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Neural crest cells (NCC) have the particularity to invade the environment where they differentiate after separation from the
neuroepithelium. This process, called delamination, is strikingly different between cranial and trunk NCCs. If signalings
controlling slow trunk delamination start being deciphered, mechanisms leading to massive and rapid cranial outflow are
poorly documented. Here, we show that the chick cranial NCCs delamination is the result of two events: a substantial cell
mobilization and an epithelium to mesenchyme transition (EMT). We demonstrate that ets-1, a transcription factor specifically
expressed in cranial NCCs, is responsible for the former event by recruiting massively cranial premigratory NCCs independently
of the S-phase of the cell cycle and by leading the gathered cells to straddle the basal lamina. However, it does not promote
the EMT process alone but can cooperate with snail-2 (previously called slug) to this event. Altogether, these data lead us to
propose that ets-1 plays a pivotal role in conferring specific cephalic characteristics on NCC delamination.
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INTRODUCTION
Neural crest cells (NCC) are a transient population of versatile cell

types derived from the dorsal neural folds of the developing

vertebrate embryo. Their ontogeny is a complex morphogenetic

process which encompasses the delicate step of separation from the

tight pseudostratified neuroepithelium. This crucial event, called

delamination, is characteristic of the NCC population as other

components of the early nervous system differentiate and remain

confined within the neuroepithelium.

Induction of NCCs appears to take place as early as gastrulation,

creating eventually a territory of presumptive NCCs in the dorsal

neural tube, at the border between neural plate and epidermis [1].

The most dorsally located of these cells become premigratory

NCCs and undergo delamination. This latter process results from

an epithelium to mesenchyme transition (EMT) [2,3], character-

ized by loss of cell-cell contacts, loss of polarity and acquisition of

migratory capabilities [4]. After EMT, NCCs migrate into the

periphery, where they differentiate in multiple cell types,

prominently neurons and glia of the peripheral nervous system,

as well as pigment-producing melanocytes of the skin [3,5,6]. In

addition, cranial NCCs possess the capability to differentiate into

cartilage, bone, connective tissue and smooth muscle, hence

constituting the main source of craniofacial structures.

Cranial and trunk NCC delamination events are intrinsically

different. Trunk neural tube is flanked by somitic mesoderm and

cells emigrate individually in a dripping fashion over a long period

of time, more than two days at any given axial level [3,7].

Recently, mechanisms of action that initiate trunk delamination

have been partly unraveled. In the dorsal neural tube, the balance

between BMP and its inhibitor Noggin triggers trunk delamination

under control of signals coming from somites hence coordinating

NCC emigration to somites segmentation [8,9]. BMP signaling

pathway controls G1/S transition in trunk NCCs which de-

laminate mainly in S-phase [10]. This regulation is pivotal as

blockage of G1/S transition prevents delamination from neural

tube [11]. In contrast, in head, the neural tube is surrounded by

loose mesoderm devoid of somites. Cells pour out as dense,

multilayered bulges in a short time scale (approximately 10–15h).

So far little is known about signalings that regulate cranial NCC

delamination but mechanisms described for trunk are unlikely to

apply as inhibition of BMP activity did not prevent cranial

delamination [7].

In order to gain insights onto the regulation of cephalic

emigration, we sought for genes with cranial-specific expression

pattern. Among these, ets-1, the founding member of Ets family of

transcription factors, is expressed by cranial NCCs just before the

onset of emigration and is restricted to cells leaving the neural tube

[12]. Furthermore, several lines of evidence implicate ets-1 in

acquisition of cell mobility and invasiveness. During embryonic

development, ets-1 is expressed in tissues exposed to cell movements

and scattering such as sclerotome, dermatome and endothelial cells

[13–18]. Moreover, it endows cells with the capacity to migrate

through basement membranes and to invade interstitial space during

embryonic angiogenesis and wound healing angiogenesis [19–21]. It

regulates expression of numerous extra cellular matrix (ECM)

components, ECM degrading enzymes and adhesion molecules

([22–24] and references therein). Ets-1 and members of Ets family

have also been linked to leukemia, tumor progression and metastasis

(for review, [24,25]). In addition, ETS-1 is also known to regulate

genes involved in cell cycle progression such as p16 INK4a,

p21WAF1/Cip1 and cyclin-d1 [25–29]. In light of these properties and

of its specific expression pattern, we thus aimed to investigate the
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role of ets-1 in NCC development, in particular in cranial versus

trunk NCC emigration.

Overall, our studies indicate that in the chick embryo, gathered

cranial NCCs delaminate as a multilayered cell population without

subjection to G1/S transition of the cell cycle. We demonstrate that

the activity of the proto-oncogene ets-1, is required for their

delamination. Moreover, its ectopic expression allows all neuroe-

pithelial cells (including trunk NCCs) to massively pour out of the

neural tube independently of being in S-phase hence mimicking

cranial delamination. We show that ets-1 promotes massive cell

recruitment and induces local degradations of the basal lamina, two

separable events which are sufficient to initiate ectopic delamina-

tions. In contrast, ets-1 alone does not provoke epithelium-to-

mesenchyme transition (EMT) but can cooperate with snail-2

(previously called slug) to this process. We thus conclude that ets-1

confers on NCCs their cranial specific kinetics of delamination.

RESULTS

Cranial Neural Crest Cells Delamination is not S-

phase Dependent
In order to better document cranial NCCs delamination, we first

analysed the neural tube organization at mesencephalon level

using normal chick embryos between stage HH8+ and 10. During

the first steps of the delamination process, cranial NCCs are

massively gathered together forming a bulge in the most dorsal

part of the neural tube (Figures 1A–1L). Noticeably, they continue

to express N-Cadherin like neuroepithelial cells, but, its distribu-

tion does not coincide with phalloidin staining anymore

(Figures 1C, 1G, 1K). This indicates that cell-cell junctions are

lost and that cranial NCCs start to undergo EMT. As migration

progresses, N-Cadherin expression is gradually lost (Figures 1E,

1I). By contrast, trunk NCCs leave the neural tube progressively,

one after another, they loose N-Cadherin expression at the onset

of delamination (Figures 1M-1P, [30]) and leave the neural tube

only when they are in S-phase [11]. We thus examined BrdU

incorporation in cranial NCCs during their delamination. Control

embryos were exposed between stages HH8 and 9 to BrdU for one

hour. BrdU positive cells were counted in different parts of the

neural tube corresponding to delaminating cranial NCCs (del),

early migrating cranial NCCs (mig), dorsal midline of the neural

tube after delamination (mid), and regions surrounding neural

crest territory (sur). In all these areas, we never detected any

synchronization in S-phase (Figures 1Q–1V) showing that

delaminating cranial NCCs do not leave the neural tube

preferentially in S-phase. Moreover, there is no depletion of BrdU

positive cells in the dorsal neural tube after delamination

(Figures 1T–1V) contrary to trunk levels. Cranial NCCs de-

lamination is therefore characterised by the exit of clustered cells

from dorsal neural tube which are not synchronized in S-phase.

Ets-1 Activity During Delamination is Required at

Cranial Levels Only
We sought for gene candidates which expression could sustain

such a specific delamination process. In this context, ets-1 is of

particular interest since it is expressed in NCCs specifically at

cranial level ([12] and Figures 2A–2E’) with an extremely dynamic

pattern of expression which matches the delamination process

(Figures 2A–2D). Ets-1 transcripts can first be detected at 4s-stage

in the cranial neural folds of chick embryo. From 5s-stage, its

transcription rapidly increases as delamination takes place and is

restricted to delaminating cells, being absent in the remaining

neuroepithelial cells (see insets in Figures 2C–2D). Furthermore,

ets-1 expression begins after the onset of expression of early NCCs

markers such as foxd-3 (Figures 2F–2H) and ap-2 (Figures 2K–2M).

In addition, ets-1 expression is restricted to the cranial region

(Figures 2E–2E’) whereas foxd-3 (Figures 2J–2J’) and ap-2

(Figures 2O–2O’) are both expressed in head and trunk NCC.

These data argue in favour of a specific role of ets-1 into the cranial

NCCs delamination process. In order to lend support to this

hypothesis, we analysed the effects of a transdominant negative

form of ets-1 consisting only in the DNA binding domain (c-ets-1

DBD) both at cranial and trunk levels. The resulting protein

competes with endogenous chick-ETS-1 for binding the DNA but,

lacking its transactivation domains, it does not regulate genes

expression. We first misexpressed c-ets-1 DBD in the cranial

regions of stages HH7-9 embryos (Figures 3A–3L, n = 8). At

15 hours after electroporation (hpe), in regions which normally

express ets-1 ([12] and personal data), there is a dramatic reduction

of HNK1 and ap-2 positive cells invading the migration pathways

on the electroporated mesencephalon (Figures 3A–3F, n = 4) or

rhombencephalon (Figures 3G–3L, n = 4). It suggests a great

decrease or the absence of delaminating NCCs. However, ap-2

expression in the dorsal neural tube is not affected suggesting that

NCCs specification is not inhibited (Figures 3C–3D, 3I–3J). To

further support that c-ets-1 DBD does not affect the initial NCCs

specification, we monitored snail-2 (Figures 3O–3P, n = 4), foxd-3

(Figures 3Q–3R, n = 6) and sox-9 (Figures 3S–3T, n = 6) expression

patterns during this process at 6hpe. None of these genes is

downregulated after c-ets-1 DBD electroporation indicating that

ETS-1 activity is not required for NCC specification. To also rule out

the possibility that ets-1 could be involved in NCC migration, we

misexpressed c-ets-1 DBD, at later stages, in the rhombencephalon of

stage HH10+ embryos and analyse the NCC migration at 15hpe. No

inhibition is observed from either rhombomeres r4 or r6 NCC

streams (Figures 3M–3N) showing that loss of ETS-1 activity does

not antagonize NCC migration. Finally, in order to exclude non-

specific roles of the c-ets-1 DBD, we also electroporated the construct

in the trunk dorsal neural tube. At 24hpe, the dorso-ventral

patterning is not disturbed (Figures 3U–3W; Pax6, n = 4, Pax7,

n = 4), and, the NCCs delaminate and migrate away normally as

a population of dissociated cells expressing HNK1 (Figure 3U;

n = 5). Altogether, these data show a specific requirement of ets-1 in

cranial NCCs delamination.

Ets-1 is Sufficient to Provoke a Cranial-Like NCCs

Delamination in Dorsal Trunk Neural Tube
In order to test whether ets-1 expression plays an important role in

conferring specific cranial NCCs delamination features, we

misexpressed the human form of ets-1 (h-ets-1) in dorsal trunk

neural tube in stage HH10 embryos. At 15hpe, we observed more

sox-10 expressing NCCs emigrating from the electroporated side

compared to the control side (Figures 4A–4D; n = 7). Moreover, at

more caudal level, where the endogenous delamination has not

started yet, we observed a premature exit of sox-10 positive NCCs

in the electroporated side, in contrast with the control side where

sox-10 expression is barely detectable (Figures 4A, 4E; n = 7).

Electroporation of an inactive form of ets-1 (w375r) in the same

conditions has no effect (data not shown). This shows that ets-1

expression can prime NCCs delamination and in addition increase

the flow of delaminating cells. This effect is associated with a strong

decrease of cadherin-6B expression (Figures 4O–4P; n = 5), which is

normally lost by the NCCs leaving the neural tube [31].

Expression of w375r does not affect it (Figures 4Q–4R). Therefore,

this suggests that ets-1 forces the dorsal premigratory NCCs to

massively leave the neural tube. At 24hpe, the trunk NCC

Ets-1 and NCC Delamination
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Figure 1. Description of the Cranial Neural Crest Cells Delamination. (A–P) Transversal cryosections (10 mm) of normal chick embryos at stages 6s
(A–D), 8s (E–H), 10s (I–L) and HH14 (M–P) at cranial (A–L) and trunk (M–P) levels. Sections were assayed for N-Cadherin expression by
immunofluorescence (A, C, E, G, I, K, M, O). The actin microfilaments and the nuclei were stained by Phalloidin (B, C, F, G, J, K, N, O) and DAPI
incorporation (D, H, L, P) respectively. During delamination of cranial NCCs there is a massive accumulation of cells in the dorsal part of the neural
tube (A–D). In this cell population, colocalisation of N-Cadherin and Phalloidin is lost indicating that they undergo an EMT (C, G, K). By contrast, during
trunk delamination, NCCs emigrate one by one. No particular distortion of the dorsal neural tube is detectable (M-P, arrow heads). (Q–V) Analysis of
BrdU incorporation in cranial neural tube during and after NCC delamination. Transversal cryosections (5 mm) of stages HH8–9 embryos, during and
after delamination, labeled by immunofluorescence using anti-BrdU antibody (Q, R, T, U). Nuclei are stained by DAPI. Percentages of BrdU positive
cells in the different zones of the neural tube are represented in diagrams (S,V). Cranial NCCs are not synchronized in S-phase during delamination
(Q–R) or migration (T–U). del, delaminating cells; sur, surrounding region; mid, midline region; mig; migrating cells.
doi:10.1371/journal.pone.0001142.g001
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emigration is enlarged as evidenced by a thick flow of sox-10

(Figures 4F–4J, arrow heads; n = 4) and HNK1 (Figures 4K–4N;

n = 2) positive cells delaminating from the dorsal neural tube. At

rostral trunk level, NCCs delamination persists whereas the

endogenous delamination is already completed on the control

side (Figures 4H–J, asterisks; n = 4). However, at 48hpe, cells

which leave the neural tube under ets-1 expression do not display

NCCs characteristics anymore. Delaminating electroporated cells

are organized as a tongue at the top of the dorsal neural tube

(Figures 4S–4U; n = 7). They express high level of N-Cadherin

(Figures 4Z–4a) whereas its specific repression is required for trunk

NCCs departure [30] and fail to express NCCs markers such as

sox-9 (Figures 4V–4W), sox-10 (Figures 4X–4Y) or HNK1

(Figures 6S–6T). Altogether these results indicate that ets-1

expression leads to precocious, enhanced and prolonged de-

lamination of trunk NCCs which delaminate gathered as

a multilayer stripe of cells instead of one by one progressively.

It thus raised the question of whether these cells are still

subordinate to successful G1/S transition to delaminate as in

normal conditions. We exposed embryos electroporated with h-ets-

1 to BrdU for one hour at 15hpe. At all considered levels, BrdU

positive emigrating cells are mingled with high proportion of

negative cells indicating a lack of synchronization at the time of

departure (Figures 5A–5I; segmental plate, n = 4; epithelial somite,

n = 2; dissociating somite, n = 4). By contrast, untransfected NCCs

are predominantly in S-phase (Figures 5J–5K), consistent with

previous data [11]. Likewise, misexpression of w375r in trunk

NCCs does not abolish the synchronization in S-phase

(Figures 5L–5N). Therefore, when expressing ets-1, trunk NCCs

are not bound to G1/S transition in order to delaminate,

consequently the delamination rate is enhanced.

Overall, our data show that ets-1 is sufficient to convert the slow

dripping delamination shaped by subjection to the cell cycle and

characteristic of trunk NCCs into a massive cranial-like emigration

emancipated from links to G1/S transition.

Ets-1 Promotes Ectopic Cells Emigrations from the

Neuroepithelium without Inducing Neural Crest Fate
To better appreciate the capabilities that ets-1 could confer on the

neuroepithelial cells autonomously, we decided to analyse the

effects of its ectopic expression within the intermediate to ventral

parts of the neural tube, regions which cannot produce NCCs in

normal conditions.

As early as 12hpe, both at cranial and trunk levels, h-ets-1

misexpression leads to small ectopic clusters of cells emerging from

the neural tube (n = 13, not shown). At 24hpe and 48hpe, the

phenotype is amplified and compact heaps of clustered cells are

detected bulging out through the extracellular matrix or towards

the lumen (Figures 6A–6D, 24hpe, n = 26, 48hpe, n = 18).

Misexpression of w375r has no effect indicating that the observed

phenotype is due to specific transcriptional activation of ets-1

targets (n = 21, not shown). At 24hpe and 48hpe, these ectopic

bulges of cells are associated with local degradations of the basal

lamina (Figures 6E–J, arrow heads, n = 8) hence confirming the

initiation of a delamination process. Given that delamination is

a trademark of NCCs compared with others neuroepithelial cells,

we assessed whether ectopic delaminating cells induced by h-ets-1

Figure 2. Ets-1 Expression Occurs Later and in a More Restricted Area than Those of Foxd3 and AP2. (A–O’) Whole in situ hybridization of normal
chick embryos at stages 4s–13s using c-ets-1 (A–H), foxd-3 (F–J’) and ap-2 (K–O’) probes. (F–H) Embryos were cut along the rostro-caudal axis. The left
and right sides of the neural tube were treated independently with c-ets-1 and foxd-3 probes. C-ets-1 expression (A–B, F–G) begins after foxd-3 (F–G)
and ap-2 (K–L) expressions. It is restricted to cells leaving the neural tube (C–D, insets) and cranial region (compare E–E’ to J–J’ and O–O’). * indicates
ets-1 expression in the sclerotome. r, rhombomere.
doi:10.1371/journal.pone.0001142.g002

Ets-1 and NCC Delamination
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Figure 3. Ets-1 Activity Is Required for Cranial but not Trunk Delamination. (A–L) Analysis of cranial NCCs delamination in HH7-9 chick embryos
electroporated by c-ets-1 DBD and harvested at 15 hours post electroporation (hpe). (A–D; G–J) Whole mount in situ hybridization using ap-2 probe.
GFP expression in (A) and (G) indicates the electroporation zone. (C–D) and (I–J) are vibratome sections (30 mm) of embryos presented in (B) and (H)
respectively. (E–F; K–L) Transversal cryosections (14 mm) labeled by immunofluorescence using anti-HNK-1 antibody and nuclear-stained by DAPI
incorporation. Electroporated cells are detected by GFP expression. Pink broken lines in (L) outline the NCCs. (M–N) Analysis of NCC migration in
embryos electroporated in the rhombencephalon at stage HH10+ when the delamination is in progress and harvested at 15hpe (stage HH14). (O–T)
Analysis of NCC specification in chick embryos electroporated by c-ets-1 DBD at stage HH7-9 and harvested at 6hpe. GFP expression in (O), (Q) and (S)
indicates the electroporation zone of the embryos presented in whole mount in situ hybridization using snail-2, foxd-3 and sox-9 probes in (P), (R) and
(T) respectively. (U–W) Analysis of trunk NCCs delamination in chick embryos electroporated by c-ets-1 DBD harvested at 24hpe. Transversal
cryosections (10 mm) were labeled by immunofluorescence using anti-HNK-1 (U), anti-Pax-7 (V) and anti-Pax-6 (W) antibodies. Expression of c-ets-1
DBD in the head leads to a decrease or a lack of ap-2 (B–D, H–J) and HNK-1 expression (E, K). At cellular level, there is either a reduction of the size of
the NCC stream on the electroporated side (L) or even a lack of NCCs between the ectoderm and the neural tube (E; F, green staple) while on control
side NCCs are normally localized (B–D, ap-2 staining; F, pink arrow heads; L, left pink lasso). Data shown in A–D, E–F, G–J, K–L come from four distinct
embryos respectively. This effect is restricted to the delamination step since inhibition of ETS-1 activity after the delamination does not affect the
migration (M–N). Finally, c-ets-1 DBD does not prevent NCC specification as snail-2 (O–P), foxd-3 (Q–R) and sox-9 (S–T) remain expressed in the neural
folds on both electroporated and control sides. At trunk level, misexpression of c-ets-1 DBD has no effect on dorso-ventral patterning, or on NCCs
delamination and migration (U–W). r, rhombomere.
doi:10.1371/journal.pone.0001142.g003

Ets-1 and NCC Delamination
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at intermediate to ventral level of the neural tube did also express

NCCs markers. At 24hpe, at both cranial and trunk levels, h-ets-1

does not induce expression of snail-2 (Figures 6K, 6O, n = 8), foxd-3

(Figures 6L, 6P, n = 8), ap-2 (Figures 6M, 6Q, n = 8) or sox-10

(Figures 6N, 6R, n = 10). Similarly, we never detected HNK-1

immunoreactivity in transfected neural tubes or in intermediate

delaminating electroporated cells at 24 or 48hpe (Figures 6S–6X,

n = 7). To turn down the possibility of transient induction of NCC

markers, we analysed snail-2 and sox-10 expressions at earlier time

points and did not find any upregulations (data not shown).

Therefore, ets-1 expression within the neural tube initiates

ectopic delamination independent of NCCs fate.

Ets-1 Induces Cell Mobilization but not Cell

Dispersion
Ets-1 is known to be involved in tumorigenesis. Therefore, to

better understand the nature of the ectopic clusters and investigate

their possible tumor-like nature, we decided to analyse the impact

of h-ets-1 expression on neural cells proliferation. Despite an

Figure 4. Trunk NCC Delamination Occurs Prematurely is Amplified and Prolonged by h-ets-1 Misexpression. (A–a) Analysis of the effects of h-ets-
1 misexpression in trunk dorsal neural tube assayed at 15hpe (A–E, O–R), 24hpe (F–N) and 48hpe (S–a). (A–J, O–R) Whole mount in situ hybridization
using sox-10 (A–J, dark blue), cadherin-6B (O–R, dark blue) and h-ets-1 (A–E, O–R, light blue) probes. (K–N) Wholemount immunostaining using anti
HNK1 antibody. (C–E, H–J, M–N, P, R) Vibratome sections (30 mm) of embryos presented in (B), (G), (L), (O’) and (Q’) respectively. (V–Y) In situ
hybridization on transversal cryosections (20 mm) using sox-9 (V–W) and sox-10 (X–Y) probes. (Z–a) Transversal cryosections (10 mm) immunolabeled
using anti-N-Cadherin antibody. Electroporated cells are detected by GFP expression (S–T, W, Y, a) or DAPI staining (U). At 15hpe in h-ets-1 caudally
transfected embryos, sox-10 trunk NCCs delaminate precociously (A–B, E, arrow heads). Besides, more rostrally, the outflow is increased (C–D)
compared to contralateral side and is associated with a loss of cadherin-6B expression (O–P). At 24hpe, at level where delamination is already
completed on the control side (H–J, asterisks), h-ets-1 expression prolongs delamination of a massive amount of sox-10 (H–J, arrow heads) and HNK-1
(M–N) positive NCCs. At 48hpe, h-ets-1 transfected cells are still able to leave the dorsal neural tube as a multilayered wave (S–U) but they fail to
express NCCs markers such as sox-9 (V–W), sox-10 (X–Y) and keep a strong expression of N-Cadherin (Z–a). ot, otic vesicle.
doi:10.1371/journal.pone.0001142.g004

Ets-1 and NCC Delamination

PLoS ONE | www.plosone.org 6 November 2007 | Issue 11 | e1142



upregulation of cyclin-d1 expression, a direct target of ets-1 [29], on

the electroporated side (Figure 7A, n = 3), ectopic delaminating

cells are not mainly in S-phase (Figure 7B, n = 3) or in mitosis

(24hpe, Figures 7C–7D, n = 2 ; 48hpe, Figures 7E–7F, n = 4).

Accordingly, endogenous expression of genes expressed in pro-

liferative (sox-2, n = 2, sox-9, n = 3; data not shown) or differenti-

ated cells (b3-Tubulin, Figures 7G–7I, n = 3; Lim-1/2, Figures 7J–

7L, n = 3) are not affected. Furthermore, proliferative and non-

proliferative cells are equally mingled together in ectopic

delaminating clusters (Figures 7G–7L). Taken together, these data

indicate that ets-1 expression has no effect on cell proliferation.

Interestingly, even though the proliferation was not increased,

we noted ectopic cells in M-phase located at the basal side of the

neural tube at 24hpe (Figures 7C–7D, arrow heads). In addition,

at 48hpe, we observed accumulations of cell nuclei between the

non-proliferating region of the neural tube and the basal lamina,

an area normally largely deprived of nuclei (Figures 7M–7P,

n = 12). This led us to hypothesize that cells movements within the

neural tube might occur under ets-1 expression. To test out this

hypothesis, we used regionalized markers such as Pax-6

(Figures 7Q–7S, n = 6) and Pax-7 (Figures 7T–7V, n = 6). At

48hpe, Pax-6 and Pax-7 positive cells can be detected within the

ectopic clusters but only in register with their endogenous region of

expression. It hence gives rise in some cases to mixed Pax-6-low/

high expressing clusters or mixed Pax-7-expressing/non-expres-

sing clusters (see high magnifications in Figures 7S and 7V). These

results show that Pax-6 and -7 are not ectopically induced in

ectopic clusters and that regionalization of the neural tube is

conserved in them. We thus conclude that ets-1 induces massive

cell movements along apico-basal axis of the neuroepithelium and

recruits neuroepithelial cells for subsequent delamination initiated

by local disruption of the basal lamina. It is interesting to note that

cell mobilization and basal lamina degradation are two separate

events since if we use a non-phosphorylable form of ets-1, cell

mobilization occurs without a systematic degradation of the basal

lamina (n = 9, not shown).

Since the ectopic clusters of electroporated cells remain close to

the neural tube and no migrating electroporated cells are detected

far away, it seems that ets-1 does not promote acquisition of

migratory capabilities. Migrating cells are normally individually

surrounded by ECM. In contrast, clusters of delaminating

electroporated cells are completely devoid of Fibronectin (head

not shown, trunk Figures 8A–8D, n = 7). In addition, these cells

retain a strong expression of N-Cadherin (head not shown, trunk

Figures 8I–8L, n = 7), similar to the adjacent neuroepithelium,

which suggests cohesive relationships between them. Accordingly,

the bulges are formed of a high density of cells (Figures 8E–8F,

8M–8N) comparable to the density observed in the neuroepithe-

lium. In order to test out whether the N-Cadherin was involved in

functional structures, we analysed the distribution of the actin

microfilaments by Phalloidin staining. Within the ectopic bulges,

there are some hot spots of N-Cadherin expression (Figure 8K,

arrows, n = 7). This particular distribution of N-Cadherin

correlates with a specific organization of the electroporated cells

around the hot spots (Figures 9A–9C, 9G–9J) which coincides with

the distribution of the actin microfilaments (Figures 9D–9F, 9G–

9J, n = 8). These results indicate that, in the electroporated cells,

N-Cadherin is still involved in functional cell-cell junctions and

strongly argue against EMT and migration abilities. This

observation is confirmed by the fact that electroporated cells do

not upregulate various molecules involved in NCC EMT or

expressed by mesenchymal cells such as RhoB ([32]; n = 12, not

shown), Cadherin-7 ([31]; n = 7, not shown), activated b1-Integrin

([33]; n = 8, not shown), Tenascin ([34]; n = 4, not shown) and b3-

Integrin ([35]; n = 3, not shown). All these data indicate that the

ectopic delamination process initiated by ets-1 occurs without an

EMT.

Overall, this suggests that, during the normal delamination of

cranial NCCs, ets-1 massively recruits cells, initiates delamination

but is not able to orchestrate EMT which achieves the process.

Ets-1 and Snail-2 Cooperate to Achieve a Full

Delamination Process
As the cranial NCCs perform an EMT during their normal

development, we looked for gene able to achieve ectopic

delaminations initiated by ets-1. Interestingly, snail-2 has been

described to increase the total amount of emigrating cranial NCCs

Figure 5. Ets-1 Misexpression Emancipates Trunk NCC Delamination
from Subordination to Successful G1/S Transition. (A–N) Analysis of
the effects of h-ets-1 misexpression in trunk dorsal neural tube on cell
cycle assayed at 15hpe. Immunofluorescence labeling using anti-BrdU
antibody of transversal cryosections (5 mm). Nuclei are stained by DAPI
incorporation. Dotted lines in (C), (F), (I) indicate delaminating
transfected area as defined by GFP expression (B, E, H). Trunk NCCs
emigrating precociously from dorsal electroporated neural tube
opposite segmental plate (A–C) or the first epithelial somite (D–F) are
not synchronized in S-phase. Similarly, opposite dissociating somites
(G–I), h-ets-1 misexpression in the dorsal neural tube leads to increased
NCC delamination of a mix of BrdU positive and negative cells. In
contrast, trunk NCCs are predominantly in S-phase when h-ets-1
misexpression does not target the most dorsal territory (J–K, arrow
heads) or when NCCs are transfected by w375r (L–N, arrow heads).
doi:10.1371/journal.pone.0001142.g005
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but, strikingly, does not affect trunk NCCs [36]. Moreover, in

contrast to ets-1, snail-2 is unable to induce neuroepithelial cells

from intermediate to ventral level of the neural tube to delaminate

[36,37]. These results suggest that snail-2 could be only active in

cells expressing ets-1. Therefore, we analysed its ability to

cooperate with ets-1 to promote accomplished delamination of

trunk neuroepithelial cells including mesenchymalisation. We

hence coelectroporated h-ets-1 and snail-2 at trunk level in

intermediate to ventral neural tube and analysed the effects at

48hpe. Local degradations of the basal lamina are detected in

association with ectopic delaminations as expected from h-ets-1

ectopic expression (Figures 10A–10B, n = 4). However, in contrast

Figure 6. Ets-1 Misexpression Triggers Ectopic Delamination without Inducing Neural Crest Fate. (A–J) Analysis of the effects of h-ets-1
misexpression in intermediate to ventral neural tube at 24hpe (A, C, E–H) and 48hpe (B, D, I–J); at head (A–B, E–F) and trunk (C–D, G–J) levels. (A–D)
Vibratome sections (30 mm) of whole mount in situ hybridization using h-ets-1 probe. At 24hpe, misexpression of h-ets-1 leads to ectopic
delaminations towards basal or luminal sides (A, C, arrow heads; dotted lines indicate the neural tube limit). At 48hpe, the phenomena is stronger,
involving more cells leaving the neural tube in both head (B) and trunk (D) as compact bulges of cells. (E–J) Transversal cryosections (10 mm) labeled
with anti-Laminin antibody. Electroporated cells degrade the basal lamina (arrow heads) before invading the ECM. (K–X) Analysis of NCC fate in
ectopic delaminating cells. (K–R) Whole mount in situ hybridization with snail-2 (K–O, dark blue), foxd-3 (L–P, dark blue), ap-2 (M–Q, dark blue), sox-10
(N–R, dark blue) and h-ets-1 (O, P, Q, R, light blue) probes. Dotted lines in (K), (L), (M), (N) indicate the transfected area as defined by GFP expression
(insets in K, L, M, N). (S–X) Immunofluorescence labeling with anti-HNK-1 antibody on transversal (S–T, V–W) and longitudinal (U, X) cryosections
(10 mm). At 24hpe, misexpression of h-ets-1 in head or trunk does not ectopically activate snail-2, foxd-3, ap-2 or sox-10 (K–R). Furthermore, at 48hpe
ectopic cells (including cells emerging from the dorsal part of the neural tube) never express HNK-1 (S–U, arrow heads). Misexpression of w375r has
no effect (V–X). drg, dorsal root ganglia; lum, lumen; ot, otic vesicle.
doi:10.1371/journal.pone.0001142.g006

Ets-1 and NCC Delamination

PLoS ONE | www.plosone.org 8 November 2007 | Issue 11 | e1142



to h-ets-1 electroporation alone, coelectroporated cells do not

express N-Cadherin either within or outside the neural tube

(Figures 10C–10F, see arrow heads in E and F, n = 3) and the

ectopic delaminating cells invade the ECM as a population of

dissociated cells (Figures 10E–10F, n = 4). Furthermore, electro-

porated cells strongly express HNK1 both in the neural tube and

during migration (Figures 10G–10H). The amount of departing cells

is very high which as a result massively reduces the size of the neural

tube on the electroporated side. These data show that coelectropora-

tion of h-ets-1 and snail-2 is sufficient to induce EMT followed by

massive dispersion of migratory NCCs from the intermediate part of

the neural tube. To further characterize the nature of the specific

cooperation between ets-1 and snail-2, we analysed the effect of snail-

2 electroporation alone in the neural tube at 48hpe. Interestingly,

snail-2 is able to induce ectopic neural crest fate as shown by ectopic

HNK1 staining (Figures 10M–10N, n = 6) but fails to provoke

ectopic delamination or EMT and has no effect on N-cadherin

expression or localisation (Figures 10I–10L, n = 4). Those results

indicate that ectopic NCC fate in ets-1 and snail-2 coelectroporated

embryos is due to snail-2 alone. However, the massive ectopic EMT

that occurs in coelectroporated embryos is specific to ets-1 and snail-

2 cooperation as it is never detected when either ets-1 or snail-2 are

independently electroporated.

DISCUSSION
Here, we more precisely describe the delamination of the cranial

NCCs and find that these cells are first massively gathered at the

dorsal part of the neural tube before the onset of migration and

that their following delamination is characterized by emergence of

great numbers of cranial NCCs in multilayered streams of cells

(Figure 11A). Importantly, we show that these cells, in contrast to

trunk, are not synchronized in S-phase (Figures 11A–11B).

Therefore, the kinetic features of the cranial delamination are

Figure 7. Ets-1 Misexpression Leads to Massive Cell Movements within the Neuroepithelium. (A–V) Analysis of the effects of h-ets-1 misexpression
in intermediate to ventral neural tube at 24hpe (A–D) and 48hpe (E–V). (A) Vibratome section (30 mm) of whole mount in situ hybridization using
cyclin-d1 probe. (B–L, Q–V) Immunofluorescence on cryosections (10 mm) with anti-BrdU (B), anti-phosphohistoneH3 (C–F), anti-b3-Tubulin (G-I), anti
Lim-1/2 (J–L), anti-Pax-6 (Q–S), anti-Pax-7 (T–V) antibodies. (M–P) Nuclei are stained with DAPI. H-ets-1 misexpression leads to ectopic activation of
cyclin-d1 expression without affecting equilibrium between cell proliferation (B–F) and cell differentiation (G–L). Ectopic h-ets-1 expression provokes
cell accumulation close to the basal side of the neural tube (M–P). Interestingly, cell recruitment is detectable even when the phenotype is not strong
enough to lead to ectopic delamination (M–N). These cell movements of neuroepithelial cells occur along the apico-basal axis of the neural tube and
do not disturb dorso-ventral patterning (Q–V). fp, floor plate; lum, lumen.
doi:10.1371/journal.pone.0001142.g007
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characterized by great number of cells delaminating at the same

time and absence of S-phase subjection. We provide evidence that

ets-1, which is specifically expressed by cranial NCCs, holds

a pattern perfectly matching early phases of cranial delamination

and plays a central role in this process. Ets-1 is necessary for

proper cranial NCCs delamination since inhibition of its activity in

cephalic neural tube results in a great reduction or even prevention

of cranial crest delamination. At trunk level, NCCs delaminate one

after the other with the restriction they have successfully achieved

their G1/S transition ([11]; Figure 11B). Strikingly, ets-1

misexpression in the dorsal trunk is sufficient to convert the

parcimonious outflow of isolated NCCs in S-phase into massive

cranial-like delamination of unsynchronized cells (Figure 11C). We

also show that ectopic ets-1 electroporation in intermediate to

ventral regions of trunk neural tube, a region normally unable to

produce NCCs, leads to massive mobilization of neuroepithelial

cells along the apico-basal axis of the neural tube, associated with

local degradations of the basal lamina and initiation of ectopic

delamination (Figures 11C–11D). These phenomenon occur

without changing original identity of the cells or their proliferation

rate. Electroporated cells do not undergo EMT and thus hold no

migratory capabilities. Alone, ets-1 is therefore able to perform cell

sorting and to induce selected cells to disrupt the basal lamina.

These events are sufficient to initiate but not complete the

delamination process. In addition, we show that ets-1 can

cooperate with other genes to achieve full delamination since

when coelectroporated with snail-2 in the trunk neural tube,

coelectroporated cells acquire migratory NCCs identity, massively

leave the neural tube by an EMT process and migrate away.

Altogether, these results lead us to conclude that ets-1 is

necessary and sufficient to confer cranial features to NCCs

delamination independently of neural crest induction and suggest

that ets-1 and snail-2 cooperate to achieve the cranial NCC

delamination (Figure 12)

Ets-1 Acts Independently of Neural Crest Cells

Induction
Here, we show that electroporation of the dominant negative c-ets-

1 DBD leads to dramatic reduction of cranial emigrating NCCs

Figure 8. Ets-1 Misexpression Promotes Delamination without Inducing Epithelium to Mesenchyme Transition. (A–P) Analysis of the effects of h-
ets-1 misexpression in intermediate to ventral neural tube at trunk levels at 24hpe (A–B, I–J) and 48hpe (C–H, K–P). Transversal cryosections (10 mm)
labeled by immunofluorescence with anti-Fibronectin (A–D, G–H), anti-N-cadherin (I–L, O–P) antibodies, by DAPI incorporation (E, M) and by
histological staining with May-Grünwald Giemsa (MGG) (F, N). H-ets-1 electroporated cells invade the extracellular matrix without producing
Fibronectin (A–D, arrow heads) and remain strongly attached to each others by N-cadherin (I–L, arrow heads) at 24hpe (A–B, I–J) and 48hpe (C–D, K–
L). Accumulations of N-Cadherin are observed within the core of the ectopic clusters at 48hpe (K–L, white arrows). Nuclear detection (E, M) and
histological staining (F, N) of sections presented in (C) and (K) confirm the high cellular density in the ectopic clusters (E–F, M–N, white and black
lines). Cells transfected by w375r exhibit normal behavior (G–H, O–P). Tr, trunk.
doi:10.1371/journal.pone.0001142.g008
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which do not delaminate. Conversely, when misexpressed in trunk

dorsal region of the neuroepithelium, h-ets-1 dramatically enhances

trunk NCC delamination by anticipating their departure, in-

creasing their number and extending duration of their exit. This

raised the question of whether ets-1 would play a role in NCCs

induction with consequences on delamination or only regulates

delamination.

NCC ontogeny proceeds in sequential steps including specifi-

cation of NCC precursors territory, acquisition of premigratory

NCC identity, delamination from the neural tube and migration in

the periphery. Previous data have shown that some of these events

are independent from each other. For instance, foxd-3 ectopically

expressed in intermediate to ventral neural tube induces NCCs

markers but this induction is not followed by EMT [37,38]. Also,

blockade of delamination does not interfere with NCC specifica-

tion [8,10]. This seems also to be the case here as inhibition of

delamination by c-ets-1 DBD happens without affecting NCC

specification, ap-2, snail-2, foxd-3 and sox-9 remaining expressed in

premigratory NCCs, within the neural tube. This implies that

cephalic premigratory NCCs require ETS-1 activity only to

delaminate. However, the fact that h-ets-1 misexpression enhances

trunk NCCs delamination could be interpreted as an enlargement

of the NCC territory at the expense of the intermediate region of

the neural tube. Importantly, this capacity of h-ets-1 to expand

NCC flow is very restricted along dorsoventral axis of the neural

tube. This suggests that ets-1 alone cannot displace the ventral limit

of the territory competent to produce NCCs and indicates that

expression patterns of genes responsible for NCCs specification are

not enlarged by ets-1. Therefore, in the dorsal trunk, one can

suggest that h-ets-1 increases the total amount of delaminating

NCCs by recruiting at once all or a large part of the NCC

precursors present in the dorsal neural tube. However, in this case,

ets-1 would be only able to prime but not to prolong the trunk

delamination because of the rapid exhaustion of the premigratory

NCCs population. Consequently, we alternatively suggest that ets-

1 continuously recruits neuroepithelial cells from intermediate

regions of the neural tube and leads them to enter into the NCCs

territory where they are specified. This is consistent with the

observation that, two days after electroporation, when the dorsal

region has lost its ability to produce NCCs, the electroporated cells

leaving the dorsal neural tube are not NCCs anymore.

Overall, these findings show that ets-1 is a major actor of the

delamination process and it acts independently of NCCs

specification.

Ets-1 Expression Abolishes Requirement of

Successful G1/S Transition During Trunk NCCs

Delamination
Ets-1 electroporated trunk NCCs delaminate into massive streams

independently of the S-phase of the cell cycle. This is in contrast to

normal situation where trunk NCCs delaminate one by one and

where it has been shown that only NCCs in S-phase are able to

exit the neural tube [11]. This process is under the regulation the

Bmp/Wnt pathway [10]. It could be argued that S-phase is the

most favorable phase to delaminate as S-phase nuclei are located

at the basal side of the neuroepithelium from which cells exit [11].

In agreement with this argument, since premigratory NCCs are

not synchronized in S-phase prior delamination, the outflow of

trunk NCCs is restrained as few cells are in the appropriate phase

of the cell cycle. However, when the G1/S transition is blocked in

vivo, no nucleus-free zone can be detected at the border of the

neural tube [10,11]. Moreover, cranial NCCs which naturally

express ets-1 delaminate at high rate without being in S-phase.

Similarly, when they misexpressed h-ets-1, trunk NCCs delaminate

massively, even when they are not in S-phase. Therefore, these

Figure 9. Ectopic Electroporated Cells Are Still Attached by Functional Cell-Cell Junctions. (A–J) Analysis of the effects of h-ets-1 misexpression in
intermediate to ventral neural tube at 48hpe. Transversal cryosections (10 mm) labeled by immunofluorescence with anti-N-Cadherin antibody (A–C,
red; G–J, blue). Actin microfilaments and nuclei are stained with Phalloidin (D–I) and DAPI incorporation (A–F) respectively. Electroporated cells
detected by GFP expression (A, D, G) are organized around dots of high N-Cadherin expression (A–C, red dots, white arrows) or high Phalloidin
staining (D–F, red dots, white arrows). N-Cadherin and Phalloidin perfectly match to each other (G–J, arrow heads) indicating that N-Cadherin
expressed by the electroporated cells is involved in functional cell-cell junctions.
doi:10.1371/journal.pone.0001142.g009
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results suggest that the position of cells within the neuroepithelium

is not the sole explanation for S-phase requirement. Interestingly,

it has been previously described that some promoters are only

accessible for transcription factors during S-phase thanks to the

loose chromatine organization during the DNA replication [39].

In trunk NCCs, promoters of some targets of the Bmp4/Wnt1

cascade might be only accessible during S-phase. This would

explain the unique ability of these cells to leave the neural tube.

When they misexpress ets-1, they are able to bypass the S-phase

condition and delaminate.

Altogether, these data raise the question of the putative

subjection to G1/S transition of the remaining cranial NCCs

when ETS-1 activity is inhibited. There are numerous genes and

mechanisms involved in the control of G1/S transition during

trunk NCCs delamination including in particular Bmp/Wnt

signaling pathway ([10,30], for review see [7]). This regulation is

strongly dependent of specific interactions occuring between trunk

neural tube and somites which are lacking in cranial regions. In

addition, expression patterns and identified roles of the members

of Bmp and Wnt pathways are different from those known at trunk

level [40-44]. Therefore, G1/S subjection of cranial NCCs when

endogenous ETS-1 activity is inhibited seems unlikely.

Ets-1 is Responsible for the Particular Kinetics of

Cranial Delamination
We show that ets-1 is sufficient to initiate ectopic delamination

process by recruiting massively neuroepithelial cells and by

inducing a cranial-like departure of trunk NCCs. Conversely,

inhibition of endogenous ETS-1 activity after c-ets-1 DBD

misexpression abolishes the massive delamination of cranial

NCCs. These results strongly indicate that ets-1 is responsible for

Figure 10. Ets-1 and Snail-2 Cooperate to Achieve Delamination. (A–N) Analysis of the effects of h-ets-1 and snail-2 coelectroporation (A–H) and
snail-2 alone (I–N) in intermediate to ventral neural tube at 48hpe. Transversal cryosections (10 mm) labeled with anti-Laminin (A–B), anti-N-Cadherin
(C–F, I–L) and HNK-1 (G–H, M–N) antibodies. Co-electroporated cells degrade the basal lamina (A–B), lose N-Cadherin expression (C–F, white arrow
heads and dotted line), cell-cell junctions at the apical side (white bracket) and strongly express HNK1 (G–H). These cells emigrate from the tube as
a population of dissociated cells. H-ets-1 and snail-2, electroporated together, are able to promote EMT and migratory NCCs identity. Conversely,
snail-2 electroporation does not affect either N-Cadherin expression or distribution (I–L, white arrow heads). Electroporated cells are unable to
undergo EMT and then remain in the neural tube. However, snail-2 electroporation leads to massive ectopic activation of HNK-1 (M–N) all along the
dorso-ventral axis of the neural tube.
doi:10.1371/journal.pone.0001142.g010
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the particular kinetics of the cranial delamination. However, one

could hypothesize that c-ets-1 DBD blocks other members of the

ETS family in addition to ETS-1. Nevertheless, the inhibitory

effect of c-ets-1 DBD on NCCs delamination is restricted to the

cranial region where ets-1 is the sole member of ETS family known

to be expressed at the time of NCCs departure. Moreover, co-

electroporation of c-ets-1 DBD and h-ets-1 perfectly reverses the

phenotype induced by h-ets-1. Then, we argue that the blockade of

the cranial NCCs delamination, caused by the c-ets-1 DBD

electroporation, is due to the lack of endogenous ETS-1 activity.

Our results indicate that when misexpressed in the neuroe-

pithelium, h-ets-1 induces ectopic delaminations of packed clusters

of transfected cells barely mingling with non-electroporated cells.

This process is characterized by nuclei accumulation on the basal

side of the neural tube without increase of cell proliferation or loss

of cell original identity. At the contrary, cells transfected with an

Figure 11. Ets-1 confers cranial features on neural crest delamination. (A) Normal delamination of cranial NCCs. Premigratory and migratory NCCs
expressing ets-1 are in purple. (B) Normal delamination of trunk NCCs. Premigratory and migratory NCCs are in yellow. (C) Consequences of ets-1
electroporation in trunk neural tube at dorsal and at intermediate to ventral levels. Ets-1 electroporated cells are coloured in green. (D) Cell
movements induced by ets-1 expression. Proliferating cells are in grey, non-proliferating cells are in blue. Ets-1 electroporated cells are dotted in
green. Cell-cell junctions involving N-cadherin are represented by black centers. Nuclei in S-phase are colored in black. Basal lamina is represented by
twisted red line. Cranial NCCs express ets-1 and massively delaminate independently of G1/S transition (A) whereas trunk NCCs do not express ets-1
and delaminate progressively as a cell population subjected to successful G1/S transition (B). When ets-1 expression is forced in the dorsal part of
trunk neural tube, trunk NCCs delamination is greatly enhanced and cells emigrate as multilayered streams (C, green cells). Moreover, they lose their
subjection to cell cycle progression indicating that ets-1 converts trunk delamination into cranial-like emigration (C). Ectopic ets-1 expression in
ventral part of the neuroepithelium leads to massive cell movements without affecting cell proliferation or differentiation. Electroporated cells are
accumulated close to the basal side of the neural tube and the basal lamina is degraded (C, D). These events are sufficient to initiate delamination.
However, other factors such as snail-2 are required to perform full delamination and promote EMT and cell migration. M, cell in mitosis.
doi:10.1371/journal.pone.0001142.g011
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inactive mutant form (w375r) are spaced out and randomly

distributed within the neuroepithelium. Therefore, ets-1 holds the

ability to sort out cells from a population. It is also able to initiate

their delamination since the massive recruitment of cells is

associated with local degradation of the basal lamina. Our results

suggest that ets-1 might act by modifying the expression of cell

surface adhesion molecules mediating cell-cell recognition and

cluster formation. Indeed, we observe reorganization of the

neuroepithelium with loss of pseudostratified layout of the neural

tube, downregulation of cadherin-6B expression and perturbed

distribution of N-cadherin. We also detecte bi-directional

emigration of the transfected cells, both towards the lumen and

the basal lamina, reminiscent of a defect of apicobasal polarity of

the neural tube obtained by an increase or a decrease of cadherin

expression [45]. However, ets-1 alone does not allow cells to

undergo EMT and does not bestow them with migratory

capabilities. The ectopic bulges remain attached to the neural

tube and delamination is not completed. Therefore, ets-1 cannot

summarize all the aspects of cranial delamination. Here, we have

shown that ets-1 and snail-2 cooperate to induce ectopic EMT.

Similarly, a cooperation between ets-1 and an other member of the

Snail family (snail-1) has been previously described in human

squamous carcinoma cells [46]. All these results suggest that ets-1

expressed in cranial NCCs might also synergize with snail-2 to

induce full delamination process (Figure 12). Mechanisms which

support this cooperation remain to be elucidated.

Altogether, our results show that, at cranial level, delamination

is the result of two separable cellular events: (i) a massive

mobilization of premigratory NCCs orchestrated by ets-1 that

enables them to sort themselves out within the neuroepithelium

and to acquire the ability to delaminate massively and (ii) a proper

mesenchymalization controled by multiple genes.

MATERIALS AND METHODS

Embryos
Fertilized eggs from Fasso strain chickens (brown eggs) were

incubated at 38uC for appropriate times, then windowed and

staged according to Hamburger and Hamilton [47].

Plasmid constructs, in ovo electroporation, cell

death and BrdU labeling
Full-length human ets-1 cDNA (kindly provided by J. Ghysdael)

was inserted downstream of adenovirus enhancer and RSV

promoter in pAdRSV expression plasmid [48]. Integrity of the

sequence was verified by restriction maps and sequencing. Level of

expression and molecular weight of the encoded protein was checked

by immunoblots performed on extracts of transiently transfected 293

cells. Nuclear localization of the protein was also asserted by

immunochemistry in the same cells using a polyclonal anti-ETS-1

(gift of J. Ghysdael). An inactive mutant, h-ets-1 w375r, unable to bind

DNA and to transactivate expression [49,50] was generated by

transforming tryptophan in position 375 of h-ETS-1 into arginine by

PCR mutagenesis. A non-phosphorylable form of ets-1 (h-ets-1 t38a)

[51] in which threonine in position 38 is replaced by alanine was

created by PCR mutagenesis. A dominant negative form, c-ets-1

DBD, was created by inserting the chick ets-1 DNA-binding domain

corresponding to amino acids 306 to 423 into pAdRSV by PCR

amplification. The resulting protein binds target DNA but, lacking

its transactivation domain, does not transactivate expression [52].

We checked efficiency of c-ets-1 DBD by testing its ability to inhibit

ectopic delaminations induced by h-ets-1. After, coelectroporation of

c-ets-1DBD and h-ets-1 in the trunk of stage HH14 embryos, we did

not find any ectopic delaminations at 48hpe (n = 5, data not shown).

Plasmid driving full lenght chick snail-2 expression was provided by J.

Briscoe and M. Cheung. Embryos were electroporated between

stages HH7 and HH10 for head and HH10+ and HH14 for trunk

and collected as indicated. Plasmids encoding h-ets-1, h-ets-1w375r or

c-ets-1 DBD were co-electroporated with a plasmid encoding

enhanced GFP (pCAb-EGFP; gift of J. Gilthorpe) at respectively

2 mg/ml and 1 mg/ml in 12% sucrose solution containing 0,1% Fast-

Green (Sigma). Plasmid solution was mouth pipetted into the lumen

of the neural tube with a stretched glass capillary, anteriorward from

the level of approximately the third somite for head and last somite

for trunk. Electrodes (CUY610 platinum-coated, NEPA Gene) were

applied on vitelline membrane on each side of the tube at level of the

injection. A square wave stimulator was used to deliver 4 pulses of

50 ms and 18V (head) or 35V (trunk) at a frequency of 2 Hz

unilaterally. Embryos were allowed to develop to specified stages,

harvested in phosphate buffered saline (PBS), monitored for GFP

fluorescence and fixed in paraformaldehyde (PFA, 4% in PBS). After

electroporation with h-ets-1, no important cell death was detected at

12hpe, 18hpe, 24hpe and 48hpe by TUNEL (Roche, n = 5), Nile

blue staining (Sigma, n = 13) and DAPI staining (sigma, n = 15). For

S-phase analysis, vitelline membrane was punctured and embryos

received in ovo 25-100 ml of 0,2 mg/ml BrdU (Sigma) 1 hour before

harvesting.

Immunohistochemistry
Immunochemical detections of proteins were performed on

cryosections of embryos fixed 1 hour at room temperature (RT)

or overnight at 4uc in 4% PFA with following primary antibodies

Figure 12. Ets-1 and Snail-2 cooperate to achieve the cranial NCC delamination.
doi:10.1371/journal.pone.0001142.g012
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and dilutions: anti-BrdU 1:100 (Becton Dickinson), anti-Cadherin-

7 1:200 (Gift of S. Nakagawa), anti-N-cadherin 1:500 (Sigma),

antifibronectin 1:500 (Gift of K. Yamada), anti-GFP 1:500

(Sigma), anti-Phospho-Histone-H3 1:100 (Upstate Biotech.), anti-

HNK-1 1:25 (N. Desban and JLD), anti- b1 integrin 1:100 (Gift of

K. Yamada), anti-activated b1 integrin 1:100 (TASC 9D11,

Chemicon), anti-b3 Tubulin (Tuj1, Chemicon), anti-Laminin 1:50

(Gift of H. Kleinman), anti-Lim1/2 (4F2), anti-Pax6, anti-Pax7

and anti-Tenascin (M1B4) 1:100 (Developmental Study Hybrid-

oma Bank). Following secondary antibodies were used at a 1:100

dilution: anti-mouse Ig-Biot, anti-sheep IgG-Biot, anti-goat IgG-

Biot (Sigma), anti-mouse IgG1-Texas Red, anti-mouse IgMBiot

(Southern Biotechnology Associates), anti-mouse IgM-Alexa 488

(Molecular Probes). Briefly, slides were degelatinized, blocked in

2% FCS, incubated 2 hours at RT in primary antibody, 1 hour

with secondary antibody and 1/2 hour with coupled-streptavidin

1:500 (Molecular Probes and Southern Biotechnology Associates)

if necessary. For BrdU detection, sections were incubated 1 hour

in 5% 1 M trisodium citrate pH 6.7/95% formamide at 65uC.

Blocking and antibodies incubations were carried out in 0.25%

triton X100. DAPI (Sigma) and Phalloidin-TRITC (Sigma) used

to stain nuclei and actin microfilaments respectively, were directly

applied on cryosections for 15 minutes. In some cases, sections

were stained by May-Grünwald Giemsa solutions (Merck) or

assayed for TUNEL (Roche). Nikon Eclipse E800 microscope with

Nikon DMX 1200 F camera was used to capture pictures.

Whole mount in situ hybridization
Whole mount RNA in situ hybridization was performed using

either non radioactive digoxigenin (DIG) probe for single labeling,

or both DIG- and FITC-labeled RNA probes for double labeling

with chick-specific probes ap-2 (J. Richman), cad-6B and cad-7 (M.

Takeichi), cyclinD-1 (J. Lahti), ets-1 (B. Vandenbunder), b3-integrin

[35], foxd-3 (C. Erickson), rhob (Y. de Curtis), snail-2 (A. Nieto), sox-

2 (P. Sharpe), sox-9 (J. Briscoe), sox-10 (P. Scotting) and human-

specific ets-1 (J. Ghysdael). Reaction was carried out essentially as

described by Wilkinson 1992 [53] except that proteinase K steps

were omitted. Dark staining was obtained using NBT/BCIP

reagents (Boehringer Mannheim) whereas light blue staining was

obtained using BCIP alone. Specimens were refixed using 4% PFA

prior to storing or sectioning. For sectioning, embryos were

infiltrated with 15% sucrose and embedded in 20% gelatin

solution in PBS. Blocks were refixed 24 hours in 4% PFA/0.1%

glutaraldehyde transversely sectioned on a vibratome (Leica) at

30 mm and further cleared in 60% glycerol/PBS. For whole

mounts, images were collected on Nikon SMZ1500 and Leica

MZFL III stereomicroscopes equipped with diascopic stand and

Nikon DMX 1200 camera. For sections, Nikon Eclipse E800

microscope with Nikon DMX 1200 F camera was used.

Measurements of cell proliferation
To establish the ratio of neuroepithelial cells in S-phase out of the

total number of cells, DAPI and BrdU positive cells were counted

on 5 mm cryosections in fields of at least 1600 mm2. In each case,

at least 3 embryos and 5 non-adjacent sections per embryo were

used for analysis. In electroporated embryos, cells were scored in

the GFP area and in corresponding area on control side in order to

compare electroporated with non-electroporated regions (h-ets-1:

n(embryos) = 3, n(transfected cells) = 1036, n(control cells) = 1198);

w375r: n(embryos) = 3, n(transfected cells) = 1173, n(control

cells) = 1257). In normal embryos, cells were counted in regions

corresponding to endogenous chick ets-1 expression during (n = 9;

n(mid cells) = 1479; n(sur cells) = 1904) and after delamination

(n = 6; n(del cells) = 624; n(mid cells) = 659; n(sur cells) = 1037) of

cranial NCCs. In these embryos, surrounding regions of the neural

tube were used as reference.
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