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Epistasis arising from physiological interactions between gene products often contributes to species differences, particularly
those involved in reproductive isolation. In social organisms, phenotypes are influenced by the genotypes of multiple
interacting individuals. In theory, social interactions can give rise to an additional type of epistasis between the genomes of
social partners that can contribute to species differences. Using a full-factorial cross-fostering design with three species of
closely related Temnothorax ants, I found that adult worker size was determined by an interaction between the genotypes of
developing brood and care-giving workers, i.e. intergenomic epistasis. Such intergenomic social epistasis provides a strong
signature of coevolution between social partners. These results demonstrate that just as physiologically interacting genes
coevolve, diverge, and contribute to species differences, so do socially interacting genes. Coevolution and conflict between
social partners, especially relatives such as parents and offspring, has long been recognized as having widespread evolutionary
effects. This coevolutionary process may often result in coevolved socially-interacting gene complexes that contribute to
species differences.
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INTRODUCTION
Social interactions are ubiquitous and often strongly influence

both fitness and trait expression [1–3]. When social interactions

have a genetic basis, the social environment is heritable and a focal

individual’s phenotype is influenced directly by its own genotype

(direct genetic effects) and indirectly by the genotypes of social

partners (indirect genetic effects) [2,4–7]. Interactions between

genes within individuals give rise to physiological epistasis, which is

central to evolutionary theories for local adaptation, population

differentiation, and the evolution of species differences [8–13].

With physiological epistasis, a gene’s effect depends on the context

provided by the rest of the genome. When the effects of genes

expressed in one individual depend on genes expressed in social

partners, epistasis between the genomes of social partners results

[14–17]. While such intergenomic epistasis arising from social

interactions has been little studied, theory suggests it may influence

many of the same evolutionary processes as physiological epistasis

[14–17].

With physiological epistasis, phenotypes are determined by

groups of interacting genes, and during the course of population

differentiation, populations are expected to diverge for different

coevolved gene complexes [9–12]. Disruption of these coevolved

complexes is manifested as hybrid breakdown, the fitness decline

that typically occurs following hybridization between divergent

populations [9–12,18]. Similarly, with intergenomic epistasis,

phenotypes are determined by combinations of interacting genes

expressed in different individuals. As a result, interacting social

phenotypes are expected to coevolve, and divergent populations

are expected to harbor distinct coevolved gene complexes [14–

16,19]. The coevolution and divergence of socially-interacting

genes may affect a broad range of traits, including those involved

in mate recognition and compatibility, social dominance, and

familial interactions [20–26]. In some cases, the concerted

evolution of socially-interacting phenotypes may result in runaway

dynamics, including accelerating arms races, rapid host race

formation, and speciation [14–16,19].

In social insects, the environment experienced by developing

brood is determined by the social milieu of the colony [27]. In

particular, the nutritional environment and microclimate of

developing brood is provided and actively regulated by adult

sibling workers, so that workers play a fundamental role in shaping

brood developmental trajectories [27,28]. Earlier research discov-

ered high levels of heritable variation within a population of the

ant Temnothorax curvispinosus for direct effects, worker effects, and

queen effects on female mass and reproductive caste (i.e. worker

vs. queen development). This study demonstrated that the social

environment provided by adult queen and worker nestmates

makes substantial contributions to genetic architecture for the

studied phenotypes and can be shaped by selection [29].

Here I investigate the contributions of brood genotype (direct

effects) and care-giving worker genotype (worker effects) to

interspecific differences in worker size for three closely related

ant species in the genus Temnothorax; T. ambiguus, T. curvispinosus,

and T. longispinosus. If these species have diverged for different

coevolved worker-brood genotype combinations, the effects of

brood and worker genotype should be context dependent, i.e.

there should be evidence for intergenomic epistasis. These species

have widely overlapping ranges in eastern North America and

broadly similar natural histories [30,31]. They are all generalist
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scavengers and nest in acorns and other preformed cavities, but

there are measurable interspecific differences in worker body size

[32], behavior [33], and microhabitat preference [30,31]. Worker

size affects many aspects of foraging and nesting ecology, such as

the types of available food and nesting resources, and is likely

shaped by selection both within and between colonies [27].

Worker size differs between sympatric pairs of ant species in

Temnothorax as well as in the closely related genus Leptothorax,

perhaps due to character displacement as a result of competition

for food or nesting resources [32].

Just as the production of recombinants between lineages is

a powerful tool to study the intragenomic basis of phenotypic

differences between lineages [34], cross-fostering creates different

combinations of the genotypes of focal individuals and their social

partners and is a powerful tool to study the intergenomic basis of

phenotypic differences between lineages [4,35,36]. I used a full-

factorial cross-fostering design with brood (i.e. focal individuals)

and care-giving workers of the three Temnothorax species. For each

of the nine worker-brood combinations, I constructed 15 replicate

experimental colonies, for a total of 135 experimental colonies,

each composed of 15 workers and 25 larvae.

RESULTS
All cross-fostered larvae were accepted by the groups of workers to

which they were assigned. The 135 experimental colonies reared

a total of 1,154 workers, as well as 149 queens and 181 males. I

analyzed the main and interaction effects of brood (focal

individual) species and worker species on the mass of newly

emerged focal individuals. The species identity of brood influenced

their adult mass as new workers (brood species main effect, mixed

model, F(2,107) = 40.54, P,0.0001); T. longispinosus individuals were

larger than T. ambiguus or T. curvispinosus individuals regardless of

which worker species reared them (Fig. 1). The species identity of

care-giving workers also affected the mass of new workers

produced (worker species main effect, mixed model,

F(2,118) = 6.60, P = 0.0019); individuals reared by T. longispinosus

workers were the smallest (Fig. 1), despite the fact that care-giving

T. longispinosus workers were the largest (see below). Finally, there

was an interaction between the species identity of brood and care-

giving workers for new worker mass (brood species-by-worker

species interaction, mixed model, F(4,105) = 3.19, P = 0.016); the

size of T. ambiguus and T. curvispinosus individuals depended on

which worker species reared them while the size of T. longispinosus

individuals did not (Fig. 1). There were no detectable main or

interaction effects on the mass of new queens (all P.0.05) and for

male mass only brood species identity had an effect (brood species

main effect, mixed model, F(2,122) = 22.51, P,0.0001).

Some heterospecific worker-brood combinations produced new

worker phenotypes that were more extreme than the correspond-

ing conspecific worker-brood combinations (Fig. 1). For example,

T. ambiguus brood reared by T. longispinosus workers developed into

smaller workers than when reared by conspecific workers (Fisher’s

post hoc test, df = 103, P,0.0001), while T. curvispinosus brood

reared by T. ambiguus workers were larger than those reared by

conspecific workers (Fisher’s post hoc test, df = 106, P = 0.015).

Colonies with the different worker-brood combinations produced

similar low numbers of gynes (Kruskal Wallis test, x2 = 8.53, df = 8,

P = 0.38) but different numbers of males (x2 = 29.35, df = 8,

P,0.001) and workers (x2 = 34.06, df = 8, P,0.001). In particular,

more males were produced in colonies with T. longispinosus brood

(mean6s.d., 2.9163.72) than colonies with T. ambiguus (0.7660.91)

or T. curvispinosus (0.3160.67) brood, indicating that T. longispinosus

broods contained relatively more haploid eggs. Mean colony worker

production was affected by the species identity of brood (mean6s.d.

by brood species: T. ambiguus, 11.4965.73; T. curvispinosus,

9.1663.53; T. longispinsosus, 7.1664.00) as well as workers (mean6sd

by worker species: T. longispinosus, 10.9365.03; T. ambiguus,

9.4065.03; T. curvispinosus, 7.4765.01).

This variation in colony productivity potentially affected the mean

mass of new workers through a size-number trade-off. Indeed, the

total number of individuals produced was negatively correlated with

the mean mass of new workers across colonies (r = 20.259, n = 135,

P = 0.003). When variation in total colony productivity was

controlled for (Fig. 2), the main effect of worker species on new

worker mass became non-significant (mixed model, F(2,124) = 2.56,

P = 0.082), while the remaining effects did not change (brood species,

mixed model, F(2,113) = 36.15, P,0.0001; brood-by-worker species

interaction, mixed model, F(4,111) = 3.46, P = 0.011).

Field-collected workers used to create experimental colonies

showed the expected pattern of interspecific variation in mass

(ANOVA, F(2,682) = 167.5, P,0.001; mean mass in mg62 s.e.m.:

T. ambiguus, 0.35660.012, n = 164; T. curvispinosus 0.30060.010,

n = 210; T. longispinosus 0.44060.011, n = 309). Note that new

workers produced during the experiment were larger because they

were reared in laboratory conditions with unlimited food (Fig. 1).

DISCUSSION
This study demonstrates that phenotypic differences in worker

mass among Temnothorax ant species are determined by intrinsic

differences within developing brood, but these differences also

depend on the social context provided by care-giving workers.

These interspecific differences could have genetic and environ-

mental components but are likely mainly of genetic origin for

several reasons. First, contributions from pre-fostering sources of

environmental variation between species for initial larval size are

minimal because larvae gain the vast majority of mass post-

fostering [29]. Second, there is no evidence for differences in the

condition of care-giving workers, as worker survival over the

Figure 1. Mass of workers produced when cross-fostered brood were
reared to adulthood. The adult mass of focal individuals depended on
their own genotype (i.e. brood species) as well as the genotype of care-
giving workers (i.e. worker species). There were main effects of brood
and worker species, and a brood-by-worker interaction. Means and 95%
confidence intervals are shown. Filled symbols denote conspecific
worker-brood combinations and open symbols denote heterospecific
worker-brood combinations. Lines connect worker-brood combinations
with the same brood species and the crossing of lines indicates the
brood-by-worker interaction.
doi:10.1371/journal.pone.0000994.g001
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course of the experiment did not differ according to worker species

identity (generalized linear model, P = 0.348). Finally, post-

fostering sources of environmental variation are minimal because

all colonies were kept under constant laboratory conditions.

Thus, the results indicate that phenotypic differences in worker

mass between the three studied Temnothorax species are mainly due

to direct genetic effects (i.e. brood genotype) and direct-by-indirect

genetic interactions (i.e. brood-by-worker genotype interaction).

This interaction is a type of genotype-by-environment interaction,

in which the environment is provided to developing brood by care-

giving workers [14–16]. Because the worker-provided social

environment is heritable, the interaction is also a type of

genotype-by-genotype interaction, or epistasis between genomes

of developing brood and care-giving workers [14–16]. While

intragenomic epistasis arises from the physiological interaction of

gene products within an organism, possible mechanistic bases for

the observed intergenomic epistasis include behavioral interactions

governing larval solicitation and worker provisioning, pheromonal

signaling and response, and differential physiological responses of

brood genotypes to the developmental environments provided by

workers [15,16,26,37,38]. The three species displayed two

different patterns of intergenomic epistasis; T. longispinosus focal

individuals developed into similarly-sized new workers regardless

of the rearing environment, whereas the mass of new T. ambiguus

and T. curvispinosus workers depended on the rearing environment

(Fig. 1), suggesting that development is more canalized in T.

longispinosus than in the other two species.

There was also evidence for a context-independent effect of

worker genotype, but this effect became non-significant after

controlling for colony differences in the total number of individuals

produced, suggesting that the worker effect was mainly associated

with a size-number tradeoff (Fig. 2). That is, on average the

different worker species reared either relatively few large workers

or more but smaller workers.

Phenotypes of social organisms are determined by combinations

of direct and indirect genetic effects expressed in focal individuals

and their social partners, respectively. When certain combinations

are favored, theory predicts these effects will coevolve, and the

concerted coevolution of interacting social phenotypes will lead to

the buildup of direct-indirect genetic correlations within popula-

tions and distinct coevolved direct-indirect gene combinations in

divergent lineages [14–16,19,26]. In accordance with these

predictions, in a previous within-population study of T. curvispinosus

there were strong direct-indirect genetic correlations for female

mass and caste [29]. Furthermore, the worker-brood intergenomic

epistasis detected in the current study is a strong signature that the

three Temnothorax species harbor distinct coevolved direct-indirect

gene complexes. In some cases, heterospecific worker-brood

combinations produced new worker phenotypes that were more

extreme than the corresponding conspecific worker-brood combi-

nations (Fig. 1). If the mass of new workers produced by

conspecific brood-worker combinations is near a fitness peak, the

heterospecific combinations that are more extreme may be

associated with decreased fitness. Thus, cross-fostering may have

broken up coevolved worker-brood gene combinations, just as

crossing divergent lineages tends to disrupt coevolved physiological

gene combinations [9–12,18]. Altogether, these results suggest that

the studied ant phenotypes are shaped by the coevolution of direct

and indirect effects expressed in focal individuals and their

nestmates. Prolonged and intimate social interactions among

queen, worker, and brood nestmates are a fundamental charac-

teristic of social insect colonies [27], guaranteeing that this

coevolutionary process has the potential to influence all aspects

of social insect evolution [28,29].

Female reproductive caste, a phenotype central to the origin

and elaboration of eusociality, is especially likely to be subject to

the coevolution of direct and indirect effects because caste

development depends on brood responses to the nutritional

environment provided by adult nestmates [28,29,39,40]. In the

current study, all worker-brood combinations produced similar

low numbers of gynes, probably because the colonies were

relatively small. Other social insect studies involving taxonomically

more extreme cross-fostering have demonstrated that caste

phenotypes are readily disrupted [41,42].

The non-additive interactions between workers and brood

described here are similar to theorized non-additive, synergistic

interactions between social partners that have been incorporated

into models for the evolution of social behavior [43–45] as

extensions of Hamilton’s Rule [46–48]. These non-additive social

interactions all potentially give rise to epistasis for fitness and affect

the evolutionary dynamics of nestmate phenotypes. Worker-brood

epistasis involves a special type of social interaction, though,

because the social partners are at different life history stages, and

these interactions, like parent-offspring interactions [14,15,19],

shape the developmental trajectory of brood.

Interacting nestmates may often have differing interests re-

garding their own and their nestmates’ developmental trajectories

(e.g., caste fate) [39,40], and within-group (e.g., within-colony)

conflict between social partners has long been recognized by

students of social evolution to have widespread evolutionary effects

[49–51]. The balance of within-group selection and between-

group selection—as famously described by Hamilton’s Rule [46–

48,52,53]—together with the underlying genetic architecture

governs the coevolution of interacting social phenotypes [54,55].

The complex array of interactions that characterize social insect

colonies can be considered an emergent property of the social

Figure 2. Residual mass of workers produced from cross-fostered
brood after controlling for differences in colony productivity. After
controlling for colony differences in the total number of individuals
produced, the main effect of worker species became non-significant,
suggesting that there was a tradeoff between the different worker species
for the size and number of individuals reared. The main effect of brood
species and the worker-by-brood interaction remained significant, and
the overall pattern for residual worker mass is very similar to the pattern
for mass shown in Figure 1. Means and 95% confidence intervals are
shown. Filled symbols denote conspecific worker-brood combinations
and open symbols denote heterospecific worker-brood combinations.
Lines connect worker-brood combinations with the same brood species
and the crossing of lines indicates the brood-by-worker interaction.
doi:10.1371/journal.pone.0000994.g002
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group and earlier models suggest that selection at the colony-level

shapes these networks of interactions [56,57]. Indeed, more recent

theory and empirical studies demonstrate that selection at the

group level (i.e. the benefit term in Hamilton’s Rule) acts much

more effectively than within-group selection (i.e. the cost term in

Hamilton’s Rule) on genetic components influencing social

interactions [14,54,55,58–60]. Thus, the genetic basis of complex

social phenotypes may favor group-level evolutionary responses,

leading to coadapted nestmate phenotypes that maximize group

productivity [61].

Studies in other social insects, especially the fire ant Solenopsis

invicta and the honey bee Apis mellifera have also found evidence for

genetic effects that are dependent on the social context provided

by nestmates [62–70]. Thus, intergenomic epistasis may be

a common feature within and between social insect populations.

Complex social interactions such as those found in social insect

colonies may often give rise to intergenomic epistasis, affect

evolutionary dynamics within populations and also contribute to

phenotypic differences between lineages.

MATERIALS AND METHODS

Origin of workers and brood
In September 2004, nests of Temnothorax curvispinosus were collected

from Griffy Nature Preserve, Bloomington, IN, USA, and nests of

T. longispinosus were collected from two sites, Rondeau Provincial

Park, ON, Canada and Allegany State Park, NY, USA. These

nests were overwintered in the laboratory [29,71]. Nests of

overwintered T. ambiguus were collected on 16 April 2005 from

Cowling Arboretum, Northfield, MN, USA.

Experimental design
During the last two weeks of April 2005, I created experimental

colonies using workers and larvae from the overwintered colonies.

Pools of workers and larvae from all colonies of a single species (or

collection site in the case of T. longispinosus) were used to create

a total of 15 replicate experimental colonies, each with 15 workers

and 25 larvae, for each of the nine worker-brood species

combination. Pools of workers and larvae were used to minimize

the contribution of variation between field-collected nests to

variation between replicate experimental colonies.

Replicate experimental colonies were kept in climate control

chambers simulating seasonal conditions [29,71]. Water and

freshly frozen adult fruit flies were provided ad libitum and

refreshed weekly, and 1.5 ml of 10% sucrose solution was

provided to each replicate colony at the beginning of the

experiment. Colonies were checked biweekly and new worker

pupae were removed, frozen, and weighed to the nearest 0.001 mg

with a Sartorius MC-5 microbalance (Sartorius, Edgewood, NY).

New workers were removed as pupae and not as adults to ensure

that no old workers were mistaken for new workers. The first

worker pupae were removed during the last week of June and most

had been removed by the last week of July 2005. Wet mass, which

is strongly correlated with dry mass, was used as a measurement of

body size [29]. At the end of the study, old field-collected workers

from each worker-brood combinations were weighed to provide

an estimate of natural interspecific size variation.

Statistical analysis
Phenotypic data were analyzed with the following model using the

mixed model procedure of SAS:

yijkl~mzBroodizWorkerjzBroodi|WorkerjzColonyk(ij)

zeijkl ,

where yijkl is the observed mass of a new worker focal individual; m
is the overall mean; Broodi is the species identity of brood, i.e. focal

individuals, that develop into new workers (fixed effect); Workerj is

the species identity of care-giving workers (fixed effect); Broodi6
Workerj is the interaction between brood and worker species (fixed

effect); Colonyk(ij) is replicate colony nested within brood and worker

species (random effect); eijkl is random error (4, 5). While T.

longispinosus nests were collected from two sites, there was no

difference in the mass of old care-giving T. longispinosus workers

between the two collection sites (general linear model,

F(1,307) = 0.17, P = 0.68), and there was also no difference in brood

effect (mixed model, F(1,263) = 1.46, P = 0.23) or worker effect

(F(1,411) = 0.36, P = 0.55) for new worker mass for the two

collection sites. Thus, only species identity was considered. A

model including heterogeneous error variances was used [72]

because error variances were not homogeneous across worker-

brood combinations (Levene’s test, P,0.01). Fisher’s post-hoc test

was used to compare different worker-brood combinations. To test

whether there was differential survival (as indicated by the number

of workers remaining at the end of the study) among the three old

worker species, I used a generalized linear model with Poisson

distributed residuals and a log link function. To control for

a correlation between new worker mass and the total number of

individuals produced across colonies, I performed a separate

analysis using residuals from the regression of total colony

production on mean new worker mass. For mixed model analyses

and associated post-hoc tests I used SAS, and for the remaining

analyses I used Statistica 6.1 software.
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