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Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by
structural constraints. By determining these structural constraints, we can understand the ‘‘rules’’ that define functional
cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an
information theory based method for approximating the physical limitations of cooperative interactions by comparing
sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory
protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated
genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and
Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal.
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INTRODUCTION
The regulation of transcriptional initiation from individual eukar-

yotic promoters is often controlled by multiple cooperatively

interacting transcription factors. These factors bind to separate sites

in cis-regulatory sequences and physically interact with each other,

either directly or through additional proteins, to activate or repress

transcription [1,2,3]. These physical interactions among transcrip-

tion factors must constrain how their binding sites can be positioned

relative to each other and to the relevant promoters. Yet, there is

often considerable variability in the order, orientation and spacing of

binding sites for interacting transcription factors [4,5,6]. Under-

standing how the arrangement of sites is related to the stability of

these complexes and their regulatory activity is essential if we are to

understand the regulatory content of eukaryotic genomes.

To successfully model the binding of multi-meric complexes to

different target sequences, many energetic contributions need to

be considered. The affinity of each transcription factor for DNA

varies considerably with the precise bound sequence, even among

known in vivo targets [7,8]. The stability of the entire complex is

also dependent on how compatible the positioning of the sites are

with the protein-protein interactions necessary to form the

complex. Poorly positioned sites presumably introduce clashes or

strain into either the complex or DNA which will, in turn, reduce

the stability of the complex.

Here, we combine DNA sequence analysis and genome-wide

expression data to discern the constraints on the arrangement of

binding sites for transcription factors involved in regulating the

synthesis of sulfur-containing amino acids in the yeast Saccharomyces

cerevisiae. This work builds on our previous modeling of bipartite

prokaryotic ribosome and s70 binding sites [9,10]. In both of these

cases, initiation requires the cooperative binding of two in-

dependent components separated by a variable spacer, the Shine-

Dalgarno and P site for ribosome binding sites, and the 210 and

235 for s70 binding sites [11,12,13,14]. Since there were a large

number of characterized sites for these systems, we constructed

a robust distribution of the allowable spacings between binding

components. Assuming that the spacing that would induce the

least amount of strain in the protein or in the bound DNA upon

binding would be the most commonly observed, and that the

frequency of occurrence of all other spacings would be directly

related to the energetic consequence of using that spacing, we

could model the energetic contribution of different spacings to the

formation of a stable initiation complex.

Cooperatively acting transcription factors in eukaryotes are

similar to the prokaryotic ribosome and s70 in that they have

independent binding components separated by variable spacers,

but they are different in that the components are not physically

linked upon binding and therefore can bind in different orders,

orientations, and with greater variability in their spacing. We have

devised a method to determine these additional physical

constraints by optimizing an information theory based model

against microarray data. We can use these optimized constraints to

not only infer structural characteristics of the regulatory complex,

but also to quantify the binding of these multi-meric complexes to

different DNA sequences, and to accurately predict target genes.

Met4 is the major transcriptional activator of sulfur utilization

genes in Saccharomyces cerevisiae even though it does not bind directly to

DNA [15,5]. Met4 stabilization is dependent upon at least two

additional proteins. One of these is the centromere-binding factor

(Cbf1) [15], whose DNA binding activity is stimulated by association

with Met28 [16]. It has been suggested that the Cbf1-Met28-Met4

complex may be sufficient for activation of some genes, but

coordination by a second factor is necessary for others [4]. We are

interested in describing this coordinated system. The second

stabilizing factor that we will study is Met31, a factor unique to

sulfur regulation [17].
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Neither the distance between Cbf1 and Met31 in functional

Met4 stabilizing complexes, nor the distance between Met4 and

the initiating polymerase is fixed [5]. We extended the information

theory-based method we used to study prokaryotic translational

and transcriptional initiation to model Cbf1 and Met31 interac-

tions, allowing for the greater flexibility present in this system.

MATERIALS AND METHODS

Cbf1 and Met31 binding models
We built a weight matrix describing the sequence preferences of

Cbf1 from 16 Cbf1 binding sites characterized by Wieland et al.[18].

Binding matrices were built using the standard Delila programs

[19,20]. Since Cbf1 binds as a homodimer, we used each sequence

and its complement to build our model [21] (Fig. 1A). Because of the

lack of experimentally verified binding sites for Met31, we modeled

its binding by analyzing 21 non-divergently transcribed genes

identified in a Met4 chromatin immuno-precipitation assay [3] (we

selected genes with p,0.001). We used MEME [22] with the -tcm

model and required at least 10 copies of a motif to identify sequences

enriched in these target genes, from which we computed an initial

Met31 weight matrix. We then scanned the entire genome for sites

with greater than 10 bits of information against this model,

identifying 209 sites, from which we constructed the Met31 weight

matrix used in our analysis (Fig. 1B).

Searching algorithm
Multi-component binding systems with variable spacing between

components have previously been modeled [9,10]. In the case of

the prokaryotic ribosome and s70, the binding components are

physically connected. In both instances, deviations in the optimal

spacing between components introduces strain in the bound

complex and affects the binding energy [11,12,13,14]. To model

these multi-meric binders the following equation was used:

Flexible Site Information~Ri(A)zRi(B)�GS(d) (bits=site) ð1Þ

where Ri(A) is the relative strength, or individual information, of

binding factor A, and Ri(B) is the relative strength of binding factor

B according to [20]. GS(d) is the gap surprisal (based on Tribus’

surprisal function [23]), or penalty of having a spacing of d between

sites A and B as determined by [9,10]:

GS(d)~� log2 n(d)=nze(n) (bits=spacing): ð2Þ

n(d) is the number of occurrences at spacing d and n is the number

of total occurrences over the allowed values of d. e(n) is a small

sample correction value [24,9]. For our initial analysis of Cbf1 and

Met31, we used a flat spacing distribution where all spacings have

the same gap surprisal value of GS(d) = -log2(1/(dmax–dmin+1)),

where dmin is the shortest spacing between Met31 and Cbf1, and

dmax is the longest spacing. The distance between Met31 and Cbf1

is calculated between the zero positions of the binding components

as with previous flexible models.

For the ribosome and the polymerase, the binding components

are physically linked and can only bind in one orientation relative to

each other. For cooperatively acting transcription factors though,

there could be variation in the orientation of the sites relative to each

other. To account for this, we can adapt the gap surprisal function to:

OS(o)~� log2 n(o)=nze(n) (bits=spacing): ð3Þ

where we calculate an orientation surprisal (OS(o)) that is the

logarithm of the frequency of occurrence at each orientation. For

a system where both orientations occur at equal frequency, the

number of occurrences at either orientation would be n(o) = 1, and

the total number of occurrences is n = 2. The orientation surprisal for

this system would therefore be 1 bit of information. In a system

where there is no variability in orientation, the frequency of

occurrence at that orientation would be n(o)/n = 1, and therefore the

orientation surprisal would be 0 bits. The advantage of the OS(o)

calculation is that we can model the subtle energetic differences for

systems that allow either orientation, but favor one over the other.

To calculate the total information for Met4 coordination, we

can now expand equation (1) to:

Flexible Site Information~Ri(Cbf 1)zRi(Met31)�

GSCbf 1{Met31(d)�OSMet31(o) (bits=site):
ð4Þ

There is no orientation surprisal for Cbf1. Since Cbf1 is

homodimeric and has a symmetric matrix, the Cbf1-DNA

complex would be identical for either orientation. In this case,

the frequency of occurrence of a given orientation would be 1, and

OSCbf1 = 0 bits. Therefore, the orientation surprisal only applies to

asymmetric binders.

Combinatorial scans were done using multiscan [10] to

identify and quantify Cbf1/Met31 cooperatively acting binding

sites in the genome. The individual information contribution for

both sites (Ri(Cbf1) and Ri(Met31)) were calculated over the range

24 to +5, since this is the range of conservation for both logos

(Fig. 1) [20]. Sites were only considered if each component had an

Ri.0 bits (which would correspond to a -DG of binding [20,25])

and they have a flexible site information .0 bits. For a site to have

a positive flexible site information, the ordering and orientation of

the pair have to be within the defined spacing and ordering

parameters. For any spacing or orientation outside of the specified

range, the sites would have a surprisal penalty equal to infinity

according to equations (2) and (3), and a flexible site information

,0 bits according to equation (4).

All genes in the genome were then ranked based on the strength

of their strongest upstream site. Microarray expression data for

sulfur amino acid pathway-affected cells (see Microarray Datasets)

were then averaged for the top 30 genes in our ranking. All values

averaged were log2 of the expression fold change between affected

and unaffected cells. This was done independently for induction

and repression experiments.

The physical constraints that we want to define are: the

ordering of the sites relative to the gene start, the orientation of the

matrices, the maximum allowed distance between Met4 and the

polymerase binding site, and the spacing range between Cbf1 and

Met31 that can bind Met4. We varied these constraints, and

iteratively refined the model to get the optimal predictor. We

evaluated any given set of parameters by calculating the average

expression change in the top 30 ranked genes. The greater the

expression change the better the model.

Another approach could be to cluster genes based on similar

trends in expression data across several experiments, and then try

to train our parameters based on this set of genes. One

disadvantage of this is that it is difficult to discern directly from

indirectly regulated genes in these clusters. By scanning the

genome and ranking the genes, we are selecting only for genes that

are directly regulated. Also this approach does not exclude genes

that are regulated but had anomalous expression data due to

experimental error. Since there have been at least 20 genes

implicated in sulfur assimilation [5], we chose to average the top

30 gene expression differences to evaluate our model. We chose 30

Determining Constraints
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so that we would not overfit our model by looking at too few genes,

and not introduce noise into our analysis by averaging too many.

Microarray Datasets
We used microarray data from two sources for our analysis. Gasch

et al. [26] reported amino acid starvation data, where transcription

of Met4 regulated genes was induced. Fauchon et al. [27] reported

Cd2+ addition experiments where Met4 regulated genes were

induced, and Met4 deletion experiments where Met4 regulated

genes were repressed. Our models were optimized against these

data as mentioned above. Microarray expression patterns were

visualized using TreeView [28]. The yeast genome sequence and

annotation that we used in our analysis came from Genbank

accession numbers NC001133 to NC001148.

RESULTS

Cbf1 and Met31 logos
Since Cbf1 is a homodimeric protein, we used all sequences and

their complements to build our model [21]. Conservation at

positions 22,21 and +2,+3 is strong and does not match the helical

accessibility wave (Fig. 1A). Deviation of sequence conservation from

the helical accessibility wave is generally an indicator of structural

changes in the DNA substrate [29]. This may be consistent with the

observed bending of DNA by Cbf1 [30].

The Met31 model was built as described in Materials and

Methods (Fig. 1B). Sequence conservation appeared to follow the

helical accessibility wave well, and it was contained within one

major groove. Met31 has an asymmetric binding site, so it can

possibly bind with two different orientations. We tested both

orientations in our analysis. The information content for the Cbf1

logo is 12.9 bits over the range 24 to +5. The information content

for the Met31 logo is 11.9 bits over the range 24 to +5.

Orientation and ordering
Since Cbf1 and Met31 are not physically linked upon binding, it

was not immediately obvious what the ordering and orientation

constraints on their binding are in functional Met4 docking

complexes. To determine this, we tested the predictive capabilities

of all combinations of orientation and ordering for Cbf1 and

Met31 using the gene-ranking approach described in Materials

and Methods. Briefly, we determined the flexible information for

the cooperative model as determined by equation (4) [9,10], and

ranked all genes in the genome based on the strength of the

strongest site in the intergenic region immediately upstream of

their starts. We then calculated the average expression fold change

of the top 30 genes in this ranking based on Met4 induced and

repressed microarray experiments [26,27]. We regarded those

combinations that gave the highest average microarray expression

change to be the optimal organization for Met4 coordination.

Fig. 2 shows how well different combinations performed.

Cbf1 alone was not sufficient to identify the Met4 regulated

genes. The average expression fold change for the top 30 ranked

genes was 0.09 and 0.16 for induction and repression data

respectively, we report corresponding values for all other combina-

tions. Met31 alone appeared to be a better predictor than Cbf1, but

was still weak (0.44 and 20.90). This improvement of Met31

prediction over Cbf1 is expected since Cbf1 has a regulatory role

outside of Met4 binding [31]. For both Cbf1 and Met31, we only

considered binding sites within 1000 bases upstream of the closest

gene start. By searching for Cbf1 and Met31 sites together, with

a maximum spacing of 100 bases between the zero positions of the

binding components (Fig. 1) and the downstream component could

be a maximum of 1000 bases upstream of the gene start, the

prediction was better. If we searched with the order Cbf1-Met31-

gene start, we were able to identify more genes with the expected

microarray pattern than with the order Met31-Cbf1-gene start (0.69

and 21.41 vs. 0.14 and 20.37).

Since Cbf1 is a homodimer, its binding is independent of

orientation. Since Met31 is monomeric, its binding is orientation

dependent. When we allowed for both orientations of Met31

downstream of Cbf1, we got the largest change of expression (0.95

and 21.57). This suggested that transcriptional activation by Met4

requires a Met31 site with any orientation to fall between Cbf1

and the gene start (bottom right panel of Fig. 2).

To test whether the average expression values that we observed

are statistically significant, we randomly chose 10,000 sets of 30

genes from the genome and averaged their expression change

values. We did this for both the induced and repressed data sets.

Both sets gave similar normal distributions with a mean of 20.015

and SD of 0.11 for the induced data set and a mean of 0.001 and

SD of 0.094 for the repressed data set. For the best organization of

sites in Figure 2, an expression change of 0.95 and 21.57 would be

8.7 and 16.7 standard deviations from the mean respectively. The

probability of selecting a set of 30 genes with an average

expression change this high randomly would be less than 161028.

Figure 1. Cbf1 and Met31 sequence logos. Sequence logos were made
as described in Materials and Methods. The height of each letter is
proportional to the frequency of that base at that position. The height
of the letter stack is the information content at that position. The cosine
wave represents the helical twist of B-form DNA. The sequence logos
were generated using the standard Delila programs [19,21].
doi:10.1371/journal.pone.0001199.g001
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All models for the remainder of this analysis will have these

ordering and orientation requirements imposed on them. The

designation of the Met31 model orientation as ‘‘normal’’ or

‘‘inverted’’ is arbitrary. We also tested the ‘‘inverted’’ Met31

model alone, and inverted Met31 upstream of Cbf1, but the results

were similar to equivalent scans with the ‘‘normal’’ orientation

(data not shown).

Spacing constraints
There are two spacing constraints on this system, the distance

between the Met4 docking complex and the initiating polymerase,

and the distance between the two binding components (Cbf1 and

Met31) within the Met4 docking complex. To define what these

spacing ranges are for functional Met4 binding sites, we systemat-

ically modeled different spacing ranges, and quantified the models by

the gene-ranking approach previously described. Interestingly, if we

varied one of the spacing constraints, the optimal spacing for the

other would differ slightly. To identify which spacing parameters

define the optimal predictor, we varied both spacings simultaneously,

and quantified their predictability by averaging the expression

change of their 30 highest ranking genes.

We increased the maximum allowed distance of the Met4

docking complex from the gene start in 50 base increments as

measured by the distance between the Met31 site and the

translational initiation codon. At each 50 bp increment, we varied

the minimum and maximum allowed distance between Cbf1 and

Met31 from 1 to 100 bases. These distances are relative to the zero

position of both matrices (Fig. 1). We then summed the average

expression change for the induction and repression experiments

for all combinations of spacings, and determined which combina-

tion predicted the microarray data best.

For the first spacing constraint, the distance between Met4 and

the polymerase, we found the optimal maximum spacing was 450

bases (Fig. 3). The predictability of the model seemed to increase

linearly from 100 to 350 bases suggesting that the sites are evenly

distributed over this range. There appeared to be few or no genes

with sites closer than 100 bases upstream, or sites farther than 450

bases upstream that had the expected expression pattern.

For the second spacing constraint, the distance between Cbf1

and Met31, we found the optimal spacing range to be 29 to 268

bases, the minimum to maximum spacing allowed between each

site (Fig. 4). This was the range used in the analysis in Fig. 3.

Ranges close to 29 to 268 appeared to have a similar level of

predictability as indicated by the redish semi-circle in Fig. 4, but

29 to 268 had the highest expression change and the tightest

range. The average expression changes for these two spacing

parameters were 1.04 and 21.77 for induction and repression data

respectively.

Optimal model
Based on the analysis in Fig. 2, Fig. 3, and Fig. 4, the optimal

model is shown in Fig. 5. This model requires a Cbf1 site to be 9 to

68 bases upstream of a Met31 site with either orientation, and for

the Met31 site to be no more than 450 bases upstream of the

translational initiation codon. When we scanned the genome with

this model, we see that most of our top hits are genes known to be

involved in sulfur amino acid biosynthesis (Fig. 6). Two genes in

the top 23 hits have a strikingly unexpected expression pattern

(Reb1 and Gar1). Additional analysis of these sites show that they

both have a strong Cbf1 site, but a ‘‘T’’ instead of ‘‘G’’ at position

+1 of their Met31 site. This suggests that the information

contribution at position +1 may be greater than that in our

current matrix. Several genes have both the expected expression

profile and a predicted Met4 binding site, but their functions have

not been biochemically characterized (DDR48, YIL074C,

YJL060W, YHR112C). Clustering of co-regulated genes by the

gene-ranking method may have identified other genes involved in

sulfur utilization.

Figure 2. Met4 binding by Cbf1 and Met31 is dependent upon
ordering but not orientation. We scanned all intergenic regions in
yeast with the models presented in Fig. 1 with different orientations
and orderings relative to the gene start point. We then ranked all genes
in the genome based on the strength of their strongest upstream
binding site, and we present here the corresponding expression
changes as determined by microarrays. The experiments that each
column represent correspond to those in Fig. 6. For columns 1–9
(marked with a gray box) we expect regulated genes to have increased
expression and therefore to be red. For columns 10–13 (marked with
a blue box) we expect regulated genes to have a decreased expression
and therefore to be green. Since the Met31 matrix is asymmetric, it
could bind with two different orientations. Those circles labeled
‘‘Met31’’ have the same orientation as the Met31 logo in Fig. 1. Those
circles labeled ‘‘Inverted’’ have the opposite orientation (see Fig. 5). The
optimal combination in the lower right corner allows for either
orientation of Met31. The arrow signifies the gene start. The average
expression change for the top 30 genes was calculated for each
combination of sites for both the induced (columns 1 to 9) and
repressed (column 10 to 13) experiments and are reported next to their
respective columns.
doi:10.1371/journal.pone.0001199.g002
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To test whether we were over- or under-fitting our model, we

repeated the optimization by averaging the top 20 and 40 genes

instead of 30. When we did this our results differed slightly. By

averaging the top 20 genes, we found the optimal spacing range

shrunk slightly to 13 to 68 bases between Cbf1 and Met31 and the

optimal maximum distance between Met31 and the gene start

remained at 450 bases. At this smaller range, Gsh1 and Sam1 were

lost, both which have been implicated in sulfur assimilation. By

averaging the top 40 genes, the spacing range remained the same

(9 to 68 bases), but the maximum spacing range expanded to 750

bases. No new genes with the expected expression pattern or

functional evidence for Met4 regulation were identified at this

larger spacing. The larger the number of genes that are averaged,

the more likely random genes with above average expression

differences will be in the averaged set, which will obscure the

actual parameters. Thirty genes appeared to be the appropriate

Figure 3. Met4 binding is within 450 bases of the gene start, but not within 100 bases. We varied the allowed distance that the Met31 binding site
can be from the gene start point in our models, and quantified how this spacing constraint affected our ability to predict microarray expression data.
A) We plotted the average expression change of the top 30 hits in the genome for different maximum spacings from the gene start. The top line
corresponds to data from experiments where we expected increased expression (columns 1 to 9 in B), and the lower line is from experiments where
we expected decreased expression (columns 10 to 13 in B). The microarray data that corresponds to our gene-ranking are shown in B. The conditions
for each column in the microarrays correspond to the labeled columns in Fig. 6.
doi:10.1371/journal.pone.0001199.g003
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Figure 4. The optimal spacing range between Cbf1 and Met31 is 9 to 68 bases. We varied the minimum (X axis) and maximum (Y axis) distance that
Cbf1 and Met31 could be from each other in our model, and calculated the average expression change within the corresponding top 30 hits,
according to these ranges. We show here the average expression change for only those experiments that we expected to have a decreased
expression (columns 10 to 13 in Fig. 6). The colors correspond to the key in lower portion of the plot.
doi:10.1371/journal.pone.0001199.g004

Figure 5. The Met4 activation model based on our analysis. We summarize here the spacing, ordering, and orientation constraints we used to
define functional Met4 binding sites. Since Met31 can bind with either orientation, we show logos for both Met31 orientations. The distances
between each set of Cbf1 and Met31 sites were plotted with red boxes on a cosine wave for 23 high-ranking genes to show helical preferences. The
arrow represents the translational start, and the allowed distance between the Met4 stabilization complex and the translational start is written above
it. The expression data on the right is what was predicted by this model, and is described in Fig. 6.
doi:10.1371/journal.pone.0001199.g005
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number to average, and the relatively consistent parameters

observed from averaging 20, 30, or 40 genes suggested that these

parameters are reliable.

To test whether there is a tendency for Cbf1 and Met31 to bind

on the same face of the DNA, we plotted the relative spacing

between the two sites on a cosine wave with the same period as B-

form DNA, 10.6 bases (Fig. 5). We plotted the spacings of 19 of the

23 top ranking genes (all sites except for Reb1, Gar1, Idh1 and

YER080W) and YHR112C, Mxr1, Met10, and YML018C which

had both a strong flexible information and expression change. To

determine what the optimal phase of the cosine wave was, we

plotted each spacing on a cosine wave and calculated the average

height of all spacings on the helix. That is, if all spacings were at

the top of the cosine wave (occurred in multiples of 10.6 bases)

then the average helical location would be high. We determined

the phase of the cosine wave that gave the highest average helical

location of these 23 spacings, and found the optimal phase to peak

at 213.86 bases relative to the Met31 zero position. To see if the

relative placement of these spacings on the cosine wave is higher

than expected, we determined the average helical location of

random sets of 23 Cbf1/Met31 pairs. Our set had an average

helical positioning greater than 95 percent of random sets.

Sam1 has the shortest Cbf1-Met31 spacing of 9 bases. This

spacing is completely on the opposite face of the DNA according

to a phasing of 213.86 bases. One would expect spacing to be

more constrained at shorter distances, since it is more difficult for

DNA to bend. We looked at the region upstream of the Sam1

translational start to see if there was another strong Cbf1-Met31

pair with a larger spacing. We found a second weaker Cbf1 site 36

bases upstream of the Met31 site, giving a total flexible

MET30      22.89    268492     -1    -17    158   YIL046W     SULFUR AMINO ACID METBOLISM 
RAD59      21.89    345105     -1    -44    152   YDL059C     DNA REPAIR AND RECOMBINATION 
SUL2       21.62    323262     -1    -23    283   YLR092W     TRANSPORT 
CYS3       21.44    130615     -1    -27    187   YAL012W     METHIONINE BIOSYNTHESIS 
MET28      20.49    384265     -1    -68    149   YIR017C     SULFUR AMINO ACID METBOLISM 
MET14      20.35    439220     +1    -34    192   YKL001C     SULFATE ASSIMILATION 
MET32      20.05    964883     -1    -54    322   YDR253C     METHIONINE METABOLISM 
MUP3       19.45    26061      +1    -22    178   YHL036W     TRANSPORT 
YAP5       18.98    384396     +1    -64    210   YIR018W     TRANSCRIPTION 
REB1       17.36    337088     +1    -19    272   YBR049C     TRANSCRIPTION 
DDR48      17.32    608356     -1    -55    332   YMR173W     UNKNOWN 
MET17      17.31    732271     +1    -50    273   YLR303W     METHIONINE BIOSYNTHESIS 
GAR1       17.11    283463     +1    -27    163   YHR089C     RRNA PROCESSING 
YIL074C    16.70    222725     -1    -57    238   YIL074C     UNKNOWN 
GSH1       16.57    236705     +1    -12    353   YJL101C     GLUTATHIONE BIOSYNTHESIS 
MET1       16.57    571003     +1    -15    251   YKR069W     METHIONINE BIOSYNTHESIS 
IDH1       16.36    559446     -1    -15    443   YNL037C     TCA CYCLE 
MET2       16.20    117046     +1    -48    303   YNL277W     METHIONINE BIOSYNTHESIS 
YER080W    16.07    319563     -1    -10    396   YER080W     UNKNOWN 
YJL060W    15.81    323243     +1    -13    138   YJL060W     UNKNOWN
SAM1       15.61    514991     +1    -9     273   YLR180W     METHIONINE METABOLISM 
MET6       15.56    342606     +1    -50    443   YER091C     METHIONINE BIOSYNTHESIS 
SAM2       15.55    1454752    +1    -25    296   YDR502C     METHIONINE BIOSYNTHESIS 
HHF2       15.34    576370     +1    -33    358   YNL030W     CHROMATIN STRUCTURE 
ARP8       15.16    592917     +1    -16    329   YOR141C     CYTOSKELETON PUTATIVE 
YHR112C    15.05    335839     +1    -26    173   YHR112C     UNKNOWN 
OPY2       14.63    697205     -1    -22    389   YPR075C     SIGNALING PUTATIVE 
MXR1       14.60    234775     -1    -68    161   YER042W     OXIDATIVE STRESS RESPONSE 
ACP1       14.57    80710      -1    -15    168   YKL192C     FATTY ACID BIOSYNTHESIS 
LCB3       14.55    158052     -1    -50    133   YJL134W     SPHINGOLIPID METABOLISM 
SFH1       14.53    778313     +1    -47    449   YLR321C     CHROMATIN STRUCTURE 
PAN1       14.43    370029     -1    -40    124   YIR006C     CYTOSKELETON AND ENDOCYTOSIS 
SNC2       14.10    931319     +1    -51    241   YOR327C     SECRETION 
MET10      13.99    213095     +1    -24    205   YFR030W     SULFATE ASSIMILATION 
YML018C 13.98 236206 +1 -25 254 YML018C UNKNOWN
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Figure 6. The top hits are involved in sulfur amino acid biosynthesis. These are the top hits according to our optimal spacing values. The first 9
columns are data for experiments that should induce the expression of Met4 regulated genes and give a red pattern. The last 4 columns we expect to
see a decrease in expression of Met4 regulated genes and give a green pattern. Experiment information for each column is reported vertically above
each column. Each row corresponds to a different gene followed by its common name, its flexible information (Ri), the coordinate of the Met31
binding site in the S. cerevisiae genome, the orientation of the Met31 matrix, the distance Cbf1 is upstream of Met31, the distance the gene start is
downstream of Met31, the gene name according to its annotation in the yeast genome, and a description of its function.
doi:10.1371/journal.pone.0001199.g006
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information of 12.6 bits. This spacing would suggest same face

binding according to a phasing of 213.86 bases. The strong Cbf1

site 9 bases upstream of the Met31 site may have occurred

randomly, or may be part of an overlapping second site.

To calculate the flexible individual information for each binding

site, we used equation (4). Since we did not know the energetic effect

of different spacings on the complex initially, we treated all spacings

equally. That is, over the range 9 to 68 (60 bases of variability) all

positions had the same gap surprisal of GS(d) = -log2(1/60) = 5.91 bits

according to equation (2). We also assumed an equiprobable

occurrence of each orientation of Met31, so that OSMet31(o) = -log2(1/

2) = 1 bit of information according to equation (3). Therefore the GS

and OS variables in equation (4) effectively become constants

summing to 6.91 bits of uncertainty for each site. Because of the

small number of target genes, and the already strong predictive

capabilities of our model, we cannot determine the individual

spacing constraints for this system. If we had a system with more

sites, robust spacing and orientation distributions could be de-

termined and individual penalties could be assigned.

We can use these values to predict the Rsequence or average

information content for this system which is:

Rsequence(Met4)~Rsequence(Cbf 1)zRsequence(Met31)�

GS(d)�OS(o) (bits):
ð5Þ

ḠS(d) is the mean GS(d) value for all sites, and ŌS(o) is the mean

OS(o) value. According to this equation Rsequence(Met4) = 12.9+11.92

5.9121.0 = 17.9 bits of information.

For each gene we plotted the strength of its strongest upstream

Met4 binding site according to the model in Fig. 5 and its average

expression change for induction and repression experiments

(Fig. 7). At about Ri.14 bits, the number of genes that showed

no, or an unexpected expression difference was significantly lower.

This is about the same Ri as the site upstream of Met10 (14.0 bits),

the lowest ranking sulfur assimilation protein in our analysis.

DISCUSSION
Transcriptional initiation in eukaryotes is often regulated by multiple

cooperatively acting factors. Often these factors can only positively

affect transcription if they physically interact either directly or

indirectly through additional proteins with the basal transcriptional

machinery. Understanding the physical constraints that determine

functional cooperativity is essential for us to be able to model,

predict, and engineer genetic control systems. These constraints

generally are not rigid, but allow for variability in the arrangement of

sites in functional complexes and subsequently there is variability in

the stability of the complexes. Here, we have introduced a way to

include orientation and order into the information theoretic

description of pattern recognition at the promoter. This combined

with weight matrix based binding models [20] and spacing

constraints [9,10] gives us quantitative tools to model the sequence

basis of eukaryotic transcriptional regulation.

The simplest constraint of Met4 coordination to define is the

ordering of the sites within the complex. For Met4, our model

matches microarray data poorly when the order is Met31-Cbf1-
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Figure 7. Ri vs. expression change. The flexible information (Ri) of the strongest site for each gene is on the abscissa and the average induction or
repression expression change is on the ordinate. For each gene, induction data were averaged from the first nine experiments in Fig. 6 (red circles),
and repression data were averaged from the last four experiments in Fig. 6 (black circles).
doi:10.1371/journal.pone.0001199.g007
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gene start, but matches well with the order Cbf1-Met31-gene start

(Fig. 2). This is consistent with experimentally determined

ordering constraints [32]. These results suggest that the Met4-

Cbf1 binding surface is distinct from the Met4-Met31 surface, and

that the Met4-TFIID binding surface is closer to the Met4-Met31

surface, placing the Met4-TFIID binding surface near the 39 edge

of the complex. Domain mapping from yeast two-hybrid

experiments identified several protein interaction domains on

Met4 [4]. The transcriptional activation domain (residues 95–144)

is closer to the Met31 interaction domain (residues 374–403) than

the Cbf1/Met28 interaction domain (residues 616–666) in one-

dimension, but these domains are far apart, so their relative

positioning in the native form of Met4 could be different. Based on

our findings, we suggest that the relative positioning is the same.

It appears as though either orientation of Met31 can be used

within the docking complex (Fig. 2). Stabilization of Met4 has been

shown when Met31 has the inverted orientation [4]. For Met31 to

be able to stabilize Met4 with either orientation, it must either

have two Met4 interaction surfaces, or it has a centrally located

interaction surface that is accessible no matter what orientation it

binds (i.e. flexible). Interestingly, the top 5 genes in our ranking

have an inverted Met31 site (Fig. 6). The total information of these

sites might be high because stronger Cbf1 and Met31 sites may be

necessary to compensate for the strain of the inverted orientation,

but could decrease once we take into account the orientation

surprisal.

The maximum distance between the Met4 docking site, as

measured to the zero coordinate of the Met31 site, and the gene

start is 450 bases. As the TFIID binding site is not at the gene start,

this distance is farther than the maximum allowed distance

between Met4 and the polymerase. It is difficult to determine the

distance of the Met4 docking complex to the transcriptional start

since the starts have not been biochemically proven, and

computationally it is difficult to predict transcription initiation

because of the varied modes of initiation by the polymerase [2].

Basehoar et al. found an enrichment of TATAs between 50 and 200

bases upstream of the translational start [33]. This could explain why

we did not observe any sites within 100 bases of the gene start.

The spacing range between the Cbf1 and Met31 site is 9 to 68

bases, as determined in Fig. 4. The minimum spacing of 9 bases

may be an under-estimate. There is a strong secondary Cbf1 site 36

bases upstream of the Met31 site in the promoter of Sam1, which

may be the actual functioning site. A similar strong secondary site is

also seen for YER080W, which had a spacing of 10 bases. This is not

seen for GSH1, which had a spacing of 12 bases.

A minimum spacing of 12 would be consistent with our

observed optimal helical phasing of -13.86 bases (Fig. 5). This

would place the closest Cbf1 site almost exactly on the same face

as its respective Met31 site, one helical turn away. A maximum

spacing of 68 bases would correspond to 6 helical turns according

to our phasing. The relatively high positioning of these spacings on

the helical accessibility curve suggests that docking of Met4 may be

dependent upon the helical phasing of DNA.

The experimentally determined range by Chiang et al. was 21 to

53 bases according to our numbering system [32]. Unfortunately,

spacings as large as 68 bases were not tested experimentally. The

experimentally determined minimum spacing of 21 is much larger

than the minimum we found here. Interestingly, only the

‘‘inverted’’ orientation of Met31 was tested, whereas the shortest

distance in this paper corresponds to a Met31 site with the

opposite orientation. If helical phasing of the sites is important,

then the orientation of Met31 may be more constrained at shorter

distances, and this may account for the disparity between the

experimentally and computationally determined minimums.

When the constraints inferred from our analysis were imposed

on the cooperative binding of Cbf1 and Met31, our ability to

predict Met4 regulation was high. Of the top 23 ranked genes in S.

cerevisiae (according to our model), 19 had an expected microarray

expression pattern for Met4 regulation. Many of the sites had also

been previously characterized as sulfur utilization genes (Fig. 6).

The 2 most striking anomalous genes in the top 23 (Reb1 and

Gar1) both had Met31 sites with a ‘‘T’’ instead of ‘‘G’’ at position

+1 (data not shown), suggesting that this position may be weighted

more strongly in a more refined Met31 model. Additionally,

nucleosomes could play a large inhibitory role against spurious

combinations of sites, which our model does not account for.

When the microarray data from experiments that affected Met4

binding were directly compared to our information evaluation of

each gene (Fig. 7), we saw that almost all genes with Met4 binding

sites above 14 bits of information have the expected expression

change. This suggests that our approach is giving some reasonable

estimate of the energetics of Met4 binding, with a clearly defined

threshold for functional binding sites. Presumably, genes that do

not have a strong Met4 site, but have the expected microarray

data are indirectly regulated. Interestingly the strengths of the

Met4 sites are not mainly determined by the strength of Met31 or

Cbf1, but by the sum of these sites. This suggests that for

cooperatively acting binding sites, a decrease in strength for one

site can be compensated for by an increase in strength of the other.

Compensation for a decrease in the strength of one binding site by

increasing the affinity for another site has been shown experi-

mentally for activation of Pol II by the Epstein-Barr virus protein

ZEBRA [34].

We cannot determine the individual spacing effect on binding

because we have so few sites covering a large spacing range. If we

did have these individual effects, we would expect to see a slight

improvement in our ability to predict expression. The fact that we

did so well in predicting Met4 sites by just taking into account the

strength of the sites is surprising to us. In bacteria, transcription

factors interact at shorter distances, and the effect of spacing on

stability is greater (since it is more difficult to bend a short piece of

DNA than a large one) [10]. For coordinated binding of Met4, the

summed affinities of Cbf1 and Met31 appeared to dominate the

stability of the Met4 complex, suggesting that the energetic penalties

associated with spacing are considerably less for this system.

Experimental testing of multiple spacings between Cbf1 and

Met31 suggested that spacing had a little effect on Met4 regulation

[32]. A decrease in the effect of spacing on stability could be due to

increasing the flexibility between the activation domain and the

DNA-binding domain of the transcription factors, by increasing the

distance between functioning cooperatively acting binding sites, or

by increasing flexibility in the coordinating protein.

We could have determined these physical constraints by

clustering co-regulated genes and training the rules of binding

for their regulators. The drawback of this approach is that it is not

obvious which genes are directly and indirectly regulated, and

a given gene may or may not have a binding site. Our approach

selects only for genes that are directly regulated, and does not

exclude sites that have poor expression data due to experimental

error. We are also optimizing our model against all genes in the

genome, so we are selecting for a model that represents Met4

binding well, in that it can identify a small subset of sites from all

sites in the genome. Presumably the optimal binding site, based on

the flexible information theory approach, is the most stable site

and the easiest to crystalize. These results could be used to guide

crystallographic experiments.

The information content of a given DNA-binding protein

(Rsequence) is a function of the variability within its binding targets
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[24]. A more stringent binder would have a higher information

content, since the variability in its binding targets would be

smaller. To be able to distinguish c binding sites within a random

DNA of some length G, those sites must have an Rfrequency = -log2(c/

G) bits of information to be identified [24]. It has been shown for

many systems that Rsequence converges to Rfrequency [24,35]. This

suggests that if the size of the genome increases and the number of

binding sites remains constant, the information of those sites would

have to increase in order to be distinguishable.

As eukaryotic genomes are generally larger than prokaryotic

genomes, the amount of information needed to identify c sites

would have to be greater. This can be achieved either by

increasing the information content of a single factor, or by using

multiple factors combinatorially.

Assuming no individual spacing or orientation preferences, the

information for this system would be 12.9+11.925.921 = 17.9 bits

according to equation (4). This would correspond to 1 site every

217.9 = 2.456105 bases, or about 104 times in the S. cerevisiae

genome of length 12.8 MB. Our calculation is the number of sites

in 26 the genome length, since the complex could associate with

either strand. This is a reasonable number of genes according to

known sulfur assimilation genes (.20 genes) [5], the number of

predicted regulated genes based on expression difference due to

Cd2+ treatment (66 genes) [27], and multiple sites per gene as seen

in several cases. This suggests that like single acting transcription

factors, the information contained in combinatorial binders is

related to the Rfrequency for that system [24]. Others have suggested

that this relationship will be maintained for cooperatively acting

factors [36]. Interestingly, this information is distributed through

individual binding components, as well as the spacing between

components, and if one component changed, the others would

have to compensate accordingly. This is a complicated process,

since Cbf1 can also function independently of Met4 and Met31

[31].
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