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1 Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMR S 872, Paris, France, 2 Université Paris Descartes, UMR S 872, Paris,
France, 3 INSERM, U872, Paris, France, 4 French National Institute for Agricultural Research (INRA), AgroParisTech, UMR914 Nutrition Physiology and
Ingestive Behavior, CRNH-IdF, Paris, France

Background. Mammals must sense the amount of sugar available to them and respond appropriately. For many years
attention has focused on intracellular glucose sensing derived from glucose metabolism. Here, we studied the detection of
extracellular glucose concentrations in vivo by invalidating the transduction pathway downstream from the transporter-
detector GLUT2 and measured the physiological impact of this pathway. Methodology/Principal Findings. We produced
mice that ubiquitously express the largest cytoplasmic loop of GLUT2, blocking glucose-mediated gene expression in vitro
without affecting glucose metabolism. Impairment of GLUT2-mediated sugar detection transiently protected transgenic mice
against starvation and streptozotocin-induced diabetes, suggesting that both low- and high-glucose concentrations were not
detected. Transgenic mice favored lipid oxidation, and oral glucose was slowly cleared from blood due to low insulin
production, despite massive urinary glucose excretion. Kidney adaptation was characterized by a lower rate of glucose
reabsorption, whereas pancreatic adaptation was associated with a larger number of small islets. Conclusions/Significance.

Molecular invalidation of sugar sensing in GLUT2-loop transgenic mice changed multiple aspects of glucose homeostasis,
highlighting by a top-down approach, the role of membrane glucose receptors as potential therapeutic targets.
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INTRODUCTION
Sensing of sugar is a survival mechanism enabling organisms to

know when to constitute and mobilize tissue energy stores. It is

known that glucose homeostasis relies on appropriate detection of

glucose concentration, but glucose-sensing mechanisms remain

poorly understood in mammalian cells. Intracellular glucose is

sensed and the resulting signal relayed by metabolic messengers in

tissues. Glucokinase and mitochondrial oxidative fluxes (ATP/

ADP ratio) are involved in regulation of ATP-sensitive K+
channels controlling insulin secretion and are well-described

glucose sensors in pancreatic ß cells [1–3]. Intracellular glucose

metabolism stimulates sensitive-gene transcription in the liver

[4,5,6]. Intracellular glucose metabolism is a common feature of

mammalian cells and modulation of glucose sensing by metabolic

inhibitors, although potent, is not recommended in vivo as most cell

functions and vital parameters would be affected.

Yeasts detect extracellular sugar concentrations with proteins

located in the external membrane [7], including sugar receptors of

the GPCR family and transporter-detectors of the sugar transporter

family [8]. In adipocytes, the glucose transporter GLUT1 detects

glucose with its C-terminus domain activating the ERK pathway by

a mechanism independent of glucose transport and metabolism [9].

In pancreatic beta cells, investigations have yield conflicting results

concerning the possible role of detector for GLUT2 in glucose-

induced insulin secretion. The group of B. Thorens demonstrated

that in mice GLUT2 participates to the first phase of insulin

secretion [10]. Unexpectedly, Fanconi-Bickel patients bearing

GLUT2 invalidating mutations do not develop overt diabetes [11]

but their insulin secretions were not investigated. This suggests that

GLUT2 is less involved in insulin secretion in human than in mice.

Importantly, the role of GLUT2 in insulin synthesis has not been

fully characterized yet in mice and man.

In hepatic cells, GLUT2 detects glucose and activates a signaling

pathway through its large cytoplasmic loop leading to glucose-

induced transcription, independent of glucose metabolism [12]. The

sodium-glucose transporter homolog SGLT-3, was identified as a

glucose sensor in the plasma membrane of enteric neurons triggering

membrane depolarization [13]. Due to these plasma membrane

detectors, cells can adapt to changes in extracellular sugar

concentrations. The role of glucose detectors in glucose homeostasis

has not been evaluated in vivo. Such a study should provide

information on the importance of the glucose-sensing pathway

triggered by detectors, and help elucidate the role of plasma

membrane therapeutic targets in modulation of glucose homeostasis.

GLUT2 is expressed in various tissues involved in glucose

homeostasis; thus, we investigated the physiological significance of

GLUT2 detection of extracellular glucose concentration. GLUT2

is involved in metabolic glucose sensing by mediating bi-

directional glucose transport, adjusting intracellular glucose

concentration. It is also involved in the detection of sugar

abundance at the plasma membrane in vitro [12]. GLUT2 has

been shown to contribute to control of food intake and secretion of

insulin and glucagon in GLUT2-null mice [14,15,16], but

detection of both intracellular and extracellular glucose concen-

trations as well as transport are invalidated in those mice.
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We quantified, in vivo, the physiological contribution of extracel-

lular sugar detection independent of changes in glucose metabolism.

For this purpose, we used a molecular tool that blocks glucose-

induced gene expression in vitro, but preserves glucose metabolism

[12]. We generated transgenic mice expressing the GLUT2-loop

domain to prevent the detection of extracellular sugar abundance.

We report here the impact of the loss of extracellular glucose

detection on various aspects of glucose homeostasis.

RESULTS

Generation of GLUT2-loop transgenic mice
We generated transgenic mice expressing the large cytoplasmic

GLUT2 loop to investigate its sugar detection function in vivo. We

obtained four transgenic mice with various copy numbers of

transgene (Fig. 1A). Mouse ‘W’ had the highest copy number of

transgene, growth failure and urinary glucose loss, but survived at

weaning and did not develop diabetes. Unfortunately, ‘W’ was

sterile. Founder ‘B’ had a high transgene copy number and was

viable but some homozygous did not survive. Heterozygous and

homozygous mice from ‘P’ and ‘G’ founders were viable.

Transgene mRNA was present in all the tissues tested, as

expected from the ubiquitous actin promoter used, but at various

levels (Fig. 1B). Transgene mRNA expression was absent in wild-

type (WT) mice. There was no clear correlation between cDNA

copy number and mRNA levels of the transgene. We detected the

protein coded by the transgene by immunoprecipitation of liver

extracts with a specific antibody raised against the GLUT2

intracellular loop (Fig. 1C).

Thus, we created three lines of transgenic mice expressing

various amounts of the transgene in GLUT2- and non GLUT2-

expressing tissues.

Invalidation of extracellular sugar detection in

GLUT2 expressing tissues
We have previously shown in vitro that the GLUT2 loop blocks

glucose stimulation of sensitive gene transcription. In this study, we

investigated in vivo the role of the GLUT2 loop. For this purpose,

we fed mice with a standard diet, then either fasted the mice for

48h or refed (after fasting) them a glucose-rich diet. We studied

genes stimulated directly by glucose and genes stimulated

indirectly by insulin secreted in response to glucose ingestion

(GLUT2, ChREBP, glucokinase, SREBP-1c). The mRNA coded

for these genes accumulated in the liver of wild-type mice 15h after

they consumed a glucose-rich diet, as expected (Fig. 2A). However,

these mRNAs remained at basal levels in transgenic mice (Fig. 2A),

despite similar food consumption. In vivo expression of the GLUT2

loop, therefore, sets the gene-expression profile in fed transgenic

mice to the level established in fasted wild-type mice.

GLUT2 protein levels in liver membrane were similar in wild-

type and transgenic mice fed a glucose-rich diet for five days

(Fig. 2B). Thus, the phenotype of transgenic mice in which glucose

detection by GLUT2 is impaired is not due to low GLUT2 protein

levels in liver membranes. This feature is related to liver expression

of the transgene inhibiting detection of glucose abundance.

We assessed the specificity of GLUT2-mediated sugar detection,

compared to other GLUTs. For this purpose, we studied tissues that

do not express GLUT2 but other members of the GLUT family. We

detected transgene mRNA in epididymal adipose tissue (not shown),

as in muscle (Fig. 1B). Feeding a glucose-rich diet induced a similar

level of accumulation of FAS, SREBP-1c (Fig. 2C) and ACC

mRNAs (not shown) in epididymal fat pads from wild-type and

GLUT2-loop transgenic mice. These findings show that the

expression of the GLUT2 loop did not affect GLUT4-expressing

tissues and suggest that other glucose-sensing pathways are involved

in these tissues. Moreover, peripheral tissues of transgenic and wild-

type mice had similar insulin sensitivity, as determined by an insulin

tolerance test (Fig. 2D). These findings indicate that the GLUT2

loop did not interfere with peripheral glucose disposal by muscle and

adipose tissues that express GLUT4.

Thus, we produced transgenic mice in which GLUT2-mediated

glucose detection was specifically abolished.

Preference for lipid oxidation
We investigated the adaptation of mice to impaired detection of

glucose abundance by measuring the energy expenditure resulting

from glucose and lipid oxidation (Fig. 3). We determined the time

course of resting metabolic rate and respiratory quotient averaged

at 15-minute intervals in wild-type and transgenic mice (Fig. 3A

and B). Resting metabolism, respiratory quotient, and glucose and

lipid oxidation (Fig. 3C) were similar in wild-type and transgenic

mice before food consumption.

Figure 1. Generation of GLUT2-loop transgenic mice. A: Quantification
of the transgene copy number in genomic DNA from independent lines
of mice (Tg G, P, B and W) to the reference gene Apolipoprotein A1
(ApoA1). B: RT-PCR analysis of transgene and L19 control mRNA levels in
various tissues. C: Immunoprecipitation and immunoblot analysis
showing the presence of GLUT2 loop in liver homogenate from
transgenic mice.
doi:10.1371/journal.pone.0001288.g001
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The peak response for metabolic rate during oral glucose load of

3.6 mg/g (OGTT) occurred after ten minutes and the peak

response for respiratory quotient occurred after 30 minutes. There

was no significant difference between groups (p = 0.269). Accord-

ingly, there were no differences between groups for glucose and

lipid oxidation during oral glucose load. The overall metabolic rate

and overall respiratory quotient (measured by the areas under the

respective curves) were slightly, but not significantly lower

(p = 0.178) in transgenic mice than in wild-type mice during oral

glucose load.

Then, we fed mice a test meal of 1g standard laboratory chow

containing sugars and lipids. The difference in the thermogenic

response between the two groups was amplified (Fig. 3). Pre-meal

metabolic rate, respiratory quotient, and glucose and lipid oxidation

were similar in wild-type and GLUT2-loop transgenic mice. The

peak response of the respiratory quotient to the meal was slightly

smaller in amplitude and occurred three hours later in transgenic

mice than in wild-type mice. The overall increase in metabolic rate

during the test meal was significantly larger in GLUT2-loop mice

than in wild-type mice (3.260.3 versus 2.060.2 kJ, p,0.02), but the

increase in respiratory quotient was smaller in transgenic mice than

in wild-type mice (Fig. 3A and B). This phenomenon resulted from a

lower level of post-meal inhibition of lipid oxidation in transgenic

mice than in wild-type mice; post-meal glucose oxidation was not

different between groups (Fig. 3C).

We estimated the basal metabolic rate between 5:00 and 7:30

a.m. at the end of the calorimetry session when the mice were in a

post-absorptive/fasting state. Basal metabolic rate was similar

between groups, but respiratory quotient was slightly lower in

transgenic mice (0.8W) than in wild-type mice (0.84W) (Fig. 3B).

Figure 2. Impairment of extracellular sugar detection in GLUT2-expressing tissues in transgenic mice. Effect of a glucose-rich diet on gene
expression in liver (A) and adipose tissue (C). Transgenic (Tg) and wild-type (WT) mice were fasted for 48 h and refed for 15 h before liver and
epididymal fat pad biopsies. Levels of mRNA were analyzed by real time PCR. Values are presented as means6S.E.M. (n = 3 to 5 mice/group).
Statistical differences between refed and fasted mice are indicated by *P,0.05, **P,0.01, and ns non significant. B: GLUT2 protein levels in total
membrane preparations from the liver of mice fed a glucose-rich diet for five days. D: Blood glucose concentrations during an insulin tolerance test in
wild-type and transgenic mice. Values are presented as means6S.E.M (n = 8 to 10 mice/group).
doi:10.1371/journal.pone.0001288.g002
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We calculated that lipids fueled 60% of basal metabolism in wild-

type mice and 70% in transgenic mice.

Thus, GLUT2-loop transgenic mice had lower levels of glucose

oxidation than wild-type mice but higher levels of lipid oxidation.

Attenuated response to low and high glucose levels
We tested the capacity of mice with impaired GLUT2-mediated

sugar sensing to detect sugar deficit. After 48h of fasting, the

glycogen content in liver of wild-type mice was lower than taht of

GLUT2-loop transgenic mice (Fig. 4A). Residual glycogen stores

were larger after fasting in liver, kidney and intestine of transgenic

mice than of wild-type mice (Fig. 4A), possibly resulting from the

slight but constant lower rate of glucose oxidation in fasted

GLUT2-loop transgenic mice (Fig. 3C). This phenomenon

occurred despite normal blood glucose concentration (Fig. 4B),

but was probably associated with higher plasma insulin level in

transgenic mice than in wild-type mice (Fig. 4B). Total body fat

Figure 3. Energy expenditure in mice after impairment of extracellular sugar detection. Progression of resting metabolism rate, respiratory
quotient and calculated oxidation recorded at ten-second intervals in wild-type (WT) and transgenic (Tg) mice. The test meal was given just before
the lights were turned off and the response measured until metabolism rate and respiratory quotient returned to pre-meal levels. The changes in
resting metabolism rate and respiratory quotient were included in the calculation of the changes in glucose (Gox) and lipid (Lox) oxidation.
doi:10.1371/journal.pone.0001288.g003
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content was lower in transgenic than in wild-type fasted mice

(Fig. 4B). This finding may be related to the higher level of fat

oxidation observed in the fasted transgenic mice (Fig. 3C).

Plasma free fatty acids (FFA) levels were high in fasted wild-type

mice, and plasma triglyceride levels were low, as expected

(Fig. 4C). Plasma FFA levels were lower and plasma triglyceride

levels were higher six hours after refeeding (Fig. 4C). We observed

a similar, but attenuated profile for plasma FFA levels in

transgenic mice, but plasma triglyceride levels were not signifi-

cantly different in refed and fasted transgenic mice. Consequently,

the triglyceride content remained high in the liver of fed transgenic

mice (Fig. 4C).

This finding indicates that GLUT2-loop transgenic mice are

more resistant to fasting than wild-type mice and suggests that

transgenic mice do not properly detect sugar deficit.

Injection of streptozotocin (a drug that poisons pancreatic ß-

cells) led to pronounced hyperglycemia. We observed significantly

less pronounced hyperglycemia and glucosuria in transgenic mice

than in wild-type mice (Fig. 4D) the day after drug injection.

However, the protection against streptozotocin-induced diabetes

was transient, as blood and urine glucose levels in the two groups

of mice were the same two days after drug injection (Fig. 4D).

Glucose tolerance and pancreatic functions
Glucose modulates many pancreatic functions. We verified that

the regulation of a subset of glucose-sensitive genes was impaired

in the pancreas of GLUT2-loop transgenic mice (Fig. 5A). In the

pancreas, mRNA of GLUT2 and ChREBP (Fig. 5A) and

glucokinase (not shown) accumulated significantly in wild-type

but not in transgenic mice, 2 h after an oral glucose load. We

observed similar accumulation of ACC mRNA in the two groups

of mice (not shown). These findings suggest that glucose detection

in the pancreas, as measured by the stimulation of target genes, is

altered in transgenic mice. GLUT2 protein levels were similar in

pancreas membrane preparations from wild-type and transgenic

mice fed a glucose-rich diet for five days (Fig. 5B).

Blood glucose concentrations during an oral glucose tolerance

test remained significantly higher in transgenic mice than in wild-

type mice, indicating glucose intolerance (Fig. 5C). This occurred

despite glucose and lipid oxidation having the same kinetics in the

two groups of mice (Fig. 3C). Nevertheless, we observed glucose

intolerance in all three transgenic mouse lines (Fig. 5C). Six hours

after being refed a glucose-rich diet, blood glucose concentrations

were similar in the two groups of mice (Fig. 5C). This indicates

that after a delay transgenic mice can regulate blood glucose

concentration similarly to wild-type mice.

Plasma insulin levels during the glucose load remained signif-

icantly lower in GLUT2-loop transgenic mice than in wild-type mice

(Fig. 5D). Thus, a defective insulin response to oral glucose may

explain, at least in part, glucose intolerance. Pancreatic insulin

content was 30% lower in transgenic mice than in wild-type mice six

hours after being refed a glucose-rich diet (Fig. 5D). Impairment of

glucose detection by GLUT2 in the pancreas attenuated changes in

insulin production in response to glucose or to diet.

Insulin production is regulated by glucose at various steps.

Proinsulin mRNA accumulation was 2.960.5 times higher in wild-

type and 2.360.3 times higher (p = 0.3) in transgenic mice fed a

high-glucose diet for two hours than in fasted control mice. These

findings together with the lower insulin protein content in

pancreas of transgenic mice suggest that a GLUT2-mediated

glucose detection step is involved in the translation or maturation

of insulin.

We therefore analyzed the morphology of pancreatic islets.

Immunohistochemical and morphometrical analyses showed that

total islet number/mm2 of transgenic mice was not different from

that of wild-type mice (Fig. 5E). However, the proportion of

insulin-labeled cells organized as small islets (,25 mm) was higher

in pancreas of GLUT2-loop transgenic mice than of wild-type

mice (p = 0.03) (Fig. 5E). This finding is consistent with the lower

pancreatic insulin content in GLUT2-loop transgenic mice than in

wild-type mice six hours after being refed (Fig. 5D).

The invalidation of GLUT2-mediated glucose detection in

pancreatic ß-cells impaired insulin production, but did not modify

GLUT2 protein level and insulin mRNA accumulation. Though

islet morphology appeared preserved, insulin-positive cell organi-

zation was altered in transgenic mice.

Excretion of excess glucose by the kidney
Besides the insulin action on peripheral tissues, excess glucose is

efficiently cleared from blood by renal excretion. We thus

analyzed the role of GLUT2-mediated extracellular glucose

detection in kidney of transgenic mice.

We verified that GLUT2-mediated sugar detection was impaired

in kidney of transgenic mice. Unlike in wild-type mice, consumption

of a glucose-rich diet after 48 h of fasting did not lead to

accumulation of GLUT2 and SREBP-1c mRNAs in transgenic

mice (Fig. 6A and not shown). Basal levels of these mRNAs were not

different in kidney of wild-type and transgenic mice and the GLUT2

protein levels in membrane preparations from wild-type and

transgenic mice were the same (Fig. 6B). The lack of glucose-

stimulated gene expression confirmed that kidney of transgenic mice

did not properly detect extracellular glucose concentration.

We assessed the consequences of impaired GLUT2-mediated

glucose detection in the kidney by examining kidney structure by

echography. The kidneys of transgenic mice were 160% larger in

diameter than wild-type kidneys (Fig. 6C), although they had

similar weights. We observed a difference in echogenicity due to

glycogen but not to water accumulation in transgenic kidney

(Fig. 6C and 3A).

The ratio of urine volume excreted to the water volume

consumed per day was identical in the two groups (not shown). We

analyzed the urine composition and found that the measured

parameters did not differ between the two groups if mice were fed

a standard diet (Table 1). In contrast, the consumption of a

glucose-rich diet led to significantly greater urine glucose loss in

GLUT2-loop transgenic mice than in wild-type mice (Table 1).

We used an oral glucose load to document this specific loss of

glucose in the urine. The transgenic mice lost substantially more

glucose in the urine than wild-type mice did (Fig. 6D). Moreover,

we detected glucose in the urine of wild-type mice when the blood

glucose concentration reached 200610mg/dl, whereas glucosuria

appeared as soon as the blood glucose concentration reached

17064mg/dl in transgenic mice (p,0.03) (Fig. 6D). This indicates

a lower glucose threshold in transgenic mice than in wild-type

mice. We observed a significantly lower SGLT1 mRNA level in

transgenic mice than in wild-type mice 15 hours after being refed,

whereas SGLT2 mRNA levels were similar in the two groups.

These findings suggest that impairment of glucose detection

provoked major adaptation in glucose renal reabsorption.

DISCUSSION
In this study, we show that prevention of sugar detection strongly

affects many mechanisms involved in glucose homeostasis.

Transgenic mice excreted massive amount of glucose in urine,

which protected them against excess glucose despite attenuated

pancreatic insulin production and a preference for lipid oxidation

over glucose oxidation. The GLUT2 loop, used here as a molecular
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Figure 4. Detection of low and high glucose levels. A: Left panel: glycogen content in liver, kidney and intestine from fasting wild-type (WT) and
transgenic (Tg) mice. Values are presented as means6S.E.M. (for the liver n = 6 to 7 mice per group, for the kidney and intestine n = 3 mice/group).
Statistical differences between transgenic and wild-type mice are indicated as *P,0.05. Right panel: Representative pancreas sections from fed wild-
type and transgenic mice stained with PAS reagent. The black bar corresponds to 50 mm. B: Fasting metabolic parameters. Blood glucose
concentration, plasma insulin concentration and total fat are indicated for wild-type and transgenic mice after fasting for 48 h. Values are presented
as means6S.E.M. (n = 4 mice/group). Statistical differences between transgenic and wild-type mice are indicated as *P,0.05 and ns non significant.
Right panel: Example of a DEXA scan. C: Lipid metabolism. Plasma free-fatty acids (FFA) and triglyceride concentrations in wild-type and transgenic
mice in the fasting state or 6h after refeeding. Values are presented as means6S.E.M. (n = 3 to 5 mice/group). Statistical differences between refed
and fasted mice are indicated as ***P,0.001, *P,0.05 and ns non significant. Right panel: Liver triglyceride content in liver extract from wild-type and
transgenic mice 6h after refeeding. Values are presented as means6S.E.M. (n = 4 to 5 mice/group). Statistical differences between transgenic and
wild-type mice are indicated as **P,0.01. D: Blood glucose and urine glucose levels measured after steptozotocin injection. Values are presented as
means6S.E.M. (n = 3 to 4 mice/group). Statistical differences between wild-type (open squares) and transgenic (closed triangles) mice are indicated as
*P,0.05, **P,0.01.
doi:10.1371/journal.pone.0001288.g004
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Figure 5. Pancreatic function in mice after impairment of extracellular sugar detection. A: Effect of a glucose-rich diet on gene expression in the
pancreas of wild-type (WT) and transgenic (Tg) mice fasted for 48h and refed for 15 h. Levels of mRNA were analyzed by real-time PCR. Values are
presented as means6S.E.M. (n = 3 to 4 mice/group). Statistical differences between refed and fasted mice are indicated as **P,0.01 and ns non
significant. B: GLUT2 protein levels in total membrane preparations of pancreas from mice fed a glucose-rich diet for five days. C: Left panel: Blood
glucose concentrations during an oral glucose tolerance test in wild-type and transgenic mice fasted for 24 h (n = 17 for wild-type mice, n = 2 to 5 for
transgenic mice). Statistical differences between transgenic and wild-type mice are indicated as ***P,0.001, *P,0.05 and ns non significant (two-way
ANOVA) for the areas under the curves. Right panel: Blood glucose concentrations in wild-type and transgenic mice in the fasted state or 6 h after
being refed with a glucose-rich diet. Values are presented as means6S.E.M. (n = 4 to 8 mice/group). D: Upper panel: Plasma insulin concentrations
during an oral glucose tolerance test in fasted wild-type and transgenic mice (n = 10 to 13 mice/group). Statistical differences between transgenic and
wild-type mice are indicated as ***P,0.001 (two-way ANOVA) for the areas under the curves. Lower panel: Pancreatic insulin content in mice 6h after
being refed a standard diet. Values are presented as means6S.E.M. (n = 5 mice/group). Statistical differences between transgenic and wild-type mice
are indicated as *P,0.05. E: Upper panel : Representative immunostaining with antibody against insulin of pancreatic sections from wild-type and
transgenic mice. Arrows indicate small islets. The bar corresponds to 100 mm. Lower panel: Histomorphometric comparisons of islet number, size and
ß-cell mass. Proportion of small islets (,25 mm) to total number of islets is statistically different indicated as *P,0.03 between transgenic and wild-
type mice.
doi:10.1371/journal.pone.0001288.g005
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Figure 6. Kidney function in mice after impairment of extracellular sugar detection. A: Effect of a glucose-rich diet on gene expression in the
kidney of transgenic (Tg) and wild-type (WT) mice fasted for 48 h and refed for 15 h. Levels of mRNA were analyzed by real-time PCR. Values are
presented as means6S.E.M. (n = 3 to 4 mice/group). Statistical differences between refed and fasted mice are indicated as *P,0.05, **P,0.01 and ns
non significant. B: GLUT2 protein levels in total membrane preparations of kidney from mice fed with a glucose-rich diet for five days. C: Structure,
size and weight of kidneys from wild-type and transgenic mice shown by ultrasonic image (transverse cross section). D: Urine and blood glucose
concentrations during an oral glucose tolerance test in fasted wild-type and transgenic mice (n = 3 mice per group). Statistical differences between
transgenic and wild-type mice are indicated as **P,0.01 (two-way ANOVA) for the areas under the curves. E: Levels of SGLT mRNA were analyzed by
real-time PCR. Values are presented as means6S.E.M. (n = 3 to 4 mice/group). Statistical differences between refed and fasted mice are indicated as
**P,0.01 and ns non significant.
doi:10.1371/journal.pone.0001288.g006
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tool, blocked the sugar detection triggered by GLUT2 without

affecting basal mRNA levels in liver, kidney and pancreas. On the

other hand, the GLUT2-null mice, in which both sugar entry and

sugar detection are invalidated, deteriorates after weaning, and mice

die probably because they are unable to handle excess glucose by

appropriate insulin secretion [10,15]. The phenotype of GLUT2-

loop transgenic mice may be related to the maintenance of glucose-

and insulin-sensitive functions at basal levels.

The expression of the GLUT2-loop transgene interfered with

GLUT2-triggered glucose detection. This highlights the efficiency

of this plasma membrane chemoreceptor for glucose, and provides

a new therapeutic target for glucose homeostasis. Consumption of

a glucose-rich diet still led to accumulation of target gene mRNA

in adipose tissue. Indeed, hyperglycemia-modulated gene expres-

sion has been reported in peripheral tissues [17]. In tissues without

GLUT2, glucose detection occurred by GLUT2-independent

mechanisms, probably due to ‘‘intracellular’’ metabolism. As

expected, these mechanisms were not directly affected by the

molecular tool (GLUT2 loop). Accordingly, GLUT2-loop trans-

genic mice had normal insulin sensitivity in peripheral tissues,

mainly muscle and adipose tissue. The capacity of peripheral

tissues to respond to insulin remained unaffected by the expression

of the transgene.

The amount of GLUT2 protein in the membranes of liver,

pancreas and kidney cells showed that the phenotype of transgenic

mice was not caused by defective glucose entry into the cells but

rather by the inability of the cells to detect extracellular glucose.

A fundamental characteristic of GLUT2-loop transgenic mice

was that basal metabolism remained unaffected. Nevertheless, in

transgenic mice fed with the usual diet, thermic response occurred

but was two times slower than in wild-type mice. Fuel oxidation

indicated that transgenic mice utilize more lipids than wild-type

mice. Better lipid oxidation improves resistance to high fat feeding

[18] and increases weight and fat losses without major changes in

lean body mass [19], a feature observed in these transgenic mice.

Wild-type mice use their energy stores during fasting whereas

transgenic mice protect their energy stores when deprived of food

due to an impaired ability to detect changes in glucose levels. The

slower mobilization of glycogen stores in transgenic compared to

control mice is probably due to plasma insulin, which remained

high during fasting, and to the preference for lipid oxidation over

glucose oxidation. Partial preservation of energy stores in

transgenic mice occurred despite similar levels of circulating

glucose, suggesting that low glucose concentration was inade-

quately detected in these mice.

Transient protection against streptozotocin-induced diabetes has

been observed possibly due to many GLUT2-mediated effects,

including drug access to pancreatic ß cells [20], but not to

accelerated urinary glucose loss or larger stores of pancreatic insulin.

Therefore, we concluded that GLUT2-expressing tissues

involved in glucose homeostasis poorly detected both high and

low glucose levels.

Pancreatic adaptations to impaired detection of

extracellular glucose
Pancreatic glucose sensing is mediated by metabolism and

primarily by glucokinase activity [3]. How glucokinase activity is

translated into a quantitative signal remains unknown. It has been

reported that after being metabolized in the ß-cell, glucose

stimulates insulin gene transcription by a mechanism involving

SREBP-1c [21]. Insulin mRNA accumulated in transgenic mice

after consumption of a glucose-rich diet as in control mice. Thus,

GLUT2-mediated glucose sensing did not significantly alter

transcription and stability of insulin mRNA. Nevertheless,

transgenic pancreas had low insulin content, consistent with

reports showing that insulin expression is also regulated by glucose

at a translational level. Fasted mice had lower islet insulin mRNA

content as compared to fed mice [22]. While in vitro the acute

changes in glucose affected mainly insulin translation

[23,24,25,26], chronic changes in glucose impacted on both

insulin gene transcription [27] and mRNA stability [28]. In ß-cell,

long term glucose sets the preproinsulin mRNA level whereas

short term glucose regulates the translation rates of proinsulin

biosynthesis [25,26,21].

Decreased insulin content in pancreas of transgenic mice may

thus result from small ß-cell mass and increased number of small

islets compared to controls. Supporting this idea, pancreatic ß-cell

expansion is induced by glucose-stimulated proliferation [29–32],

and glucose-mediated reduction of apoptosis [33,34]. However,

glucotoxicity has been linked to persistent hyperglycemia in type II

diabetes as a result of impaired ß-cell proliferation [35,36] and

increased apoptosis [37]. Plasma insulin concentration did not

increase adequately in response to a glucose load in GLUT2-loop

transgenic mice suggesting that GLUT2-mediated glucose detec-

tion is necessary for normal ß-cell development and function. A

reduced b cell mass has also been reported in mice, lacking insulin

receptors in pancreatic b-cells [38], and in HGFR KO mice [39],

suggesting that there are many regulators of pancreatic ß cell mass

[40]. Some of these regulators may be under the control of

Table 1. Urinary excretion in mice after impairment of extracellular sugar detection. Metabolic and electrolyte levels in 24-h
urine samples from wild-type (WT) or transgenic mice fed a standard or a glucose-rich diet. Values are presented as means6S.E.M.
(n = 6 per group). Statistical differences between wild-type and transgenic mice are indicated as *P,0.05 ns non significant, nd
indicates not determined.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Standard diet Glucose-rich diet

Parameters Wild-type Transgenic P Wild-type Transgenic P

Glucose (g/mmol creatinine) 0.03360.007 0.02360.004 ns 0.01660.005 0.06760.021 *

K (mmol/mmol creatinine) 2562 2362 ns 1562 1362 ns

Cl (mmol/mmol creatinine) 9867 11068 ns 10868 99610 ns

Ca (mmol/mmol creatinine) 1.960.4 3.160.8 ns 0.660.1 1.860.6 ns

Na (mmol/mmol creatinin) 4265 4666 ns n.d. n.d.

Pi (mmol/mmol creatinin) nd nd 1662 1662 ns

doi:10.1371/journal.pone.0001288.t001..
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GLUT2-mediated sugar detection. Further investigation with a

broader analysis, is necessary to resolve this question.

Kidney adaptations to impaired detection of

extracellular glucose
The urinary excretion of glucose observed here might be due to

specific or general tubular adaptations. In the kidney, a failure of

tubules to reabsorb small molecules will cause increased urinary

excretion of glucose but also of amino acids, minerals, electrolytes

(sodium, potassium, bicarbonate) and water as observed in renal

Fanconi syndrome [41]. This will result in polyuria, polydipsia,

dehydration, hypophosphatemic rickets and growth retardation.

Similarly, patients affected by GLUT2 mutation do not reabsorb

glucose and various filtered solutes because of impairment in

GLUT2-mediated efflux of glucose [42]. Accumulation of

glycogen in renal tubular cells has been described in Fanconi-

Bickel patients [11]. Glycogen deposit is maintained in the kidney

of fasted GLUT2-loop transgenic mice but there was no

perturbation of basal kidney function. Such perturbation appeared

only after oral glucose load or the consumption of a glucose-rich

diet. In GLUT2-loop transgenic mice, normal reabsorption of

glucose and associated solutes occurred when blood glucose levels

were under 170 mg/dl. Glucose reabsorption is not sufficient in

transgenic mice and the threshold is lower than in wild-type mice,

but there was no significant electrolyte loss. The renal adaptations

related to GLUT2-mediated sugar detection are restricted here to

decreased glucose reabsorption. We found a relationship in kidney

between glucose detection by GLUT2 and the decrease in SGLT1

mRNA. Mutations in SGLT1 gene provokes glucose-galactose

malabsorption accompanied by mild glucosuria whereas familial

renal glucosuria is due to mutations in the SGLT2 gene [43].

Several proteins of proximal tubule and their regulators are likely

to be involved in the process of glucose tubular reabsorption.

Thus, further investigation is required to understand the molecular

mechanisms for this renal functional adaptation.

The mouse phenotype described here, characterized by a low

level of insulin secretion and a high level of glucosuria, is

reminiscent of a monogenic (HNF1a) form of diabetes. MODY3

patients have a defect in insulin secretion but no obvious

hyperglycemia probably related to massive urinary glucose loss

[44]. The maximal renal reabsorption capacity of these patients, as

in HNF1a-null mice, is decreased due to substantially less

transcription of a sodium/glucose co-transporter (SGLT2) [45].

In contrast with GLUT2-loop transgenic mice, HNF1a-null mice

had defective renal tubular reabsorption of various metabolites

(amino acids, phosphates), in addition to glucose, suggesting that

HNF1a levels are not involved in the defect we report in mice with

an impaired detection of extracellular glucose.

In conclusion, artificial inhibition of GLUT2-mediated sugar

sensing in a limited number of tissues, modified various parameters

of glucose homeostasis. This may be advantageous because urinary

glucose loss can eliminate excess glucose and reduce fat deposits.

Moreover, an attenuated secretion of insulin on demand can

preserve pancreatic potential in the long term.

MATERIALS AND METHODS

Creation of transgenic mice
The actin promoter was used to drive strong and ubiquitous

expression of the transgene. We used pCAGGS-IRES2-EGFP

(kindly provided by MR Hirsh), derived from the pCAGGS

eukaryotic expression vector [46]. We replaced the internal

ribosome entry site (IRES) and the enhanced green fluorescent

protein (EGFP) gene with the EGFP-Loop DNA fragment coding

for amino acids 237 to 301 previously described [12].

Genotyping of transgenic mice was carried out by PCR with a

forward primer recognizing EGFP (59-CGAATTCCTGTCCA-

GAAAGCC-39) and a reverse primer recognizing the GLUT2

loop (59-AGAAGTCAGATGCTCAAGGGG-39). The transgene

copy number was determined by real-time PCR with the same

primers. Apolipoprotein A1 was used as a reference (primers from

A. Kalopissis).

The animals were bred in the transgenic animal facilities of

IFR58 (Paris). All animal procedures complied with published

recommendations for the use of laboratory animals by the French

government. Tg B , Tg P and Tg G indicate transgenic mice from

the B, P and G lines, respectively.

Analysis of metabolic parameters
Blood samples were collected from the tail of conscious mice.

Blood glucose concentrations were measured with a glucometer

(Accu-chek Go, Roche); urinary glucose, with test strips (Keto-

Diastix, Bayer); plasma insulin concentrations, with an ELISA kit

with a mouse insulin standard (Rat/Mouse insulin Kit, LINCO);

plasma free fatty acids (FFA) concentrations, with an NEFA C

determination kit (Wako); plasma triglycerides, with a TG

enzymatic determination kit (Biomérieux) and tissue glucose

content, with a D-glucose/D-fructose determination kit (Boehrin-

ger Mannheim/R-Biopharm, Roche).

Levels of urine proteins, creatinine, sodium, potassium,

chloride, calcium, phosphate and glucose were measured with

an automatic analyzer (Hitachi 911; Boehringer Mannheim).

Tissue glycogen content was measured enzymatically (Roche

Applied Science). Before insulin content determination, the

pancreas was homogenized in an acid-alcohol solution.

RNA extraction and quantitative PCR analyses
Total RNA from liver, kidney, pancreas and epididymal fat pads

was extracted with Tri-Reagent (MRC). Reverse transcription

(RT) was carried out with 1 mg total RNA. Messenger RNA was

quantified with the Light-Cycler system (Roche Molecular

Biochemicals I primer, Indianapolis). Specific primers were

designed for GLUT2 (Fwd: 59-ACCCTGTTCCTAACCGGG-

39, Rev: 59-TGAACCAAGGGATTGGACC-39), proinsulin (Fwd:

59-AAACCCACCCAGGCTTTTGT-39, Rev: 59-ATCCACAA-

TGCCACGCTTCT-39) SGLT1 (Fwd: 59-GGGTGGCTTTG-

AATGGAA-39, Rev: 59-CCTTGATGTAAATCGGGACAA-39)

and SGLT2 (Fwd: 59-GCTGGATTTGAGTGGAATGC-39,

Rev: 59-CGGTCAGATACACTGGCACA-39). Primers used to

detect glucokinase, SREBP-1c and ChREBP [47], FAS and ACC

[48] have been described previously. L19 was used as an internal

control [49].

Immunoblotting analysis and immunoprecipitation
Crude membrane preparations were obtained as previously

described [50]. The membrane proteins were resolved by 12%

SDS-PAGE and transferred to nitrocellulose membrane.

Membrane proteins were analyzed by immunoblotting with

antibody against the GLUT2 intracellular loop (produced by

Eurogentec) and the first GLUT2 extracellular loop (Chemicon).

For immunoprecipitation, frozen liver was homogenized in RIPA

buffer (20 mM Tris pH7.5, 1 mM, EDTA, 0.15M NaC1, 10 mM

KC1, 1%NP-40, 0.1% deoxycholate, 0.1% SDS) containing

protease inhibitor cocktail (Roche) and 42 mM MG132 (Calbio-

chem). Liver extracts were incubated with rabbit polyclonal antibody

against the GLUT2 intracellular loop and protein G-Sepharose

Glucose Sensing In Vivo

PLoS ONE | www.plosone.org 10 December 2007 | Issue 12 | e1288



beads. The immune complexes were analyzed by immunoblotting

with the antibody against the GLUT2 loop.

Immunohistochemical and morphometric analyses
The pancreas was fixed overnight in Bouin’s solution and

embedded in paraffin according to standard procedures. Ten

sections per pancreas, taken every 72nd serial section (6 mm thick)

obtained throughout the block of pancreas, were immunostained

for insulin (guinea pig anti-porcine insulin antibody, 1:500,

ImmunO, MP biomedical), detected with a peroxidase-conjugated

rabbit anti-guinea pig antibody (1:50, Dako) and a peroxidase

substrate kit (DAB, Vector Laboratories). Tissue sections were

counterstained with hematoxylin. Morphometrical analyses were

performed as described in [51]. Surface area occupied by insulin

staining and total pancreatic tissue were quantified with a 106
objective on a Leica microscope outfitted with a camera and the

Leica Qwin software (Leica, France). The 1-cell fraction (percent

beta-cell in the pancreas) represents the ratio of insulin-positive cell

area to the total pancreatic tissue area on the entire section. 1-cell

mass was calculated as the surface ratio between 1-cell and total

pancreatic tissue multiplied by pancreatic weight. The proportions of

small (,25 mm), medium (.26 to ,100mm), and large (.100mm)

islets were also quantified. A total of 250-500 islets were counted per

pancreas. At least 3 mice were analyzed per group.

Histological sections of pancreas were incubated with Schiff

reagent (Merck) for glycogen visualization.

In vivo studies
Mice were fed either a standard carbohydrate diet (23% proteins,

51% carbohydrates, 3% lipids) obtained from Dietex (Saint-

Gratien, France) or a glucose-rich diet (19% casein, 0.3%

methionine, 65% dextrose) as previously described [52].

For oral glucose tolerance tests (OGTT), mice were fasted for

24 h and then received a glucose load of 3.6 g/kg. For insulin

tolerance tests (ITT), mice were injected intraperitoneally with

1unit/kg insulin (Actrapid Novo).

When required, mice were injected with 200 mg/kg strepto-

zotocin (Sigma).

For urine analysis, mice were individually housed in metabolic

cages with free access to water and a standard or glucose-rich diet.

The mice were allowed to adapt to the cages for three days. Intake

of food and water was then measured every 24 h and urine was

collected throughout three consecutive days. Spontaneously

excreted urine from each 24 h-period was collected for measure-

ment of urinary creatinine and protein excretion.

Indirect calorimetry
These studies were conducted in an open-circuit, indirect

calorimetric device [53,54]. The apparatus was improved and

developed within the framework of the AddenFi project, for the

valorization and commercialization of laboratory setups, at INRA-

AgroParisTech, INA-PG UMR 914 Research Unit [53]. The

temperature in the metabolic cage was maintained at 3261uC.

Oxygen consumption and carbon dioxide production were

recorded every 10 s using a computer-assisted data acquisition

program written under Labview 7.1. A previously described

stoichiometric formula was used to calculate oxidation of glucose

and lipid. Protein oxidation was not taken into account. Resting

and activity-related metabolic rates were calculated separately

(Kalman filtering method) [53,54,55].

The mice were placed in the metabolic cage at 9:00 a.m. with

water, but no food, available. An oral glucose tolerance test

(3.6 mg/g) was carried out at 2:00 p.m. and a calibrated test meal

(1g of the standard diet) was given at 6:00 p.m. Respiratory

exchanges and spontaneous activity were continuously recorded

until 9:00 a.m. the following day.

The basal metabolic rate was defined as the mean resting

metabolic rate measured between 5:00 a.m. and 7:30 a.m. when

the mice were in a post-absorptive state. The changes in metabolic

rate, respiratory quotient, glucose and lipid oxidations induced by

the OGTT and test meal were calculated relative to the stable pre-

test values measured during the preceding hour.

Total fat
Total fat was determined by dual-energy X-ray absorptiometry

(Lunar PIXImus mouse densitometer; GE LUNAR Corp.). Mice

were fasted for 48h before the analysis and anesthetized with

Avertin (0.02 ml/g body weight).

Kidney echography
Ultrasonic images were acquired in vivo using a clinical

dermatological imaging system (Ultrasons Technologies, Tours,

France) with custom modifications for dynamic data acquisition

and high-frequency electronics [56]. Mice were anesthetized with

1.5% isoflurane.

Statistical analyses
Results are presented as means6S.E.M., and unpaired t test was

used for data analysis unless indicated (i.e. ANOVA) (GraphPad

Software).
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