillus
and to other pathogens. In contrast, the mycobacterial transcriptome inside macrophages reflects that of replicating bacteria.
On the host cell side, differential responses to infection in macrophages and dendritic cells were identified in genes involved in
oxidative stress, intracellular vesicle trafficking and phagosome acidification. Conclusions/Significance. This study provides
the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing
unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and
pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in
immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments.
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INTRODUCTION
Co-evolution of microbes and the immune system has resulted in

the selection of sophisticated mechanisms, which may provide

advantages to the host or to the microbe, and ultimately result in

resistance or susceptibility to infectious disease. The use of both

human and pathogen microarrays in time-course experiments may

allow the activities of host and pathogen to be measured

simultaneously, and might show how gene expression changes in

the host correlate with those observed in the microorganism and

vice versa. A detailed comprehension of the common responses is

likely to give insight into the basic mechanisms governing host-

pathogen cross-talk, whereas genes that are modulated in a cell-

specific manner may provide information about specific gene

expression programs initiated upon pathogen encounter. These

studies will ultimately allow the dissection of regulatory networks,

which underlie the transcriptional response to infection [1,2,3,4].

Here we sought to use microarray technology to decipher

simultaneously transcriptional changes in a human pathogen of

primary public health importance, Mycobacterium tuberculosis, and in

its main host cells, macrophages (Mws) and dendritic cells (DCs)

throughout infection.

A major virulence feature of the tuberculosis (TB) bacillus relies

on the mechanisms it has evolved to parasitize host phagocytes

[5,6]. DCs and Mws are continuously produced from common

hematopoietic stem cells within the bone marrow ; both cell types

are central to anti-mycobacterial immunity and to TB pathogen-

esis, yet they serve distinct roles during the infection process. While

alveolar Mws act as sentinel cells by engulfing foreign inhaled

particles by active phagocytosis and play a scavenger function,

they are poor activators of naive T cells. In contrast, DCs are able

to initiate and modulate adaptive immune responses through

recognition and phagocytosis of pathogens at the sites of infection,

and through subsequent cytokine secretion and migration to the

draining lymph nodes where they process and present antigens to

naive lymphocytes. The outcome of host cell and mycobacterial
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interactions most likely depends on differential molecular events, a

snapshot of which may be measured in the changing transcrip-

tional profiles of Mws and DCs, which we have investigated here.

Previously, a number of important studies have been published

dealing with global gene expression profiling of M. tuberculosis-

infected mouse [7] or human [8,9,10,11] Mws and DCs [8], and

with mycobacterial transcriptome analysis in mouse [12] or

human Mws [13], or in mouse [14,15] or human [16] lung tissue

samples. Here were able to compare the transcriptional responses

upon mycobacterial infection both in the pathogen and in infected

Mws and DCs derived from the same donors. Using microarrays

designed to probe the human or the mycobacterial transcriptomes,

we could follow these changes simultaneously over time-course

experiments. Our results identify a core set of genes that respond

similarly in Mws and DCs upon M. tuberculosis infection, as well as

cell-type specific gene expression patterns; on the microbial side,

mycobacteria exhibit both a common response to Mw and DC

infection, as well as differential responses to the two cell types. In

particular, we could identify a clear mycobacterial stress response

signature in DCs, which is in line with previous findings on the low

replication rate of bacilli inside these cells [17]. In contrast the

mycobacterial transcriptome in Mws reflects that of intracellularly

replicating bacteria.

Altogether, these results highlight that global and simultaneous

gene expression profiling of both the host and the pathogen is a

useful means of accessing information on host pathogen

interactions; our study also provides a solid framework for further

understanding host pathogen interactions in TB.

RESULTS

M. tuberculosis induces differential responses in

human Mws and DCs
Human monocyte-derived Mws and DCs were infected by M.

tuberculosis for 4, 18 or 48 hours, and cellular transcriptomes were

analyzed as compared to the reference transcriptome at the time of

infection (time-point 0). Comprehensive gene expression profiles of

9 independent healthy donors were generated with high-density

oligonucleotide human arrays with 22,283 probe sets, which in

total interrogated the expression levels of approximately 18,400

transcripts and variants, including 14,500 well-characterized

human genes. Using unsupervised hierarchical cluster analysis

with 11,262 probe sets we identified the differences in gene

expression between DCs and Mws, which readily distinguished the

two groups. As shown in Figure 1A, Mws and DCs were found to

group into two classes independently of the time-point and of the

donor analyzed, thus identifying distinct responses to infection.

Moreover, within the same cluster early (0–4 hours) and late (18–

48 hours) molecular signatures could be identified. Altogether,

these results clearly show that host cell responses depend mainly

on the cell type and the duration of infection, and that donor-to-

donor variability only weakly influences the response profiles.

A subsequent statistical analysis was applied to select the genes

associated with infection. Using the Limma Bioconductor library,

2,251 and 2,615 probe sets were found to be significantly

differentially regulated in Mws and DCs respectively (Figure 1B).

The sets of genes modulated upon infection in Mws and DCs

mostly overlapped, yet Mws and DCs showed clear differences in

gene regulation during infection, especially at time-points 18 h

and 48 h (Figure 1C). As a validation of our data, we looked at

selected examples of genes described as showing altered expression

in previous studies. Thus CD1a-c, CD83, and interleukin (IL)-12p40

were modulated in DCs only (Suppl. Figure S1), as previously

shown [8,9,18,19,20]. Conversely, expression of IL-1b and IL-6

was induced mostly in Mws, as previously reported for both

mRNA and protein levels (Suppl. Figure S1 ; [18]).

Functional annotation and clustering reveal a core

response and cell type-specific signatures in M.

tuberculosis-infected Mws and DCs
In order to gain insight into the common and differential responses

of Mws and DCs to M. tuberculosis infection, we performed gene

functional classification on the basis of the annotation resources

provided by GeneOntology (GO) [21] and Kyoto Encyclopedia of

Genes and Genomes (KEGG) [22,23]. The annotation terms from

each time point analysed were further clustered according to

enrichment p-values (log10 of p-value ) in a functional summary as

shown in Figure 2.

GO (Figure 2A) and KEGG (Figure 2B) annotations allowed us to

identify gene families, whose expression is altered either in Mws or in

DCs or in both cell types upon infection. Annotation is given accord-

ing to GO and KEGG nomenclatures. For instance, differentially

expressed genes (DEGs) contained in the KEGG « Pathogenic E. coli

infection-EPEC » and « Pathogenic E. coli infection-EHEC »

categories include genes involved in sensing pathogens, such as

TLR4, genes involved in intracellular signalling and trafficking, such

as CDC42EP3, and other genes (see the online GO and KEGG

databases for further details). The common gene clusters are mostly

related to basic cellular processes such as carbohydrate and pyruvate

metabolism, aerobic respiration and energy production.

Importantly, cell type-specific signatures are also identified. They

are mainly annotated as being involved in the response to infection,

as well as in cell motility and cytoskeleton remodelling (Figure 2). In

particular, hierarchical clustering of expression patterns of genes

related to oxidative stress (Figure 3A), and intracellular vesicle

acidification (Figure 3B) and trafficking (Figure 3C) revealed

profound differences in Mw and DC responses to infection. As a

selected example, the expression patterns of the small GTP-binding

protein Rac isoforms 1 and 2 were the opposite in the two cell types :

while Rac1 was induced in DCs and barely expressed in Mws, which

was confirmed by Western blotting (Figure 4A), the Rac2 isoform

was induced in Mws and not detected in DCs. Rac is part of the

NADPH-dependent phagocyte oxidase (Phox), whose activity is

prominently dependent on Rac2 rather than Rac1, at least in

neutrophils [24,25]. Other genes encoding Phox subunits, namely

p40phox, p67phox and gp91phox were found to be preferentially expressed

and/or induced in Mws, as compared to in DCs, following infection

(Figure 3A). Altogether, these results are in agreement with the

general idea that Mws are more prone to reactive oxygen species

(ROS) production than DCs [26], which might limit phagosome

acidification and promote antigenic peptide presentation [27]. In line

with this view, we demonstrated that Mws produce more superoxide

anions, as compared to DCs, when treated with PMA or infected

with M. tuberculosis, on the whole cell level (Figure 4B). In addition to

its role in Phox activation, Rac acts as a molecular switch for signal

transduction to regulate several cellular functions. The differential

expression patterns of Rac1 and Rac2 in M. tuberculosis-infected Mws

and DCs might also have important consequences on intracellular

trafficking of the bacillus and on various signalling cascades.

In contrast to the response to ROS, inducible nitric oxide

synthase (NOS2) was not induced either in Mws or in DCs, which is

in accordance with previous reports in human Mws [7,11] and NO

production could not be detected in either cell type (data not

shown). Although this does not preclude for a role of NO in TB in

humans, as attested by in vitro and ex vivo experiments [28,29], this

result is a clear discrepancy with that observed in mouse

phagocytes, especially in Mws, in which mycobacterial infection

Host-Mycobacterium Cross-Talk
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induces NOS2 transcription and NO production [7]. Nevertheless,

the roles of NO and reactive nitrogen intermediates in TB still

remain to be fully elucidated [30].

Another example of differentially regulated genes, of interest in

the context of M. tuberculosis infection, is the family of genes

encoding the vesicular (v)-ATPase subunits (Figure 3B), as the

mycobacterial phagosome has been reported to avoid fusion with

v-ATPase-expressing intracellular vesicles in Mws [31,32]. The v-

ATPase is composed of two main complexes, the V0 complex

responsible for H+ import from the cytosol into the vesicular

lumen, and the V1 complex responsible for ATP hydrolysis. The

V0 and V1 complexes are formed of 6 and 8 subunits, respectively.

The ATP6V1H gene, encoding the V1 50/57 kDa subunit, is

strongly induced in Mws upon infection, whereas it is barely

expressed in DCs. Overall, genes in this class were differentially

regulated in Mws, but almost all were either not expressed or

down-modulated in DCs. Our results suggest that M. tuberculosis

infection induces a marked reprogramming of the v-ATPase-

encoding genes in the Mw, and pinpoints a profound difference in

host cell endocytic machinery response to infection between Mws

and DCs. In line with this finding, we observed dramatic

differences in modulation of genes encoding Rab GTPases and

other modulators of intracellular trafficking in infected Mws and

DCs (Figure 3C). For instance Rab9A was found induced in DCs
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Figure 1. Transcriptional differences between M. tuberculosis-infected Mws and DCs. (A) Hierarchical clustering of arrays indicating the donor #
(1–9), the time of infection (0, 4, 18, 48 h) and the cell type (Mws vs DCs). (B) Venn diagrams illustrating the number of up- and down-regulated genes
in Mws (upper panels) and DCs (lower panels) after 4, 18, or 48 h infection, as compared to basal expression levels at the time of infection. (C) Venn
diagram showing the number of genes differently modulated in the direct comparison of Mws and DCs after 4, 18, and 48 h infection.
doi:10.1371/journal.pone.0001403.g001
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categories according to enrichment p-values of differentially expressed genes in Mws and DCs at 4, 18 and 48 h post-infection as compared to baseline
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r

Figure 3. Differential regulation of genes involved in oxidative stress, vacuole acidification and intracellular trafficking in M. tuberculosis-
infected Mws and DCs. Red-blue display showing hierarchical clustering according to normalized expression levels of genes involved in (A)
phagocyte oxidase assembly and resistance to oxidative stress, (B) v-ATPase production and phagosome acidification, (C) intracellular trafficking
machinery and (D) IFN response and TLR-related pathways. Log2 ratios of absolute expression values divided by the median of each gene across all
donors and conditions are reported according to the colour codes indicated.
doi:10.1371/journal.pone.0001403.g003
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while it was barely expressed in Mws (Figures 3C and 4A). Rab9

regulates vesicular trafficking from the trans-Golgi network (TGN)

to the lysosomes through late endosomes [33] ; in particular this

GTPase is required for transport of lysosomal hydrolases from the

TGN to the lysosomes. The strong induction of Rab9 in DCs only

likely reflects the specialized function of these cells in antigen

processing and presentation and might interfere with phagosome

biogenesis, which should be further investigated.

Apart from genes involved in intracellular trafficking and vesicle

maturation, relevant differences between Mw and DC responses to

infection were detected in genes involved in intracellular

signalling, in particular in interferon (IFN) response, Toll-like

receptor (TLR) signalling and related signalling pathways [34]

(Figure 3D). In general, DCs were more responsive than Mws to

infection, with more genes induced, such as SOCS2, ISG20, TRAF5

and IRF4 (Figure 3D). The very strong induction of SOCS2

(suppressor of cytokine signalling 2) [35,36] in DCs only, for

instance, might have important consequences on the maturation

and cytokine secretion profile of M. tuberculosis-infected DCs, which

should be further explored.

Together, these results reveal that human DCs and Mws

respond differently to M. tuberculosis infection and allowed us to

identify gene expression signatures specific to each cell type, which

opens the way for further functional studies in host cell response to

intracellular infection and to the immune response to TB.

There are core and cell type-specific responses and

cell type-specific M. tuberculosis
In an attempt to further decipher host cell-mycobacteria interac-

tions, we analyzed the changes in the mycobacterial transcriptome

during infection of human Mws and DCs. Phagocytes were derived

and differentiated from monocytes of three independent healthy

donors, and infected at a multiplicity of infection of 2–5 bacterium

per cell for 1, 4 or 18 h. Mycobacterial RNA was extracted from

infected cells using a differential lysis method previously described

[12,37], and amplified using a modified Eberwine T7-based system.

Hierarchical clustering of the arrays (Figure 5A) clearly showed a

mycobacterial response specific to an intracellular context as

compared to in vitro log phase growth. Mycobacterial responses to

DC or Mw infection were also clearly distinguishable at the 18 h

time point. This pattern reflects the changing cell-specific gene

expression pattern of M. tuberculosis over time. Significantly

differentially expressed genes were identified by comparing the

intracellular mRNA profiles of M. tuberculosis with those derived from

aerobically growing bacilli. The transcriptional patterns described

below were also observed from infected Mws and DCs extracted

from two additional healthy donors as part of a pilot project.

Transcriptome modification was more pronounced in M. tuberculosis

extracted from DCs than in Mws (with 1,764 vs 1,306 genes

respectively differentially regulated relative to aerobic growth;

Figure 5B). A common mycobacterial response to the two

phagocytes was identified as well as cell-type specific signatures.

A core set of genes involved in the adaptation of bacilli to the

intracellular environment and representative of the in vivo phenotype

of M. tuberculosis was observed (Figure 6), as previously reported by

others [3,12,13,14,15,16]. The switch to a lipolytic lifestyle in vivo was

demonstrated by the induction of genes involved in the b-oxidation

of fatty acids [12] (fadD3/9, fadE5/14/24/28/30/33/34, echA6/7/

12/19/20, fadB2, fadA6), the glyoxylate shunt [38] and gluconeo-

genesis (icl, gltA1, pckA), and cholesterol metabolism (42 genes from

the previously defined gene cluster [39], hypergeometric probability

3.4610215). The changing respiratory state of the bacilli inside

human phagocytes from aerobic to micro-aerobic or anaerobic was

exemplified by the induction of genes involved in alternative electron

transfer (fdxA/C, narK2/X) and the down-regulation of the type I

NADH dehydrogenases relative to aerobic log phase growth (nuoA-N)

[40]. A large number of these genes are co-ordinately transcribed

through the dosR/S/T and kstR regulatory systems. The dosR/dosS

two-component system, that allows coordinated response to several
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stresses including O2 deprivation and exposure to oxidative radicals

[41,42,43,44], was induced in both Mws and DCs. Accordingly, 45

members of the dosR regulon [45] were up-regulated intracellularly

(p = 3.3610234). Similarly over half the genes of the kstR regulon,

predicted to be involved in lipid degradation and cholesterol

utilization, were up-regulated in both cell types compared to M.

tuberculosis aerobic growth (p = 1.061029) [46]. The changing

expression pattern of these two regulons over time in each infection

model is depicted in Figure 7B–C. Genes involved in the

sequestration of iron (mbtB/D/E/F/I/J) were also induced.

Interestingly, several genes encoding enzymes or molecular partners

involved in the synthesis of polyketides (papA1, papA3, pks2-4) were

down-regulated in both DCs and Mws. This likely reflects

reorganization of the mycobacterial cell wall during infection.

Analysis of the intracellular gene expression profiles also allowed

cell type-specific signatures to be identified in the mycobacterial

transcriptome. Differences were in general apparent early in

infection, but only became statistically significant at 18 h post-

infection, when 153 and 191 genes were over-expressed in Mws

and DCs, respectively (Figures 6B & 7A). Many of the genes over-

expressed in DCs were induced in both DCs and Mws relative to

aerobic growth, and were thus up-regulated in DCs to a

significantly greater degree than in the M. tuberculosis response to

Mw infection. Genes over-expressed in DCs compared to Mws

included many members of the dosR and kstR regulons (hypergeo-

metric p-values 1.8610216 and 2.4610216 respectively; Figure 7B–

C), genes involved in amino acid biosynthesis (argB-D, argF, and

hisC/D/F), and lipid degradation (echA19, fabD, fadA5, fadD13/19,

fadE12/23/26-28/34, mmsA, mutA-B), as well as 24 genes

belonging to the cholesterol catabolism gene cluster Rv3492c-

Rv3574 recently identified in M. tuberculosis [39]. The induction of

genes in DCs compared to Mws of functional significance in

nitrate respiration (narG/narK2) and in respiration in limiting O2

conditions (cydA-D) was also demonstrated. Many genes over-

expressed in DCs compared to Mws have also been identified to be

induced during dormancy in vivo [47] (Figure 6C), nutrient

starvation [48], in limiting O2 conditions [49] or associated with a

slowed mycobacterial growth rate [50].

Figure 7. Cell-specific responses of M. tuberculosis to Mws and DCs. (A) The transcriptional profiles of 191 genes (red colouring) and 153 genes
(green) identified to be significantly over-expressed in DCs and Mws respectively at 18 h post infection. Box plots showing the gene expression
pattern (in fold change) of (B) kstR regulon [46], (C) dosR regulon [45], and (D) ribosomal gene family (functional category II.A.1 [63]), in DCs and Mws
at 1, 4 and 18 h timepoints relative to aerobic growth.
doi:10.1371/journal.pone.0001403.g007
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Genes encoding ribosomal proteins (rplB, rplF, rplN, rpsF, rpsN ;

Figure 7D) and DNA biosynthesis (dnaB/N, fusA) were under-

expressed in DCs compared to Mws, indicating slowed mycobac-

terial replication in these cells [48]. This links with the observation

that the relA gene was over-expressed in M. tuberculosis extracted

from DCs compared to Mws at 18 h post-infection indicating that

the stringent response may be regulated in a cell-specific manner.

Many genes in the biosynthesis (papA5, ppsC, pks1, pks15, fadD22/

29) and export (drrB-C, lppX) [51,52] of phtiocerol dimycocerosate

(PDIM), a surface molecule that is important in pathogenesis, were

also more weakly expressed in the M. tuberculosis response to DC

compared to Mw infection.

Taken together, these results suggest that DCs restrict access of

intracellular mycobacteria to important nutrients, including amino

acids, and indicate that the switch of mycobacterial metabolism

towards fatty acid utilization as a carbon source and micro-aerobic

or anaerobic respiration is even furthered inside DCs than inside

Mws. Furthermore many of these cell type-specific changes in gene

expression are also differentially regulated over time, with a large

proportion of the genes that are over-expressed in DCs vs Mws at

18 h also significantly induced in M. tuberculosis extracted from

DCs at 18 h compared to 1 h post-infection (Figures 6B & 7A).

We confirmed that the bacterial growth is indeed reduced in DCs

(Figure 4C). Altogether, these results clearly indicate an increased

mycobacterial stress response in DCs and support and extend

previous findings [17] describing the limited ability of M.

tuberculosis to multiply inside human DCs.

DISCUSSION
Here we have investigated host-pathogen cross-talk by profiling

global gene expression over a time course in both the host cell and

the microbe simultaneously, using M. tuberculosis-infected human

Mws and DCs as a model system. Previously, a number of

important studies have been published dealing with global host cell

[7,8,9,10,11] or M. tuberculosis [12,13,14,15,16,40,48,50] gene

expression profiling upon infection. This is the first time however

that simultaneous host-pathogen profiles have been produced with

this important pathogen. We have also used the most appropriate

human cell model, and this is the first time indeed that the

transcriptome of M. tuberculosis has been described in human DCs.

In addition to core responses, we have identified a number of

cell type-specific signatures in both the mycobacterial and the host

cell transcriptomes. This allowed us to extract information not

only on the physiology of both host immune cells and intracellular

bacilli during infection, but also on how intracellular mycobacteria

perceive different environments, and how host cells respond

differentially to intracellular infection.

Although the M. tuberculosis response to the intracellular

environment measured here reflects many features of the M.

tuberculosis in vivo phenotype [12,15,16], our results clearly indicate

that mycobacteria respond differently to phagocytosis by the two

different phagocyte types. Transcriptome analysis indicates that

the bacilli perceive the DC phagosome as a more constraining

environment than the Mw phagosome, with a greater induction of

stress responsive genes during DC infection. Over-expression of

ribosomal genes in Mws as compared to in DCs for instance, is an

indicator of active protein synthesis and likely of bacterial division.

This is in accordance with our previous results showing

mycobacterial growth inside human-derived Mws and mycobac-

terial stasis inside human DCs [17]. The ability of DCs to control

infection by intracellular pathogens seems not to be restricted to

M. tuberculosis, and has also been observed with other mycobacteria

[53,54] and other bacteria [55,56,57,58]. This might represent a

unique strategy evolved by DCs to cope with intracellular

pathogens and ensure their antigen presenting functions [17].

Although the stress response observed in DCs is clear, the very

nature of the stress encountered by the bacilli inside these cells is

not easy to identify. Possible obvious explanations include

differential reactive oxygen and nitrogen species production,

phagosome acidification, and/or nutrient limitation. The results

obtained from both the mycobacterial and host cell transcriptomes

allow us to raise and evaluate possible hypotheses.

Genes of the dosR regulon were induced in both DCs and Mws,

and many of them were over-expressed in DCs. The most highly

induced gene of the dosR regulon (acr1/hspX) has been implicated in

actively slowing down bacterial growth [59,60], so induction of this

regulon would partly explain growth limitation. The dosRST two

component system responds to O2 limitation and/or to NO

[42,45,61] and our dataset allows us to look for the likely stimulus

by analysing the host transcriptome. Because NOS2/iNOS was not

induced and NO was not detected in either cell type, it is unlikely

that increased NO production explains the mycobacterial stress

response observed in DCs. The possibility remains that O2 might be

limiting in DCs. At the level of the host cell transcriptome, this might

be reflected by the increased number of genes involved in respiration

and energy production whose expression was modulated in DCs as

compared to in Mws (Figure 2A). An increased O2 consumption by

DCs may account for the mycobacterial phenotype inside these cells,

which should be further investigated. Furthermore the M. tuberculosis

ald gene is over-expressed in DCs. This gene encodes a functional

alanine dehydrogenase that might be involved in NAD+ regenera-

tion under low O2 conditions [62]. Many of those genes that have

been identified as being up-regulated under limiting O2 conditions

[49] were found to be over-expressed in DCs.

Superoxide production is another possible source of bacterial

stress. The observations that several genes involved in synthesis of the

phagocyte oxidase, such as gp91phox, were down-regulated in DCs

upon infection, and the global superoxide production was less in DCs

than in Mws, argue against this, although differential assembly of the

enzyme complex at the phagosome membrane may lead to an

increased O2
2 production locally in the mycobacterial vacuole.

Interestingly, and opposite to what is observed in Mws, infected DCs

seem to preferentially synthesise Rac1 rather than Rac2. This

differential synthesis of Rac isoforms may have important conse-

quences on the level of superoxide production [25]. The exact

topology and activity of the phagocyte oxidase at the phagosome

membrane in DCs and Mws should be further studied and

compared. In addition, 18 oxidoreductases (including adhD and

hmp) and three cytochrome P450s (cyp125/132/144) were over-

expressed in M. tuberculosis extracted from DCs at 18 h compared to

Mws; furthermore the functional category of I.B.7. (miscellaneous

oxidoreductases and oxygenases [63] was identified to be signifi-

cantly enriched (p = 1.461023). Seven of these probable oxidore-

ductases were predicted to be part of the kstR regulon [46], other

members of which were also identified to be over-expressed in the M.

tuberculosis response to DCs compared to Mws infection. The cell-

specific induction of these genes that may be involved in the

mycobacterial response to oxidative stress may reflect the increas-

ingly hostile environment encountered by bacilli inside DCs at 18 h

post infection, compared to Mws.

We believe that a third possibility to explain the constrained

phenotype of mycobacteria in DCs-altered phagosome acidification -

is unlikely because the phagosomal lumen is kept slightly alkaline in

DCs, which allows moderate antigen degradation and proper antigen

presentation [27]. We have previously reported that the mycobac-

terial phagosome was not more acidic in DCs than in Mws [17].

A fourth possibility which would deserve further exploration in

future studies is differential nutrient starvation. Several mycobacte-
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rial genes involved in nutrient uptake, storage or synthesis were over-

expressed in DCs. This is the case, for instance, of the glutamine

uptake gene glnH, which might indicate limited mycobacterial access

to iron and glutamine in DCs. Previous work has shown that some

genes involved in glutamine synthesis are essential in vitro and in vivo

[64,65,66]. A large number of genes (45) over-expressed in DCs have

previously been reported to be induced in nutrient limitation

conditions (e.g. pdhA/B, cysD, ald, lat, and rocA/D1) [48], in addition

relA, which encodes the putative regulator of the stringent response

that is induced under starvation, was also over-expressed during DC

compared to Mw infection.

In relation to nutrition, our results strongly suggest differential

utilization of cholesterol by mycobacteria in DCs and Mws. Indeed,

24 genes belonging to the recently identified cholesterol catabolism

gene cluster [39] were found to be significantly over-expressed in DCs

; 23 of these have been identified as part of the kstR regulon [46]. The

functional characterisation of this large regulon and the role of

cholesterol utilization by intracellular mycobacteria is still elusive, and

requires further exploration. It is likely that KstR, a transcriptional

repressor, is bound by lipid molecules (perhaps cholesterol or a

cholesterol derivative), so inducing the regulon that degrades these

lipids for energy and as a carbon source. Thus the fact that the

regulon is activated more rapidly in DCs indicates the presence of

these nutrients, and perhaps the lack of an alternative carbon source.

In conclusion, our study provides a solid framework to be used

to further understand host cell-mycobacteria interactions, and

paves the way for a number of novel investigation questions. This

unique dataset will be increasingly useful as more functional

information and regulatory networks are defined, and can be

interrogated as needed. Although known before that mycobacte-

rial growth is limited in DCs in comparison to Mws, the

mechanisms are not understood. Our data provide a detailed

picture that will allow mechanisms to be proposed and tested.

These results underline the extraordinary plasticity of the

mechanisms involved in the host cell response to infection and

of microbial adaptation to different intracellular environments. It

is a subtle and dynamic picture that emerges. Such a fine tuning in

molecular responses likely results from long periods of co-evolution

; further understanding these mechanisms should ultimately lead

to novel and adapted intervention strategies to combat TB and

other deadly infectious diseases.

MATERIALS AND METHODS

Bacteria, cells and infection
Human monocytes were purified from cytapheresis rings and

differentiated into Mws or DCs according to a previously described

procedure [17]. M. tuberculosis H37Rv was grown from a frozen stock

to mid-log phase in 7H9 medium (BD) supplemented with albumin-

dextrose-catalase (ADC, Difco). The intact virulence of bacteria in

the frozen stock was checked by infecting C57BL/6 mice intranasally

with 103 bacilli. After 21 and 42 days, the bacterial load in the lungs

was of about 107 bacteria. Cells were infected as previously described

[17], at multiplicities of infection (MOI) of 5 and 2 for the 1 h and

4 h/18 h time-points, respectively, for mycobacterial RNA extrac-

tion ; and at a MOI of 1 for cellular RNA extraction. After 1, 4, 18 h

and 48 h of infection, cells were recovered by centrifugation and

processed for cellular or bacterial RNA extraction.

Cellular RNA extraction, preparation, and

hybridisation to the arrays
Total RNA was extracted from all 9 individual donors

(corresponding to 72 samples in total) using TRIZOLH reagent

(Life Technologies Inc., Carlsbad, CA) and further purified with

RNeasy columns (Qiagen, Valencia, CA), as described by the

manufacturers. All sample quality was controlled strictly to verify

the RNA integrity before use in microarray experiments. RNA

quantity was evaluated spectrophotometrically, and the quality

was assessed with the Agilent 2100 bioanalyzer (Agilent Technol-

ogies Inc, Palo Alto, CA). Only samples with good RNA yield and

no RNA degradation (28S:18S.1.7 and RNA integrity num-

ber.8.5) were retained for further experiments. Labelling of

samples and hybridisation to the Human U133A oligonucleotide

microarray chips (Affymetrix, Santa Clara, CA) containing 22,283

probe sets were performed according to the manufacturer’s

protocols. Briefly, for the microarray experiment, 10 mg of total

RNA was used for cRNA synthesis. cDNA was synthesized in vitro

with the BioArray HighYield RNA Transcript Labeling kit (Enzo

Life Sciences, Farmingdale, NY) with a T7-(dT)24 primer for this

reaction. Biotinylated cRNA was then generated from the cDNA

reaction using the BioArray High Yield RNA Transcript Kit. The

cRNA was then fragmented in fragmentation buffer (56
fragmentation buffer: 200 mM Tris-acetate, pH 8.1, 500 mM

KOAc, 150 mM MgOAc) at 94uC for 35 min before the chip

hybridisation. Fifteen micrograms of fragmented cRNA was then

added to a hybridisation cocktail (0.05 mg/mL fragmented cRNA,

50 pM control oligonucleotide B2, BioB, BioC, BioD, and cre

hybridisation controls, 0.1 mg/mL herring sperm DNA, 0.5 mg/

mL acetylated BSA, 100 mM MES, 1 M NaCl, 20 mM EDTA,

0.01% Tween 20) and cRNA was hybridised to chips. The arrays

were washed and stained with R-phycoerythrin streptavidin in the

GeneChip Fluidics Station 400. The arrays were then scanned

with the GeneArray Scanner. Affymetrix GeneChip Microarray

Suite 5.0 software was used for washing, scanning, and basic

analysis. Following scanning, array images were assessed by eye to

confirm scanner alignment and the absence of significant bubbles

or scratches. 39/59 ratios for glyceraldehyde-39-phosphate dehy-

drogenase (GAPDH) and b-actin were confirmed to be within

acceptable limits range from QC report, and BioB spike controls

were found to be present on 100%, with BioC, BioD and CreX

also present in increasing intensity. When scaled to a target

intensity of 150 scaling factors for all arrays were within acceptable

limits as were background, Q values and mean intensities.

Bacterial RNA extraction, preparation, and

hybridisation to the arrays
Mycobacterial RNA was extracted from infected Mws or DCs by a

differential lysis procedure using the GTC/Trizol method developed

by Mangan et al. [12,37]. RNA was DNase-treated and purified

using RNeasy columns (Qiagen), and quantified using the

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies)

and Agilent 2100 Bioanalyser (Agilent Technologies). 250 ng total

M. tuberculosis RNA was amplified using an Eberwine T7-oligo-dT-

based system after an initial polyadenylation step (MessageAmp II

Bacteria, Ambion). Single rounds of amplification were performed,

with an IVT reaction of 16 hours at 37uC. This amplification

method has been previously demonstrated to be reproducible and

capable of identifying representative changes in gene expression

(Waddell et al. Submitted manuscript). Microarray hybridisations

were conducted as previously described [67] with 5 mg Cy5-labelled

cDNA derived from amplified M. tuberculosis RNA against 2 mg Cy3-

labelled M. tuberculosis H37Rv genomic DNA. Mycobacterial RNA

was extracted from Mws and DCs from three healthy donors at 1, 4

and 18 h post infection, and from two biological replicates of log

phase in vitro growth, and hybridised in duplicate to a M. tuberculosis

whole genome microarray (ArrayExpress accession number A-

BUGS-23, http://bugs.sgul.ac.uk/A-BUGS-23).
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Cellular microarray data analysis
The following analysis steps were performed using a modified

version of the AMDA library [68]. Four quality checks were

performed to verify the quality of sample preparation and

hybridisation. These are based on the frequency of probe sets

with Detection call ‘Absent’ or ‘Present’ and their associated

averaged values in each sample, as well as on the ratios between

the expression values for 39 and 59 end of Gapdh and Actin

transcripts. All the resulting values were in agreement with the

highest Affymetrix recommended quality standards.

Probe-level background corrected expression intensities were

generated starting from the image files following the Affymetrix

recommendations as implemented in the GCOS software. Probeset-

level were generated using the GCRMA method [69] and

normalized using quantile normalization [70] at the probe level.

To filter out noisy data before the selection of differentially

expressed genes, a filter was applied based on Detection calls. As a

first step, probe sets called ‘Absent’ over all conditions and

replicates were removed (5,792). As a second step, the 95th

percentile of all the signals of the entire dataset that were flagged

with an absent call was determined and used as a threshold to

remove all the remaining probe sets whose expression values were

always below this value in each sample (5,229). Finally 11,262

probe sets remained for the next analysis steps.

Hierarchical clustering based on complete linkage method and

Pearson correlation as a similarity measure was applied to evaluate

the effect of the different sources of variability (donors, time-points and

host specific responses). The resulting dendrogram can be interpreted

similarly to a phylogenetic tree and the vertical scale indicates 1 -

Pearson correlation coefficients as a measure of similarity.

The Limma Bioconductor library developed by Gordon Smyth

et al. [71] was used for the detection of differentially expressed

genes. This method is based on the fitting of a linear model to

estimate the variability in the data. In case of one-channel

microarray data this approach is the same as analysis of variance

except that a model is fitted for every gene. A statistics of

differential expression for the analysis of paired data (pairing based

on donors) is used and an empirical Bayes method is applied to

moderate the standard errors. Differentially expressed genes have

been selected based on a threshold p-value of 1024. P-values have

been corrected for multiple testing using Benjamini & Hochberg’s

method to control the false discovery rate.

A functional annotation of differentially expressed genes was

performed on the basis of the annotation provided by the HGU133a

Bioconductor library (version 1.14.0). In particular we focused on the

annotation available from Gene Ontology (GO, www.geneontology.

org, [71]) and KEGG (www.genome.jp/kegg, [71]).

Only the functional categories with at least 3 differentially

expressed genes have been considered. The most representative

functional annotations for each experimental condition are

identified using the hypergeometric distribution to determine the

probability of random occurrence of functional terms (functional

enrichment). Based on this probability ranking only the top 50

statistically most significant annotation terms are reported. To

perform a statistical test not biased by the redundancy of the probe

sets (more probe sets for the same gene), the computation of p-

value of functional enrichment was based on the Entrez Gene

assignment. Functional annotations have been clustered based on

the Log10 of enrichment p-values of different annotation terms

across the different conditions. This plot can be useful to compare

the functional characterization of differentially expressed genes in

the different conditions. In particular annotation terms specific for

a subset of conditions could be identified, as well as annotation

terms that are equally relevant for all the conditions. Note that the

colours of such a graph (Figure 2) reflect only the enrichment p-

values (highly significant is red), they are not representative of the

direction of the modulation (up/down-modulated).

Bacterial microarray data analysis
The hybridised slides were scanned sequentially at 532 nm and

635 nm corresponding to Cy3 and Cy5 excitation maxima using

the Affymetrix 428TM Array Scanner (MWG). Comparative spot

intensities from the images were calculated using Imagene 5.5

(BioDiscovery) and data from multiple scans combined using

MAVI 2.6.0 software (MWG Biotech AG). Data analysis was

performed using functions from the Limma (linear models for

microarray data analysis) software package [72]. The array data

were filtered to include only cDNA elements flagged to be present

on 80% of the arrays, and normalised to the 50th percentile of all

remaining genes. Differentially expressed genes were identified

using a ‘‘Two-Groups: Common Reference’’ experimental design.

Duplicate spots within arrays and across technical replicate

hybridisations (i.e. all replicate values for the same RNA sample)

were averaged before performing the linear model fit. Genes with

a moderated t-test p value (with Benjamini and Hochberg multiple

testing correction) of,0.05 were considered to be significantly

differentially expressed. These genes were hierarchically clustered

using Cluster and the results displayed using Treeview software

[73]. The hypergeometric distribution was used to determine if

functional categories of genes were significantly enriched in the

intracellular profiles [74].

Quantification of superoxide production
Superoxide production by PMA-treated or M. tuberculosis-infected

cells was quantified using the LumimaxH Superoxide Anion

Detection kit (Stratagene, La Jolla, CA) following the manufac-

turer’s instructions.

Analysis of cellular gene expression with Western

blotting
Cellular proteins were quantified using the Micro BCATM kit

(Pierce, Rockford, IL). For each extract analyzed, 10 mg of

proteins were loaded per well, and proteins were detected using

anti-Rac1 (BD Biosciences, San Jose, CA) and -Rab9A (Abcam

Inc., Cambridge, MA) monoclonal antibodies.

Access to microarray data
Gene regulation data for all analyzed eukaryotic genes are available

in the publicly available GENOPOLIS database (https://gc-lab32.

btbs.unimib.it/genopolisDB/html/users.php; login: Olivier.Neyr-

olles ; password: genopolis). Fully annotated raw and filtered M.

tuberculosis microarray data has been deposited in BmG@Sbase

(accession number: E-BUGS-58; http://bugs.sgul.ac.uk/E-BUGS-

58) and also ArrayExpress (accession number: E-BUGS-58). Both

databases are MIAME compliant. Preliminary access to the M.

tuberculosis dataset is available at http://bugs.sgul.ac.uk/bugsbase

using the username: journalaccount3, password: hg67Ky42B. To

view microarray experiment details select E-BUGS-58 from the

drop-down menu, then Find. Then click on the experiment

summary tree to access protocols and raw/filtered expression data.

SUPPORTING INFORMATION

Figure S1 Mean expression levels of selected genes (in arbitrary

units, a.u.) in M. tuberculosis-infected human macrophages (open

circles) and dendritic cells (filled circles).

Found at: doi:10.1371/journal.pone.0001403.s001 (0.48 MB EPS)
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