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Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to
desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of
environmental (LD/DD) conditions. Using a model-based analysis of CH variation, we developed an improved normalization
method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which
differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed
compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant
metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant
hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under
different conditions.
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INTRODUCTION
Chemical communication is fundamentally important to the

biology of many organisms. For example, several reproductive

behaviors are mediated by chemical signals in insects[1]. Research

on chemosensory function has advanced beyond the initial

identification of olfactory and gustatory receptors to include

mechanisms involved in the production, emission, and neural

processing of chemical signals [2,3].

Chemical signals emitted by Drosophila are made within the fly

and are found on the body surface, and include sex pheromones

[4–6]. Courtship between flies is modulated by these compounds.

Other social interactions in Drosophila, such as the social resetting

of circadian clocks [7], are also mediated by chemical cues. The

analysis of such chemical signals has been complicated, in part by

the high variability between flies.

The genetics associated with the metabolism of chemical signals

in Drosophila provides a glimpse of natural history. This insight

arises from several points: genes responsible for key enzymes in

cuticular hydrocarbon (CH) synthesis have been isolated [8–12],

mutations or natural variants of these genes have been shown to

change CH levels within a species and this system contributes to

reproductive isolation between sibling species such as D.melanoga-

ster, D. simulans, D. santomea, and D. sechellia [12–17]. In addition,

the balance between different CH compounds within a single

genetically uniform strain of D. melanogaster is changed by

environmental conditions such as rearing temperature [18]. Thus,

an objective of this study is to understand quantitatively how the

cuticular hydrocarbon phenotype of D. melanogaster varies in

response to environmental variables and to the passage of time.

Such insights contribute to our understanding of the phenotypic

plasticity of this important trait.

Here we use wild-type males to determine (a) the natural

range of variation of CH expression of a single genotype

under controlled environmental conditions, (b) whether there are

time of day patterns in such variation, (c) where patterns of

expression co-vary between compounds and what this reveals

about chemical pathways of CH synthesis, and (d) what natural

variation in CH levels implies about the metabolic cost of

pheromone signaling.

In order to study daily variation in these compounds we have

had to review methods for analyzing these compounds. We have

characterized these methods and identified an underlying general

linear model of cuticular hydrocarbon abundances which explains

a higher percent of variance than previous methods. The model

can be used to deduce new features of CH variation, but perhaps

its most important application is to a normalization method which

considerably reduces error variances in CH measurements.

Using our model-based analysis, we show that there are five

clusters of compounds whose abundance patterns co-vary, and

that membership of these clusters is a function of chemical

structure and chain length. This demonstrates that although CH

abundance variation is high, it is nonetheless strongly constrained

by chemistry. We find significant differences in the patterns of

hydrocarbon abundance in these clusters in LD (12 hours light-

12 hours dark) and in DD (constant darkness), significant

differences for two clusters in day versus night abundance, and

highly significant cyclical components in the 24 hour variation

whose frequencies vary between clusters and between LD and DD.

We estimate hydrocarbon turnover rates on the cuticle, leading to
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the conclusion that chemical signaling has a significant metabolic

cost for male flies.

We also identify a new feature of CH variation we call

Abundance Variability (AV) by analogy to the beta volatility term

of mathematical portfolio analysis [19]. AV is not a chemical

volatility; it represents the magnitude of an individual compound’s

response to fluctuations in CH total abundance (TA), and varies

independently of mean compound abundances over time and in

response to light. AV is strongly influenced by cluster membership,

carbon chain length, and double bond position, further demon-

strating that the underlying chemistry of CH production

constrains the observed patterns of CH abundance. These findings

reveal complex features of chemical physiology and behaviour.

RESULTS
We consider first the distribution of total CH abundance in

individual flies and how this affects different classes of compounds.

From this we derive an unbiased normalization technique for CH

abundances and use this to characterize patterns of CH coexpres-

sion. Clustering methods applied to such normalized data reveal

clusters of coexpressed compounds which are related to the chemical

synthesis pathways of the compounds. We show that cluster

membership correlates with phenotypes such as day-night mean

compound differences and effect of light on abundance patterns.

Finally we show that frequencies of temporal differences in

hydrocarbon abundance span a range from 24 to 3 or less hours,

and use this to estimate minimum CH turnover rates per day.

Patterns of Total and Relative Abundance
Patterns of abundance of CHs might be unique to particular

genotypes or environmental conditions, or they might be

constrained by the underlying biochemical synthesis pathways to

a sex- and species-specific program. D. melanogaster total CH

abundance is highly variable even among genetically identical

male flies in the same environmental conditions (over 4-fold

variation). High endogenous variation within a condition can

obscure between-condition changes.

The pattern in total CH abundance (TA) is illustrated in figure 1,

showing the very wide spread of individual fly values. The

distribution of total abundance is approximately lognormal; it is

not uncommon to find flies in the same vial whose total abundance

differs by a factor of 2. However, although individual fly TA varies

greatly within a vial or condition, the population distribution of

TA values observed is reproducible within one condition. Mean

TA does not vary with light environment, but the standard

deviation of TA is 23% higher in DD (p = .00015) (Figure 1).

No significant temporal pattern in mean TA was detected in

either light environment via several techniques, including

ANOVA and Fourier decomposition (see Methods). Thus mean

TA is insensitive to time and light in our conditions, but individual

fly TA varies over a four-fold range within samples. When

analyzing abundances of individual compounds, this high TA

range causes large error variances.

Several normalization techniques have been used to minimize

effects of this high within-treatment endogenous variation. If

endogenous variation causes all compounds to vary as a simple

multiple of the TA, then expressing each compound amount as

a proportion of the TA for the sample is an unbiased estimator of

relative abundances (RA). The relative abundance measure also

corrects for internal variability of the measurement system, and

has been used extensively in Drosophila CH literature [16,20,21].

Other authors have used a log-contrast method in which the

logarithm of the ratio of a compound of interest to another

compound is used [22–24]. Both methods work well if all

compounds respond as a strict multiple to total abundance

changes, that is, as a linear relationship passing through the origin.

We tested this assumption by fitting a general linear model not

constrained to pass through the origin, relating the abundance yi,j

of compound j in fly i to a ‘‘latent variable’’ xi:

yi,j tð Þ~aj tð Þzbj tð Þxizei,j ð1Þ

In equation 1, the latent or hidden variable xi represents an overall

compound abundance, a and b the intercept and slope, respectively,

which depend on time t and compound j, and e the error or noise

term. Latent variable models (factor analysis) are commonly used to

test multivariate data for the presence of hidden variables which

explain much of the observed variation [25,26]. Our model in

equation 1 is a generalization of the model implicit in the use of the

relative abundance measure RA, for if the relative abundance

(proportion) of compounds is independent of total abundance, then

equation 1 must hold with aj(t) = 0 for all compounds j and times t.

We call this case the ‘‘RA model’’. A change of scale helps make

clear a prediction of the RA model. If we divide or scale compound

and total abundances by their means to get variables y9 and T9 then

the RA model predicts (see Methods for details):

y0i,j~T 0i ze00i,j ð2Þ

In other words, if we regress scaled compound abundances against

scaled total abundance, the intercept a9j of the regression should not

be significantly different from 0 and the slope b9j should be 1. This

assumption fails in our data for most compounds (for 15 of 24

compounds in LD and for 19 of 24 in DD, slope differs from 1 with

p,0.05; Figure 2).

When the fitted slope b9j for compound j is not far from 1, RA

will be an acceptable normalization method for reducing error

variances. As shown in Figure 2b, the variation in RA values for 9-

C23:1 is 20% of the mean, so in reasonably sized samples standard

errors will be small. However, for compounds like C25, the range

of RA values is 50% of the mean, leading to larger standard errors.

The good linear fits shown in Figure 2 suggest that Equation 1

can be used to derive a normalization method which incorporates

non-zero aj and slopes different from 1. Below we show how to use

the intercept and slope information to more efficiently reduce

variation in the data (equation 3). First however we ask if TA is the

best latent variable to use. Although total hydrocarbon abundance

TAi has a high correlation with compound abundances, there is no

a priori reason to assume it to be the most efficient estimator of the

latent variable xi. Factor analysis is used to objectively fit latent

variables to linear systems of equations such as Equation (1) (see

Methods for details). In the terminology of Factor analysis, values

of the latent variable xi are called scores. We explored several

methods of estimating scores xi (see Methods), and found that total

hydrocarbon abundance Ti is less efficient than other score

estimators.

Given an estimated score xi for a fly, we can use equation 1 to

ask what the compound abundances would be if that fly had an

average abundance. In other words, we normalize yi,j to its

residual value yN
i,j after the effect of abundance variation is

removed. That is, the model-based Factor Analysis (FA)

normalization estimates what the CH abundances of a fly would

have been, if the fly had an average total abundance:

yN
i,j~yi,j{bbbj tð Þ bxxi{x tð Þð Þ ð3Þ

Male Cuticular Hydrocarbons
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The FA normalization has the important property that it preserves

hourly and treatment means and keeps the same units as the non-

normalized data (see Methods). Most importantly, the variance of

the FA-normalized abundances is much reduced. We calculated

the percent of variance removed by normalization for the RA

method and FA methods (using several different score estimators)

for flies in LD and DD (Table 1).

The factor analysis (FA) normalizations reduced error variances

significantly more than the RA technique for all cases except for 2-

MeC24 and 2-MeC26 in LD, where the reductions were similar in

Figure 1. Distribution of individual fly total abundance (TA) values for wild-type males. (A) LD and (B) DD. Mean, LD = 2.27 mg/ fly (N = 277),
DD = 2.30 mg/fly (N = 348.); no significant difference. The standard deviation in DD is 23% higher than in LD (F347,276 = 1.518, p = .00015).
doi:10.1371/journal.pone.0000962.g001

Figure 2. Test of RA model assumptions. (a) Plot of scaled abundance y9i,j versus scaled total abundance T9i for monoene 9-C23:1 (solid line) and n-
alkane C25 (dashed line) in DD. Fitted slopes b9j are different from 1: slope b9j = 1.254 for 9-C23:1 (s.e. = 0.0345, t = 7.37, df = 346, p,1e-12) and
b9j = 0.483 for C25 (s.e. = 0.0365, t = 213.6, df = 345, p,1e-16). Each point is mean61 s.e. of 20–22 observations over 24 hours. Abscissa and ordinate
are dimensionless.(b) Plot of RA versus TA over 24 hours. RA is dimensionless, TA is mg/fly. 9-C23:1 – filled circles, solid line; C25 open circles, dashed
line. RA for C25 is less in flies with high total hydrocarbons, while RA for 9-C23:1 is higher in such flies.
doi:10.1371/journal.pone.0000962.g002
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magnitude. The 3 FA normalizations differ in the methods used to

estimate the latent abundance variable xi; for details of this and

a comparison to other multivariate techniques see Methods.

The slopes bj in equation 3 depend on the absolute abundance

of each compound, which varies greatly between compounds. For

purposes of inter-compound comparisons of the slope terms, it is

convenient to work with rescaled values b9j which are independent

of compound abundance (see Methods). b9j will be 1 when

compound j increases in identical proportion to changes in

abundance variable x – for example, if x increases by 50% and b9j

is 1, the proportional change in abundance of compound j will be

50%. If b9j is much larger than 1, compound j will be relatively

more abundant on flies with high compound abundances – that is,

RAj will increase for high abundance flies and decrease in low

abundance flies. Conversely, if b9j is much less than 1 (say b9j = 0.5;

see C25 in Figure 2), an increase of 50% in abundance xi will

produce an increase of compound j of only 25%. In this case, RAj

will decrease in high abundance flies and increase in low

abundance flies.

Mathematical portfolio analysis calculates a term called beta,

which is the ratio between the proportional increase or decrease of

a stock and the increase or decrease of the market [19,27]. This

beta statistic is also known as stock volatility, and has the same

interpretation as our b9j – high volatility means the stock increases

at a rate faster than the market, low volatility means its response is

damped compared to the market. In our case, the abundance of an

individual compound is analogous to an individual stock price, and

the abundance score x is analogous to the market price. When b9j

is expressed as a percent, we call this the Abundance Variability

for compound j, or AVj. A chart of AVj values determined for 348

wild-type flies in DD conditions is shown in Figure 3.

Several clear patterns of AV in DD emerge from this analysis.

First, monoenes of chain length 23–25 all had AV .100%, while

linear alkanes (‘‘n-alkanes’’) and methyl-branched alkanes (‘‘methyl-

alkanes’’) with 23 or more carbons all had AV,100%. Second,

within a compound class (e.g. methyl-alkanes, odd-length n-alkanes,

even length n-alkanes, 5-alkenes, 7-alkenes, or 9-alkenes), CH with

fewer carbons have higher AV values than longer chain compounds

of that class. Third, among alkenes the position of the double bond

changes AV ranking, with 5-alkene bonds producing lowest AV and

9-alkene bonds the highest. The compound with the highest AV,

(cVA, 163%) has the shortest C chain, while the compound with the

lowest AV (C29, 22%) has the longest C chain.

In this section we have introduced a general linear model

(equation 1) of CH abundance which explains more variance than

previous proportion-based models. We derived a normalization

method, FA-normalization, from the model which keeps CH data

in absolute microgram or nanogram units, does not change hourly

or condition means, but significantly reduces within-treatment

variance leading to smaller error variances. Just as the linear

model fits an intercept and slope, FA-normalization provides both

a mean value and a scaled slope, the AV or abundance variability,

which varies by types of compound (monoenes higher than n-

alkanes) and by carbon chain length and bond position (Fig. 3). We

provide a fully worked out example of calculating FA-normalized

values and AV in an Excel spreadsheet, with data from hour CT

14 of our DD treatment (see Excel S1).

Coexpression Clusters parallel chemical pathways
In insects, CH is synthesized in oenocytes, transported in the

hemolymph bound to lipophorin, and secreted to the cuticle by

processes that are still unclear[1,28]. Given the intermediate steps

between synthesis and deposition on the cuticle, it is not a priori clear

that observed variation in CH abundance will reflect the

underlying chemistry of the compounds. We detect an increasing

number of compounds as technical methods become more

sensitive, so finding structure among the two dozen or more

compounds detected has often relied on statistical analyses using

multivariate methods such as Principal Components Analysis[24].

While these methods are powerful, the abstract nature of the

patterns found (the component axes) does not always lead to

hypotheses about the roles of individual compounds. We used

a combination of several multivariate methods to clearly link major

components of CH variation to particular groups of compounds in

an objective fashion, and to visualize these groups so that position

in a chart reflects the main components of variation.

Table 1. Percent of within-hours variance removed by
normalization methods.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compounds LD–RA DD–RA LD–FA DD–FA

9-C23:1, 7-C23:1, 5-C23:1 73.6% 79.5% 81.3–90.3% 86.1–91.0%

9-C25:1, 7-C25:1 53.7% 55.8% 58.6–64.0% 62.9–67.6%

2-MeC24, 2-MeC26, 2-MeC28 33.2% 25.7% ns 36.7–45.6% 17.7–24.2%

C23, C25, C27, C29 4.7% ns 1.2% ns 32.6–38.4% 31.3–38.2%

RA = Relative Abundance, FA = Factor Analysis. FA values show the range of 3
methods with differing score estimators – see Methods. Values shown are
averaged over the compounds indicated. All variance reductions are significant
at p,0.01 for each compound in group, except where indicated. ns = not
significant. For all compounds and light conditions, the FA normalizations
reduced variance significantly more than RA, except for 2-MeC24 and 2-MeC26
in LD.
doi:10.1371/journal.pone.0000962.t001..
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Figure 3. Abundance Variability AVj for 21 compounds in wild-type
flies in DD. p(AVj.0),1027 in all cases. Methyl-alkanes and n-alkanes
have significantly lower AV than monoenes at each chain length
(p,1026 in all cases), while longer chain compounds have lower AV
than short chain compounds (e.g. AVC27 = 0.30,AVC23 = 0.74, p,10211).
Fitted to response for hours 0–23 using FA latent variable (see
Methods). Asterisks indicate significant difference from the null
hypothesis of AV = 100%. *** = p,0.001; ** = p,0.01.
doi:10.1371/journal.pone.0000962.g003
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We examine the correlation matrices of (a) FA-normalized

compound abundances and (b) FA-normalized bj values. We fit

these independent (a) mean and (b) slope values separately to each

hour’s data within each treatment, yielding two 24 com-

pound624 hour matrices of coefficients for each LD/DD

treatment, or a total of 4 cases. Using unguided clustering

methods (ones in which the algorithm determines where to place

clusters, rather than being given predetermined cluster centers)

with the Pearson distance measure (the standard way of calculating

a dissimilarity or distance from a correlation matrix) we show that

compounds that cluster together based on patterns of expression

are, for the most part, in the same chemical pathways, but that

chain length is also a strong grouping factor.

To simplify viewing the 146 compound correlation pairs for

each treatment, we used multidimensional scaling (MDS, synonym

for Principal Components Analysis) to create a two-dimensional

(x,y) coordinate for each compound, so that compounds with high

positive correlations are close together on the plot (see methods for

details) [29]. Thus, within each treatment each compound is

represented by one point in the figure. MDS scaling is indifferent

to sign of the x and y values, so where necessary MDS scalings

were reflected and/or rotated to align across treatments – this does

not change the similarity distances nor the clustering reported.

To objectively identify clusters of compounds which tend to be

coexpressed, we used the non-hierarchical Affinity Propagation

(AP) clustering method [30]to identify compounds which cluster

together. Lines join compounds in a cluster to a central

‘‘exemplar’’ compound as determined by the AP algorithm (see

methods). To assess the dependence of cluster identity on

clustering method, we compare the AP results to those from

a hierarchical clustering method, Ward’s minimum [31].

The MDS/AP analysis identifies 5 clusters of compounds whose

chemical nature and MDS position are relatively constant

(Figure 4, A–F and Table 2) over LD and DD treatments for

both FA-normalized means and slopes.

At upper right of each panel of the MDS/AP figures for FA-

mean is n-alkanes Cluster 1, with C27 as the central ‘‘exemplar’’

member. In DD treatments odd chain length n-alkanes only are

represented in this cluster, while in LD C24 and C28 are also

members. The TA-slope clusters (Fig 4, E and F) are identical to

the FA-mean for DD and differ in LD only by the omission of the

low-abundance compound 5-C25:1.

Proceeding clockwise, Cluster 2 is the long-chain alkene cluster,

which includes 7-C27:1, 7-C25:1, 7-C24:1, 9-C25:1, and 5-C25:1 in

three of the four cases (TA-mean DD, TA-slope LD & DD); in the

fourth case (TA-mean LD) the only difference is the loss of 5-C25:1

to Cluster 1 noted above. Interestingly, in all cases treatments 7-

C24:1 is a member of the long-chain alkenes cluster, while its sister

compounds 9-C24:1 and 5-C24:1 fall into the next cluster.

The third cluster contains core members 9-C24.1 and 5-C24.1

and the even-chain length n-alkane C22 in all four cases. In DD,

for both mean and slope datasets, C24, C28 and 9-C23:1 are

Cluster 3 members; in LD C24 and C28 move to Cluster 1 and 9-

C23:1 to Cluster 4.

Cluster 4 is centered on the abundant and behaviorally

important compound 7-C23:1 and has core members 5-C23:1

and C21 in all 4 cases. In LD it includes 9-C23:1 and the

pheromone cVA (cis-vaccenyl acetate, C20H38O2).
The fifth cluster is specific to the methyl-alkanes 2-MeC24, 2-

MeC26, and 2-MeC28. The methyl-alkane 2-MeC22 has high

variability due to its low abundance and is not grouped by the AP

algorithm.

When we look at the two MDS axes for TA-mean data (Fig 5, A

and B) by chemical cluster, we see that the primary (x) axis

generally correlates with chain length, while the MDS y axis

separates monoenes from methyl-alkanes and long-chain n-

alkanes. In addition, considered as a group, the mean y-axis

position of odd-chain length n-alkanes is greater than the mean

position of even chain n-alkanes, and on average tricosenes and

pentacosenes are above tetracosenes. Thus, the y-axis may be

viewed as a bond-type and chain parity discriminator. For TA-

slope data, the MDS y-axis still separates n-alkanes from

monoenes, but the methyl-alkanes cluster is anomalously placed

in LD (see below, Figure 5 B, for changes in abundance variability

AVj between LD and DD).

The alkene 7-C22:1 is relatively abundant, making up 10–11%

of total CH abundance or 15–16% of total monoenes. Relative

abundance of 7-C22:1 is negatively correlated with most

compounds in each of the treatments. Conversely 2-MeC22 and

5-C25:1 were frequently below detection limits and thus are

‘‘noisier’’ data. Neither 7-C22:1 nor 2-MeC22 is placed in clusters

by AP clustering except in TA-slopes in LD (Fig. 4 E) where they

appear in their own ‘‘outliers’’ cluster.

The Ward’s hierarchical clustering method applied to TA-mean

datasets generally paralleled the non-hierarchical AP method, if we

examine branches of the hierarchy at a depth of two or three from

the root. For example, in DD Ward’s has a branch containing

C23,C25, C27 and C29, exactly parallel to the AP Cluster 1; in LD

the branch at depth 2 contains all n-alkanes plus 5-C25:1, the same

as AP LD Cluster 1 except for the inclusion of C21 and C22. Methyl-

alkanes are clustered together in both LD and DD at depth 3.

However, the correspondence between Ward’s and AP is more

variable for monoenes. Cluster 2 members appear in a single branch

at depth 2 in DD, but in LD the depth 2 branch merges members of

clusters 2 and 3. For Cluster 4 (core members 7-C23:1 and 5-C23:1),

in DD Ward’s merges the cluster with cluster 2, while in LD Ward’s

merges Cluster 4 with Cluster 5.

In this section we asked whether each of the two components of

our general linear model (equation 1), the FA-normalized values

and the AV slopes, would reveal coherent groups of compounds

with similar expression patterns, and whether these groups would

depend on the LD/DD environment. By looking at FA-

normalized data, we subtracted out the obscuring effects of high

TA variation. Applied to the normalized data, the MDS/AP

clustering technique produces five nearly identical clusters in each

of two different datasets (LD and DD) for each of the model’s two

components (AV and FA-normalized values). The clusters

correspond closely to chemical groupings (methyl-alkanes, mono-

enes) but divide monoenes into 3 groups based on both chain

length and double bond position. Abundant odd chain length n-

alkanes are consistently placed in the same cluster, but even chain-

length n-alkanes may be placed either in Cluster 1 or Cluster 3

depending on LD or DD treatment.

Thus, we have found five coherent compound clusters based on

CH abundance patterns which clearly relate to the chemistry of

CH compounds. Chemically similar compounds vary together. In

the following sections we ask in more detail whether trends in

compound abundances due to light or time of day are consistent

among cluster members.

The Effect of Light
Wild-type flies kept in 12 hour light:12 hour dark (LD) versus

continuous dark (DD) conditions were compared to determine

whether patterns of CH mean abundance and abundance

variability are affected by exposure to light in a conventional

photoperiod. In this section we look only at the overall effect of

light by comparing 24-hour averages of slope (AV) and mean (FA-

normalized values) between LD and DD, reserving details of the

Male Cuticular Hydrocarbons
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Figure 4. Cluster analyses of 22 CHs in LD and DD. Two independent fitted values per treatment (FA-normalized mean and FA-normalized slope bj)
are used. Clusters based on mean data are shown in A-D, clusters based on slope data, E–F. A,B: MDS/AP clusters of FA-mean data in LD and DD. X
and Y axes are multidimensional scaling projections of the 22-dimensional correlation distance matrix into two dimensions. Compounds are joined by
a line to a central ‘‘exemplar’’ cluster member if the Affinity Propagation clustering algorithm of Frey and Dueck places them in the same cluster.
Different clusters may overlap in this 2-D representation, as two dimensions is not sufficient for MDS projection to capture all of the variation in the
data; the AP clusters are determined from the full 22-dimensional structure, which has 4 significant principal components. C,D: Ward’s minimum
variance clustering of wild-type FA-mean data in DD and LD. E,F: MDS/AP clusters of FA-slope values bj in LD and DD.
doi:10.1371/journal.pone.0000962.g004
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interaction of LD/DD and time of day for a later section. Note

that our experimental design does not distinguish between direct

effects of illumination and indirect effects of LD light cycles

synchronizing circadian rhythms.

Figure 5 shows AV, Abundance Variability, for wild-type in LD,

and the difference between LD and DD values. 7- and 9-

monoenes still have significantly higher AV than n-alkanes in LD,

but the abundance variability of methyl-alkanes increases in LD

(p,0.0002 after Bonferroni correction). AV decreases in LD for

most n-alkanes and alkenes, significantly for, 7-C24:1, C24, 9-

C25:1, and C29, and highly significantly (p,0.0001) for cVA,

C22, 9-C24:1, 5-C24:1, 5-C25:1, 7-C27:1, and C28. Anomalously

among n-alkanes, C25 has a significant increase in AV in LD

(p,.0001).

To show the overall effect of light on each compound, we

compared the FA-normalized mean values averaged over

24 hours, between LD and DD. The results (Figure 6) show LD

as % DD (100% = no difference) along with the p-value for a t-test.

In all cases where we apply tests to multiple compounds in parallel,

we use the Benjamini-Hochberg False Discovery Rate (FDR) [32]

at a value of q = 1/25. Thus, in tests on 24 compounds, we expect

on average 1 or less false discoveries. Our value of p used for

confidence limits is set at 0.01, so error bars shown are more

stringent than the usual 0.05 level.

The presence of 12 hours of light caused FA-normalized mean

abundance of methyl-alkanes to increase significantly for 2-

MeC24 and 2-MeC26. The effect of light diminishes as methyl-

alkane chain length increases. No n-alkanes or alkenes increased in

LD. Decreases were larger for the even chain compounds C22,

C24, 9-C24:1, and 5-C24:1 (p,1e-11 in each case), but less

significant for the odd-chain monoenes 7-C23:1 (p = 0.003), 5-

C23:1 (p = 5.5e-6), 9-C25:1 (p = 0.001), and 7-C27:1 (p = 3.3e-06).

Thus, overall daily average FA-normalized compound levels

increase in LD over DD for some short chain methyl-alkanes,

and decreased for some monoenes and n-alkanes.

Temporal CH Pattern
In this section we describe which compounds showed diurnal (day

versus night) differences for each light treatment, and when (what

time of day) differences between LD/DD treatments were most

marked. We examine the three levels of variation described

previously: total abundance TA, abundance variability AV, and

variation of individual compounds. Finally, we look at whether

cyclic fluctuations can be found in compound abundance over

time, and if so what the periods of such cycles are.

Table 2. Cluster Membership.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compounds Cluster

C23, C25, C27, C29, [C24, C28] 1

7-C24:1, 9-C25:1,7-C25:1, 5-C25:1, 7-C27:1 2

9-C24:1, 5-C24:1, C22, [C24, C28] 3

9-C23:1, 7-C23:1, 5-C23:1, C21, cVA 4

2-MeC24, 2-MeC26, 2-MeC28 5

2-MeC22, 7-C22:1 Outliers

Consensus membership of the 5 clusters as determined by the Affinity
Propagation algorithm. See also Figure 4 where clusters are shown graphically.
Italicized compounds C24 and C28 are assigned to clusters 1 or 3 depending on
which data set is used. The core or ‘‘exemplar’’ member of each cluster is shown
in bold face.
doi:10.1371/journal.pone.0000962.t002..
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Figure 5. Abundance Variability and effect of light. (A) Abundance Variability AV in wild-type males in LD. (B) Change in AV between LD and DD.
*** = p,0.001; ** = p,0.01. Benjamini-Hochsberg FDR q = 0.01, N = 277. Fitted to response for hours 0–23 using FA latent variable (see Methods).
Asterisks indicate significant difference from the null hypothesis of (A) AV = 100%, (B) AV LD = AV DD. See Figure 3 for AV in DD.
doi:10.1371/journal.pone.0000962.g005
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Total Abundance
No significant effect of hour on log(TA) was found in either LD or

DD. Low TA values at hours 6 and 13 produced F tests at the

p = .02 level at CT 6 and p = .009 at CT 13, but on applying the

FDR control at q = 1/25, none of the individual hourly F tests

were significant. A note of caution is required: because of the high

variability of TA data and the large number of tests (1 per hour),

considerably more than our N = 15 replicates per hour might be

required to detect small changes in mean TA. Within the limits of

our sample sizes, therefore, the distribution of TA values appears

to be independent of time of day.

Mean Abundance
Perhaps the simplest question which can be asked about temporal

variation in compound abundance is whether mean values during

subjective day (CT 0–11) differ from means during subjective night

(CT 12–23). We plot the Student t value for the comparison of day

versus night for a number of compounds, ordered by cluster

membership, in Figure 7. Positive t indicates the mean in day

exceeds mean at night for that compound. LD and DD t values are

shown as two curves; their general parallelism suggests that light

itself has little effect on day-night differences, except in Cluster 4

members (tricosenes and others), where presence of light in LD

causes a significant increase in the mean day-night difference.

In general, Figure 7 shows that within n-alkanes, methyl-

alkanes, and monoenes, longer chain compounds have signifi-

cantly higher mean values during the night hours than in day,

while for short chain compounds, only methyl-alkanes and C21

are significantly higher over the day hours. Furthermore, for day

versus night means, only Cluster 4 members respond to light.

The broad day-night patterns shown above become more

complex when viewed on an hourly basis. To summarize the

detailed trends in variation from CT 0 through 23, we plot the

deviation of hourly FA-normalized abundance from the 24-hour

average in Figure 8. A value of 2 indicates the compound is two

standard deviations above the daily mean at that hour. We order

compounds by their cluster membership in the MDS/AP cluster

diagrams, and we omitted several low-abundance compounds that

were highly variable (2MeC22, 5-C25:1, 7-C27:1, C28).

These heat maps highlight several important points. First,

although the day-night differences demonstrated in Figure 7 are

visible, there is large variation between hours within day or night,

and this variation is usually synchronous among cluster members.

Second, the timing of hourly variation is changed by light

condition (LD/DD) at CT 10 and 14. In LD, long chain n-alkanes

in Cluster 1 and long chain alkenes in cluster 2 have generally

lower levels in day and one to several peaks at night, while short

chain n-alkanes also show peaks within day hours. Compounds in

Clusters 4 (tricosenes, etc) and 5 (methyl-alkanes) have two or three

peaks in abundance during the day and fewer peaks during the

night. Compounds in Cluster 3 show patterns intermediate

between those described above, but still show 2 or more peaks

over 24 hours.

In Figure 8 we analyzed hour-to-hour variation for compounds

within LD and DD. We may also ask whether hourly variation

patterns change between LD and DD, that is, whether the

presence or absence of light interacts with temporal variation. In

Figure 9 we show the difference between hourly LD means and

hourly DD means, again as a t-statistic heat map where a value of

2.07 (dark red) indicates LD.DD at p,0.025, and a value of

22.07 indicates DD.LD (two sided t-test with df = 23). Cluster 1

(n-alkanes) has lower abundances in LD than DD at a majority of

hours, while Cluster 2 (long chain monoenes) also is lower in LD

than DD much of the time, but has isolated reversals at times CT

2, 8,15 and 18 where LD.DD. Note that overall the compounds

in clusters 1 and 2 tend to be higher at night than in the day

(Figure 7), but we can see that there are important exceptions to

the overall trend at the hourly level. Cluster 4 and 5, which in

Figure 7 tend to be higher overall in day than night, are generally

higher in LD than DD, although this trend is sharply reversed at

CT 10 and 14. There are 5 periods at which many compounds

show significant LD excess (CT 1–2, 7–8, 12–13, 15, 18) and 4

Figure 6. Compound TA-mean abundance ratio, LD/DD. Short chain
methyl-alkanes increased in LD, n-alkanes decreased or did not change.
Among monoenes, 7-C23:1 and 9-C25:1 decreased slightly but
significantly in LD (p,0.003), while 5-C23:1,9-C24:1,5-C24:1, and 7-
C27:1 decreased more (p,5e-6). Error bars show 99% confidence
intervals. Averages of 24 hours of data were compared for the two
treatments.
doi:10.1371/journal.pone.0000962.g006
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periods during which compounds show significant DD excess (CT

4–5, 10–11, 14, 16–17). These differences are most significant in

Cluster 4 but are seen in each of clusters 2–5.

Thus, presence of light during CT 0–11 not only changes

overall means in LD versus DD as shown in Figure 7 for Cluster 4

members, it also causes sharply different hourly abundances that

oscillate between LD excess and DD excess, with the sharpest,

most significant such differences happening between CT 0 and 15

for compounds such as tricosenes and short chain methyl-alkanes.

We will return to these sharp LD-DD differences in a later section

where we look at the differing cyclic components of temporal

pattern in LD and DD.

Abundance Variability
Abundance Variability (AV), the measure of how much a com-

pound’s absolute abundance increases as total abundance

increases, is an independent measure of CH variation from FA-

normalized mean abundance. AV also shows significant hourly

temporal variation in DD and LD (Figure 10).

In LD, alkenes have a peak of AV at CT13 which is absent in

DD, while in DD a peak occurs at CT7 which is absent in LD. In

LD, a minimum of n-alkane AV occurs at CT 13 (data not shown).

The consequence of the large monoene AV increase at CT 13 in

LD is shown in Figure 11, which graphs total n-alkanes per fly

versus total C23–C25 monoenes, at both CT 13 (red points and

line), and CT 14 (blue points and line). At most hours, there is

a highly significant positive correlation between n-alkanes and

C23–C25 monoenes (r = 0.78, df = 240, p,2.2e-16) but at CT 13

the correlation is negative (r = 20.69, df = 10, p,0.012). Thus, the

unusual AV peak for monoenes and minimum for n-alkanes at

CT13 points to a complete reversal of the normal relationship

between n-alkanes and monoenes which holds at most other hours.

As shown in Figure 10, this AV excursion peak is restricted to

a single hour, and is flanked by strong monoene AV minima at CT

14 and CT10, implying that in as little as 1 hour the correlation

between monoene and n-alkane amounts completely reverses.

Indeed, at CT 14 the n-alkane-monoene correlation is positive

(r = 0.847, df = 10, p = .0005).

Several authors have used what Rouault et al. [20] call

Balanced Ratio or BR indices to quantify the relationship between

alkenes and n-alkanes[18]. These indices span a range from 21 to

1 and encapsulate the balance between high alkenes (+1) and

hence high desaturase activity, and low alkenes (21) with no

desaturase activity. One particular instance of a BR index is the

Desaturation Index (DI)[33]. Marcillac et al. defined DI as

(SDesat2SLin)/(SDesat+SLin) (see Methods). DI values effec-

Figure 7. Significance of differences between subjective day and subjective night FA-normalized mean compound abundance in LD (solid line)
and DD (dashed line). Y axis gives Student t test value for comparison (df = 275 in LD and 346 in DD for each compound). Error bars, 61 s.e. Critical
values of t for a two-sided test are given for p = .05 and .01. Compounds ordered by cluster membership – see Figure 4 (low abundance compounds
are omitted). C21 and shorter chain methyl-alkanes have highly significantly higher mean in day than at night, while long chain n-alkanes (cluster 1)
and clusters 2 and 3 (longer chain monoenes) highly significantly higher mean at night. For most compounds, mean day-night difference is not
effected by presence of light in day (LD) or its absence (DD). However, cluster 4 members (tricosenes and C21) do show a significant increase in the
day-night mean difference in LD.
doi:10.1371/journal.pone.0000962.g007
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Figure 8. Diurnal changes in compounds. (A) LD (B) DD. Heat map shows compound hourly mean scaled to daily mean of 0 and SD of 1. Units of
color map are SD. Note LD minimum at CT 14 becomes a peak for most compounds in DD; similar effects occur around CT 10 in clusters 2–4.
doi:10.1371/journal.pone.0000962.g008
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tively showed the difference between normal flies and desaturase

mutants. Marcillac et al. report a value of DI in Canton S (our

wild-type) males of 0.566. We observe a daily mean value of

0.5596.064, confirming their results.

The range of DI over all flies in our LD data was 0.35–0.69

(n = 277). This large range includes values as low as the mean DI

of some of Marcillac et al.’s Excision-Intermediate desaturase

lines. Why should the natural variability in DI cover so wide

a range when the flies tested are of a single wild-type genotype?

The relationship between n-alkanes and monoenes in Figure 11a

suggests an answer. In Figure 11b, we calculate DI for the same

flies as in Figure 11a, plotting this against total monoenes. At CT

14 and most other hours, there is a significant positive correlation

between DI and total monoenes (and between DI and TA, data

not shown) but the slope is small and the range of DI values is

smaller. At CT 13, however, due to the change in AV values at this

time and their effect on the n-alkane monoene relationship

demonstrated in Figure 11a, DI has a significantly higher slope

than at other hours (p = 5e-6). This results in DI values which,

driven by the normal TA variation, cover a much wider range –

indeed, the two extreme DI flies in our LD sample (DI = 0.35 and

0.69) occurred at CT 13. Thus, the variation in AV determined

from our general linear model fit explains why DI varies so much

at one particular time.

We have illustrated the relationship between AV and DI with

one specific set of data, but applying our model, we may derive

a general formula for the dependence of DI (or any other balanced

ratio) on overall abundance, in terms of the intercept and slope

terms for monoenes and n-alkanes (see Methods for derivation):

DIi~
adif zbdif xi

� �
asumzbsumxið Þ ð4Þ

The terms adif and asum in equation 4 are simply differences or

sums of the intercept terms aj for compounds j in the two groups

(alkenes = Desat and n-alkanes = Lin in Marcillac et al.’s termino-

logy) and the beta terms are similarly differences or sums of

compound slopes. At average abundance (xi = 0), equation 4

reduces to adif/asum,0.57 and is similar to Marcillac et al.’s

formulation. However, when abundance xi is high, DI approaches

bdif/bsum,0.7, and when xi is lower than average, DI declines

linearly with xi. Within the range of xi actually encountered on

flies, equation 4 fits very closely to a hyperbolic saturating curve.

The hyperbolic dependence of DI on TA is shown in Figure 12 for

DD data. The correlation of actual with predicted DI is highly

significant (LD: Pearson’s r = 0.643, p,2e-16, df = 275; DD:

r = 0.529, p,2e-16, df = 346). Thus, flies with higher TA tend to

have higher DI, but the relationship is hyperbolic rather than

linear.

In this section, we have examined the slope term AV in the

general linear model and its changes over time of day and from

LD to DD. As with FA-normalized hourly means, AV shows some

sharp hourly oscillations of which the most dramatic occurs

Figure 9. Difference between LD and DD at each hour. Heat map shows t statistic for comparison of FA-normalized compound abundances at each
hour; df = 25–28. Dark red areas indicate significant LD excess, dark blue, significant DD excess.
doi:10.1371/journal.pone.0000962.g009
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between CT 12 (lights out, beginning of night) and CT 14, when

AV shifts from average, to high, and back to average values. In

Figure 11 we saw that the consequence of these AV changes at CT

13 included a reversal of the normal positive correlation between

monoenes and n-alkanes, and a very much higher slope of the DI-

monoenes relationship. This helped explain why the flies with the

most extreme DI values over our 24 hours of sampling were in the

CT 13 samples. We then derived a general formula (equation 4)

relating DI or any balanced ratio to abundance scores xi which is

based on simple sums and differences of the intercept and slope

terms of the general linear model. In turn, this formula predicts

a hyperbolic relationship between DI and xi values which is

illustrated in Figure 12.

We see therefore that slope or AV values have an important tie

to indices such as DI, which in turn relate directly to activity of

products of genes such as desat1, desat2, and desatF [8,11,34]. Large

hourly changes in AV are related to time in which larger than

normal ranges of DI values are observed. We shall return to this

point in a later section when we ask how AV changes may be used

to estimate CH turnover rates.

Figure 10. Abundance Variability versus time of day for monoenes. AV values were fitted to 1-hour intervals for flies in (a) LD, (b) DD. A peak of AV
at CT 4 and a low at CT 6 occur in both LD and DD, but pentacosene LD peaks are higher than in DD. Note the prominent LD peak at CT 13 for all
monoenes, which is absent in DD. Surface shown is hourly data points plus intermediates produced by bicubic interpolation.
doi:10.1371/journal.pone.0000962.g010
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Frequency of CH variation

The frequent changes in hourly FA-normalized compound levels

shown in Figure 8 appear to be synchronized over chemical

clusters of compounds and to show some regularity. In this section

we ask whether there may be cyclic patterns of CH abundances

over 24 hours which account for some of these hourly variations.

To characterize the temporal pattern of FA-normalized mean

abundance, we asked which periods in a stepwise regression of

Fourier sine and cosine curves explained significant amounts of

variation. In Figure 13 we show the best-fit temporal curves for 3

short chain and 3 longer chain compounds. In LD C23 compounds

and cVA had highly significant 3 hour Fourier coefficients, as well as

24 hour terms (9-C23:1 and C23) or 12 hours (cVA). By contrast,

C27 compounds concentrated most of their cyclic variation in

24 hour cycles, as well as 6 hour components. In DD, compounds

retained significant 24-hour cycles, but for cVA, C23, 7-C27:1, and

2-MeC26 there was a reduction in power at short periods compared

to LD with no significant 3 hour terms.

We performed the same analyses on RA-normalized as well as

FA-normalized data. In LD cyclic terms accounted for 3.3% of

total variance in RA-normalized data, versus 8.2% in FA-

normalized data. In DD the variances explained by cyclic terms

were 6.3% for RA and 16.1% for FA. Thus, FA-normalization

more than doubles the ability to detect variation components in

data compared to RA; both methods show that in LD cyclic

components are on average higher frequency while in DD cyclic

variation is twice as large as in LD.

In this section we have shown that cyclic sine and cosine curves

with periods dividing 24 hours fit well to the diurnal patterns of

compound abundance. High significance of 24-hour periods in

both LD and DD suggests an involvement of the circadian clock.

However the large amount of variation explained in LD by

3 hour periods for C23 compounds indicates that additional

factors beyond the 24-hour clock must be involved. The near

disappearance of short period terms in DD strongly implicates

light in the induction or maintenance of the high-frequency

cycles.

Figure 11. Effect of LD AV variation at CT13. (A) n-alkanes versus monoenes (B) Desaturation Index DI versus monoenes. (A) Sum of n-alkanes versus
sum of C23–C25 monoenes, in LD. Non-normalized data is used. Red, CT 13; blue, CT14. Slope for CT13 differs significantly from CT 14 and other
hours (p,2e-5) (CT 13, slope 20.1260.04; CT 14 slope 0.2760.05; other hours, 0.1960.01). Compare with Figure 10 (a), AV by hour in LD, where
a peak in monoene AV occurs at CT 13 and a minimum at CT 14. (B) The Desaturation Index (DI[33]) calculated for the same flies. Slope for DI versus
total monoenes – CT 13: 0.3746.0295; CT 14: 0.1226.0468; other hours: 0.1136.00828. CT 13 slope differs from other hours (p = 5e-06).
doi:10.1371/journal.pone.0000962.g011

Figure 12. Desaturation Index DI versus total hydrocarbon abundance TA over 24 hours in LD and DD. Line is prediction from fitted multivariate
linear model for the compounds used in DI calculations [33]. Predicted and actual DI values are significantly correlated (LD: Pearson’s r = 0.643, p,2e-
16, df = 275; DD: r = 0.529, p,2e-16, df = 346).
doi:10.1371/journal.pone.0000962.g012
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Figure 13. Temporal variation for representative compounds in LD and DD. Curves represent all significant frequencies in a stepwise regression of
Fourier components on the raw (unsmoothed) data. Points shown are means from a central moving average filter, 61 s.e.m. Filter bandwidth is 3,
except for curves with significant 3 hour periodicity, where bandwidth of 2 was used (top row). Note 3-hour oscillations centered around peak at
lights off (ZT 12) for the three short-chain compounds in LD (significance of 3-hour component for cVA, p3,2.3e-10; 9-C23:1 p3,3.3e-05; for C23,
p3,3.3e-04). In DD, only 9-C23:1 retains a 3-hour component (p3,3.1e-03). For the three C27 compounds in LD the 24 hour period was most
significant in LD (7-C27:1, p24,1.0e-07; C27, p24,4.7e-05; C27Br, p24,4.6e-05) and in DD (7-C27:1, p24,4.5e-07; C27, p24,1.2e-05; C27Br, p24,2.6e-
05). Both the alkene and methyl-alkanes C27 compounds also had significant 6 hour components in LD, but not in DD. All p values derived from F2,272

ratios from regression in LD, F2,341 in DD (see Methods).
doi:10.1371/journal.pone.0000962.g013
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In the next section we shall use the variation explained by cyclic

terms as one way to estimate CH turnover rates. Thus, in addition

to the intrinsic interest of possible ultradian cycling of CH

abundance, there are implications for the metabolic cost of CH

signaling.

Turnover rates for CHs
Levels of CHs vary significantly over 24 hours, so there must be

daily turnover of CHs. We use model-based calculations to identify

three categories of turnover. First, if the TA level of an individual

fly changes during one day over a significant portion of the range

of TA values shown in Figure 1, there will be turnover due to TA

change. This component of turnover will be proportional to the

amplitude of TA variation. Second, if hourly mean levels of

a compound change significantly from peak to trough to peak,

there will be turnover due to cyclic change. This cyclic turnover

will be proportional to peak-trough amplitude times the frequency

of cycles, which are shown in Figure 13 to vary from once per

24 hours to once every 3 hours. Third, even if there is no change

in TA and hourly compound mean levels in flies, hourly changes

in the slope of the relationship between compound abundance and

total abundance (AV; see Figures 10 and 11 for hourly change)

imply there must be a change in the proportions of different

compounds even in a fly with constant TA. This component of

turnover will be proportional to the amplitude and frequency of

changes in AV.

Turnover due to TA change could be directly estimated were it

possible to measure CH levels twice on the same fly; unfortunately

our assay is destructive – it kills the fly – so we observe only the

population distribution of TA values. As a null hypothesis, we posit

that transfer (Gain) of CH from internal stores to the cuticle occurs

at constant rate of G mg/day, and that loss from the cuticle is due

to more variable events, such as grooming, at a loss rate L

proportional to the amount of CH on the cuticle. We may then

describe change in TA levels x(t) using a stochastic model:

x tz1ð Þ~x(t)zG{L(t)x(t)zet~x(t) 1{L(t)ð ÞzGzet ð5Þ

Loss is defined as a random variable L(t) = h+eL with mean loss rate

h plus a mean zero random component eL, while et is a second,

independent mean zero random variable. Subject to certain

conditions on the distribution of the random variable L, this

stochastic process has a well defined stationary distribution whose

skewness and variance are related by a term in h (see Methods); for

many cases the distribution is lognormal, as observed in our data

(Figure 1). Substituting observed skewness and variance from our

data we estimate hLD = 0.31 and hDD = 0.53. These 31%–53% TA-

based turnover values are derived subject to several assumptions

and must be regarded as tentative.

To more directly estimate h we applied excess quantities of

several compounds to groups of flies at hour zero and measured

remaining quantity at 4 time points after application (see

Methods). Fitting a standard geometric loss rate (constant

proportional loss), we found turnover values of 146%/day for 7-

C23:1 and 329%/day for 9-C25:1 (Figure 14).

Turnover due to cyclic hourly mean change can be estimated

from the fitted curves shown in Figure 13 by measuring peak-

trough differences summed over the day (see Methods). Turnover

rates in LD were 30% for Cluster 1, 74% for Cluster 2, 68% for

Cluster 3, 135% for Cluster 4, and 160% for Cluster 5 (methyl-

alkanes). Cyclic turnover estimates were lower in LD than in DD

for members of Clusters 1 and 2 (long chain n-alkanes and alkenes)

but higher in LD for Clusters 3, 4, and 5. The most dramatic LD-

DD turnover change was for Cluster 4, (tricosenes, C21, cVA)

which declined from 135% in LD to 49% in DD, due to loss of 3-

hour cycles in DD. Summed over all compounds, cyclic turnover

was estimated at 97% in LD and 51% in DD.

Turnover due to AV changes was estimated assuming no hourly

changes in TA or cyclic mean abundance (see Methods). Estimates

of turnover due to AV were 133%/day in LD and 119% in DD.

We relate the above turnover rate estimates to the total lipid

content of the fly as a means of quantifying the metabolite cost of

turnover. We measured total ether-extractable lipids in LD and

DD males using the method of Clark [35] (see Methods). Lipids

were 35.2 mg/fly62.15 s.e.m in LD and 37.6 mg/fly63.17 s.e.m

in DD. The mean TA represents 6.4% of body lipids in LD and

6.1% in DD. Turnover in CHs thus represents from 1.9% (LD TA

turnover rates) to 8.6%(LD AV turnover) of total lipids/day.

In this section we used several different approaches to estimate

CH turnover rates. A stochastic null model of TA changes

reproduces the lognormal distribution of TA well, and suggests

a lower bound for TA-based turnover in the 30–50%/day range.

The important term in the model is the loss rate, which we

independently estimate by measuring the loss rate of synthesized

CH applied to flies. This approach yields a turnover rate several

times higher. Secondly we use the cyclic peaks and troughs of

hourly compound abundance to estimate the turnover rate due to

cyclic change, finding rates which are chemical cluster dependent

and which vary between LD and DD, but are generally in the 50–

130%/day range. Thirdly, we consider the consequences of the

observed large changes in AV, even if there were neither changes

in TA nor compound cycling. This provides us with a third set of

AV-based turnover estimates, again in the 100–130%/day range.

In summary, these estimates of turnover suggest that non-trivial

proportions of CH are removed each day from the cuticle and

must be replaced. These amounts are equal to 2–8% of total body

lipids per day.

DISCUSSION
We have presented new methods for the analysis of CH variation,

and new results found using these methods. We discuss each in

turn below.

Figure 14. Loss rate of applied 9-C25:1 in LD. Compound was applied
at time 0 (see Methods) and measured on groups of 5 flies at times 1, 6,
11 and 24. Vertical axis shows log2(yt/yn), where yt is concentration at
time t in perfumed flies and yn is daily mean concentration in non-
perfumed flies. R2 = .9837, slope = .0716, implied loss rate per day is
329%. Proportional loss rate is constant over time.
doi:10.1371/journal.pone.0000962.g014
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Model-based Approach Reduces Variance of CH

Estimates
Research on CH is complicated by the high variability in Total

Abundance (TA). We found that TA is approximately lognormally

distributed distributed and unaffected by light or time. The long

tails of a lognormal distribution can result in flies in the same

conditions having TA varying over a range of 4. This high

variability increases standard errors for each compound measured,

unless normalization is done.

Several normalization methods have been published. One

method expresses compound abundances as a proportion of the

total abundance (TA) for a fly. This method, which we call Relative

Abundance (RA), succeeds at reducing error variances for many

compounds and has the virtue of great simplicity. However, we show

in Figure 2 that an assumption of the RA model (that the regression

of compound abundance on TA passes through the origin) is violated

in our data. When compound regressions have non-zero intercepts,

RA values will depend systematically on TA (Figure 2b).

We generalize the RA model to allow non-zero intercepts

(Equation 1) while retaining the simplicity of the linear model. We

investigate the question of what value to use as the latent variable

or factor xi by using Factor Analysis to evaluate several

alternatives. All of the 3 factor estimators we evaluated explained

significantly more variance than RA normalization (Table 1) for

the 12 most abundant compounds. We chose the simplest factor

estimator, which was intermediate among the 3 evaluated in

variance reduction, and normalize the data using Equation 3. This

‘‘FA normalization’’ produces smaller error variances than RA, is

expressed in the same units as the original data (in our case mg),

and does not change treatment means. FA normalized data is thus

well suited for answering questions about the effect of treatments

such as LD versus DD or time of day. In addition, it is simple to

implement in widely accessible tools such as Excel; we have

provided a worked example as a spreadsheet which can easily be

adapted to new datasets (Excel S1).

FA-normalized data minimizes the large errors due to between-

fly variations in total abundance, allowing us to detect common

patterns of expression between compounds. Using multivariate

clustering techniques we found 5 clusters of compounds as shown

in Figure 4. Each cluster is centered around one ‘‘exemplar’’

member, for example C27 for Cluster 1, 7-C25:1 for Cluster 2, 7-

C23:1 for Cluster 4, and 2-MeC26 for Cluster 5. Chemically

similar compounds tend to be clustered together, but carbon chain

length is another strong determinant of cluster membership.

Interestingly, when we applied the same clustering methods to

slopes fitted to equation 1, we found identical exemplars and

highly similar clusters, showing that chemical similarities de-

termine each of several components of patterns of variation.

Again, for flies kept in the dark (DD) the same exemplars and

similar cluster definitions were found, even though the DD

treatment induces significant shifts in the patterns of expression of

many compounds. The robustness of these clusters, and their clear

relation to the chemical types of the compounds, shows that

pathways of CH synthesis and the genes whose products control

them may have a fairly direct relationship to observed patterns of

CH abundance, in spite of the intervening complexities of

hemolymph transport, cuticular deposition, and loss.

Equation 1 is applied within each treatment (condition, hour) to

determine whether slopes and intercepts are affected by treat-

ments. Expressing slopes in dimensionless units (using data scaled

to means of 1; Equation 13) reveals variations of slope with strong

chemical patterning. This dimensionless slope tells how much

a given compound’s abundance depends on the total abundance; it

is formally identical to the beta value used in Mathematical

Portfolio Analysis, which is commonly called ‘‘stock volatility’’

[19]. Expressing this as a percentage, we call this measure

Abundance Variability, or AV. AV is affected by chemical groups,

chain length, and double bond position, being highest in

monoenes and lowest in n-alkanes, and generally decreasing with

increasing chain length (Figure 3). Compounds with AV.100%

increase more rapidly than expected as TA increases. The

behaviorally important tricosenes and pentacosenes have

AV.100%, and so will make up a larger proportion of total

CH in flies with high TA. In the absence of light (DD), n-alkanes

and methyl-alkanes generally show AV,100%, and so vary less

with TA than expected.

Using our linear model, we derive in Equation 4 a simple

expression based on both the slopes (AV) and intercepts which

predicts the relation of the useful Desaturation Index (DI) [18,33]

to total abundance. DI varies between 21 and 1 and measures the

balance between desaturated and saturated CHs, which is due (in

males) to the activity of the desaturase enzyme encoded by the gene

desat1 [11,33,34,36]. Equation 4 shows that DI depends hyperbol-

ically on TA (Figure 12). Thus the generalized linear model of

Equation 1 leads both to a powerful FA normalization technique and

predicts shifts in DI based on total abundance. Any other Balanced

Ratio (BR; [18]) of hydrocarbons will follow a similar curve and will

be described by Equation 4, so long as Equation 1 holds for the

constituent CH’s of the ratio. Using the linear model, we were able to

explain the occurrence of unusually large and small values of DI as

being due to a sudden shift at CT 13 in LD of model slopes (AV

values). Thus the general linear model provides insight into short

term changes affecting the balance between desaturated and

saturated compounds on the cuticle.

In each experimental comparison we have compartmentalized

variation in CH into 3 measures: total abundance TA, FA-

normalized mean abundance, and abundance variability AV.

Each measure provides valid, but differing, insights into CH

variation. For example, comparing wild-type males between DD

and LD showed that mean TA responds little to presence/absence

of light, but TA inherent variation sTA does respond. The second

measure, compound FA-normalized mean abundance, revealed

LD-DD differences in only a few cases when 24-hour averages

were used (Figure 6) but in almost all cases when hourly averages

were used (Figure 9). The third measure AV in LD showed that

methyl-alkanes have higher AV in LD (Figure 5), while AV for

many monoenes is lower in LD. The interaction of TA variation

and AV is predictive of variability in DI and other Balanced Ratio

indices. Separating CH variation into TA, FA-normalized mean,

and AV components is conceptually similar to compartmentalizing

variation due to different ANOVA factors, and yields greater

insights into patterns of CH abundance.

Changes in CH Abundance affected by light, time

and biosynthesis
Our results show that CH compounds vary in response to light

and time of day. The patterns of variation are specific to groups or

clusters of compounds. Clusters were determined from statistical

analyses, but coincide with chemical categories. Both carbon chain

length and bond type determine cluster membership. Some

clusters are higher on average in day hours, others at night, but for

many compounds there is considerable shorter term variation at

characteristic frequencies. Variability in compounds and direct

estimates of compound loss rates suggest that CH turnover is

appreciable; the highest turnover rates are associated with day-

peaking clusters, the lowest rates with night-peaking clusters.
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Whether flies were in LD or DD treatments, the difference

between ‘‘day’’ (CT 0–11) and ‘‘night’’ (CT 12–23) compound mean

levels was very consistent (Figure 7). Long chain n-alkanes and

monoenes are on average higher at night, while methyl-alkanes are

on average higher in the day. Within day and night, strong hourly

variations are found in both mean levels and AV values, with some of

the largest fluctuations near the day-night boundaries (Figure 8). The

timing of these fluctuations is shifted by the presence of a regular light

cycle (LD) or its absence (DD) (Figure 9). Thus both time of day and

light environment affect CH levels.

Our data shows that there are day-night differences in mean

compound abundance for short-chain methyl-alkanes, long-chain

alkenes, and n-alkanes, with methyl-alkanes high in day and long

chain unbranched compounds higher at night. In addition, the

abundant Cluster 4 monoenes such as 7-C23:1, while not showing

significant day-night differences, do show a significantly larger

day-night difference in LD than in DD. It is thought that most

chain length differences are due to the activity of genes such as

smoq and sept[6] rather than by the final chain reduction steps [1].

Thus, one interpretation of our data would be that elongase

activity is higher at night or in the dark than in day. The data of

Roualt et al. show that higher raising temperatures increase

pentacosenes at the expense of tricosenes, perhaps due to

increased elongase activity[18]. Our flies are maintained in

constant temperature, so the light signal is not associated with

increased temperatures as it would be in the wild. If temperature-

dependent elongase activity is an important determinant of long

versus short chain compound balances over periods of 12 hours or

less, then in a natural environment which is hotter in day than at

night, the differences we observed between long and short chain

compounds might be reduced by higher elongase activity during

hotter daytime periods. In this scenario, the constant-temperature,

day-night difference we observed might represent a compensatory

mechanism which, in combination with heat-dependent elongase,

tends to produce more even compound levels over day-night

intervals. Alternatively, if differential synthesis of compounds is not

the cause of day-night differences, then differential transport to the

cuticle or differential loss from the cuticle must be invoked to

explain day-night changes. Melting temperature increases with

chain length, desaturation decreases melting points[37]. Hence the

fact that compounds with lowest melting points are most abundant

in day and those with highest melting points are most abundant at

night in our constant-temperature regime, might represent over-

provisioning in day of compounds more likely to be lost in higher

day temperatures, if differential loss is important.

The question of whether temporal variation in CH is regulated by

the endogenous circadian clock, rather than by environmental or

other cues, cannot be fully addressed by this study, which covers only

a 24 hour period in full darkness in one genotype. Proof of clock

regulation requires that additional criteria be met. Nevertheless, our

Fourier analysis of periodic variation in FA-normalized data

demonstrates that many longer chain compounds show highly

significant 24-hour cyclic components in both LD and DD

(Figure 13), suggesting the clock may play a role in compound

cycling. However, our analysis shows that shorter-chain compounds

also have highly significant cyclic components with 3-hour periods in

LD which are absent or diminished in DD. Such ultradian

oscillations have been detected in Drosophila locomotor activity

rhythms[45]. The very short period of these oscillations and their

dependence on light suggests that other factors in addition to the

circadian clock must play a role in regulating hourly CH variation.

Rapid changes in CH values imply that hydrocarbons are

removed from the cuticle at some times in the day and therefore

must be replaced at others. We use several independent methods

to estimate CH turnover rates. The largest potential contributor

would be changes in TA, if this in fact varies over short times on

a single fly. Since our CH assay kills the fly, we cannot directly

observe TA fluctuations over time. Accordingly we asked whether

the observed distribution of TA is consistent with a stochastic

model in which removal of CH (loss) is proportional to the

quantity present on the cuticle, while replacement (gain) is

approximately constant over time (Equation 5). This model

robustly reproduces the observed lognormal distribution of TA,

and indicates that TA-derived turnover may be as high as 31%/

day in LD and 53%/day in DD. As a more direct test of this

model, we applied excess CH to flies and monitored the decline back

to normal levels; we observed loss rates in this experimental

manipulation of 146%/day for 7-C23:1 and 329%/day for 9-C25:1.

A third line of evidence is based on the hourly fluctuations of FA-

normalized mean abundances; using our Fourier fits of cyclic

compound abundances, we estimated the minimum cyclic turnover

rate which was highest for Clusters 4 (short chain alkenes, 135%/

day) and 5 (methyl-alkanes, 160%/day) and averaged 97% over all

compounds in LD. The reduced short-term variability at 3 hour

periods for Cluster 4 compounds in DD contributed to a reduced

cyclic turnover rate estimate for DD of 51% over all compounds.

Finally, a fourth line of evidence is derived from fluctuations in AV,

yielding turnover estimates of 133%/day (LD) and 119%/day (DD).

Although further investigations are required to more precisely

determine CH turnover rates, our data suggest that turnover is

somewhere between 30% and 130%, with the modal estimate

close to 100%/day. As CH levels in our flies represent around

6.4% of total body lipids, a 100% turnover rate per day represents

an allocation of 6.4% of lipids to CH maintenance. Since about

50% of CH are monoenes which have been shown to be involved

in male sexual signaling [1,16,38], this implies that the metabolic

cost of male sexual signaling may be equivalent to the daily

production of 3% of total body lipids – a small but significant cost,

especially given the high energy cost of lipid production. A recent

study using wild-derived D. melanogaster strains[39] showed that

there is significant segregating genetic variation for levels of almost

all male CHs, and that some QTLs for CH variation co-locate

with QTLs for starvation and longevity. To Foley et al. this

‘‘suggests that a large proportion of variation in CHC expression

may reflect variation in a number of biological processes that

require the expenditure of energy or lipid resources’’[39].

This study has identified strong roles for chemical compound

clusters, light, and time of day in patterning cuticular hydrocarbon

variation in male D. melanogaster. We have shown that CH of male

wild-type D. melanogaster vary significantly throughout the day and

night. Compounds which are members of the same cluster show

similar patterns of variation. A linear model relating compound

abundances to total abundances leads to a new method of

compound normalization, which in its turn reveals cyclic

variations in abundance whose frequencies depend on chemistry

(compound chain length and type) and environment (LD vs DD).

The methods developed here, as well as the findings, will enable us

to pursue our working hypothesis that chemical signals emitted by

individual flies are physiologically regulated by circadian clocks

and socially regulated by other flies.

MATERIALS AND METHODS

Drosophila stocks and culturing
All stocks were reared on standard sucrose-yeast-agar medium in

a 12:12 LD cycle at 23uC and 70% HR. The Canton-S strain was

used as wild-type in all experiments. For all procedures male and

female flies were anesthetized with CO2 and separated within 8

Male Cuticular Hydrocarbons

PLoS ONE | www.plosone.org 17 September 2007 | Issue 9 | e962



hrs of eclosion. For determining hydrocarbon composition and

quantity as a function of time, flies were reared in groups of 40

males housed in plastic vials (92 mm625 mm diameter) contain-

ing 10 ml of medium, and were tested 5–6 days post eclosion.

Canton-S stocks were obtained from J. Hall, Brandeis

University.

Hydrocarbon extraction
To assess the composition and/or level of cuticular hydrocarbons

as a function of time, hydrocarbon extracts were obtained from

Canton-S male flies every hour throughout a 24 hr period.

Cuticular hydrocarbons were extracted from individual male flies

as described [40]. In brief, hydrocarbon samples were obtained

from three individuals per time point, selected from a single vial

containing 40 flies. The flies were removed either under light or

red-light conditions depending on light schedule, anaesthetized

using ether, and sorted under a microscope. Each fly was placed

into an individual glass micro-vial containing 50 ml of hexane

containing 10 ng/ml of octadecane (C18) and 10 ng/ml of

hexacosane (C26) as internal standards. To achieve efficient

extraction of the cuticular hydrocarbons the micro-vials were

gently agitated for 5 min on a vortex mixer. The flies were

removed using a thin wire probe, and the extracts stored at 220uC
prior to analysis. Experiments were repeated from 3 to 5 times per

treatment.

Gas Chromatography
GC analysis was carried out as described [40], supplementary

material). A 0.5 ml sample of each hexane extract was injected on

a FID Varian CP3800 gas chromatograph with a PTV injector

(cool-on-column mode) fitted with DB-1 20 m60.18 mm Agilent

100–2000 fused silica capillary column connected to

a 5 m60.25 mm deactivated silica retention gap (Agilent Tech-

nologies, Mississauga, Ontario, Canada). Carrier gas was Helium

at a flow rate of 1 ml/min. The temperature program started at

50uC (isotherm 1 min) then increased to 150uC at 36.6uC/min

and from 150uC to 280uC at 5uC/min (isotherm 8 min). The

injector temperature was 50uC for 0.1 min and then ramped to

280uC at 200uC/min.

Compound identification was conducted on a Shimadzu GC-

17A gas chromatograph fitted with a HP-5MS fused silica

capillary column (0.25 mm630 m, ID 0.25 mm) linked to

a Shimadzu QP5050A mass spectrometer (Electron impact at

70 eV). The injector was used in splitless mode set to 0.5 min with

helium as carrier gas (1 ml/min). Injector temperature was held

constant at 280uC. The oven temperature was increased 1 min after

injection from 60uC to 225uC at 6uC/min and from 225uC to 310uC
at 3uC/min (isotherm 10 min). The pressure flow was increased

from 57 kPa (1 min) to 185 kPa (1.83 min) at 2 kPa/min. Mass was

scanned between 45 and 550 amu. The mass spectra were

interpreted by fragmentation analysis and comparison to published

criteria[40], supplementary material). Reported quantities are

normalized to the internal C26 standard. Double bond positions of

low abundance C22 and C24 compounds were not directly

determined; however our compound designations align with those

of other recent GC studies on D. melanogaster males [39].

Lipid measurement
Total ether-extractable lipids were measured on 40 5-day old

Canton S male flies kept under the same conditions as those used

for CH measurements, at hour CT 3 in LD and in DD as

described [35]. Briefly, flies were frozen in liquid nitrogen and

stored at 220uC until testing. They were dried for 24 hours at

65uC and weighed in groups of 10 to the nearest 10 mg on

a Mettler Toledo balance to establish dry weight, then soaked in

diethyl ether for 24 hours, after which the ether was discarded and

flies were dried overnight at 65uC and then reweighed. The

change in weight is reported as total ether extractable lipids.

CH Loss Rates
For perfuming experiments, 9-C25:1 was synthesized and purified

as previously described[41]. 31 mg of 9-C25:1 was dissolved in

hexane to facilitate an even distribution around a 2mL glass vial.

Hexane was evaporated using nitrogen gas and then 6 male flies

were added. The vial was vortexed for 10 seconds and rested for

10 seconds, this was repeated six times. Flies were transferred to

normal food tubes and held under LD conditions for the stated

number of hours, and then 5 flies were sampled for GC analysis as

described above. All perfuming experiments began at CT 0.

Statistical analysis
Analysis of variance, general linear model fits, Student t and F

tests, multidimensional scaling, and hierarchical clustering were

performed in version 2.4.1 of the R computing environment[42].

Non-hierarchical Affinity-Propagation clustering was done using

the apcluster.m algorithm [30] in MATLAB 7.3.0. False Discovery

Rate tests were implemented in R by the authors according to

Theorem 1 of [32].

Each sample contains known spiked-in amounts of an internal

C26 standard. Compounds whose mean abundance is less than

5 ng/fly have a high coefficient of variation; these include

2MeC22 and C28, which are omitted from most analyses. Some

compounds are above the 5 ng/fly cutoff in some conditions but

below in others; we omit them when they fall below – examples

include 5-C25:1 and 5-C24:1.

For compounds above the 5 ng/fly cutoff in a treatment, we

divided the absolute abundance of each compound for one fly by

the total abundance of all compounds for that fly, giving a Relative

Abundance (RA) value for each of 20–22 CHs.

Let Y = {yi,j} be the matrix of observed absolute abundances of

compound j (j in 1,M) in fly i (i in 1,N). Define the total absolute

abundance Ti for each fly as the sum of all compounds, and the

mean-1 normalized abundances y9i,j and T9

Ti~
X

j

yi,j ; yj~
1

N

X
i

yi,j ; y
0

i,j~
yi,j

yj

; T 0i ~
Ti
�
T ð6Þ

Then from equation 1 and the RA model assumption that all

intercept terms are 0, we find:

y0i,j~
yi,j

yj

~
xi

x
zO

ei,j

yj

 !
ð7Þ

T 0i ~
Ti

T
~

xi

x
zO

ei

T

� �
ð8Þ

y0i,j~T 0i ze00i,j ð9Þ

Thus in the RA model mean-1 normalized compound abundances

co-vary with normalized TA with slope 1 and a zero intercept. If

the slope differs from 1 or the intercept differs from zero, the RA

model is invalid.
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Factor analysis to determine optimal estimators of the latent

variable x in equation 1 was done using the factanal program of the

R statistical language (version 2.4.1)[42] using Thompson’s

regression estimates of scores [43]. A single factor explained

50.5% of sample variance in LD and 51.6% in DD. Factor 1

loadings were high for compounds with 23 or fewer carbons and

lowest for long-chain n-alkanes and methyl-alkanes. Four factors

collectively explained 78% of variance with factor 2 loadings

highest on pentacosenes, factor 3 highest on C23,C25, and C27,

and factor 4 highest on methyl-alkanes. We evaluated several score

estimators in order to find one which was simple to calculate (for

those without access to factor analysis programs) but which

explained significant variance. The three estimators evaluated

were (a) scores from the above single factor analysis, (b) TA20, the

sum of compound abundances, excluding 4 compounds with high

uniquenesses (residual variance) on all factors (7-C22:1, 2-MeC22,

5-C25:1, and C28), (c) weighted mean total abundance Ri:

Ri~
1

M

X
j

y0i,j ð10Þ

No single estimator was superior for all compounds; (a) reduced

variance most for short chain compounds, as expected from factor

weightings, (c) explained more variance for long-chain n-alkanes and

methyl-alkanes, while (b) TA20 represented a compromise with

intermediate predictive power for most compounds, but much

greater simplicity of calculation. In Table 1, the range of within-hour

variance explained by the 3 score estimates is given in the FA

columns, where it can be seen that any of the 3 estimators explains

more variance than the RA method in each of the compound classes

and LD/DD conditions. For simplicity, we use estimator (b), the total

abundance TA20 of 20 compounds, as our score estimator in

normalization and AV estimation. Note that method (c), weighted

mean abundance, would be more appropriate in studies focused on

methyl-alkanes and n-alkanes. This method allows less abundant

compounds to contribute more to score estimates, which is also true

of log-based methods such as logcontrast.

The FA normalization and AV calculations are performed in

two steps. The first step is common to both calculations and

estimates the intercepts and slope of equations 1 using linear

regression on xi = TA20:

yi,j~baaj(t)zbbbj(t)xi ð11Þ

In this step the regression is performed only on measurements

taken during the same hour t, resulting (for our data) in 24 sets of

slopes and intercept estimates. In our data, where there were

a minimum of 10 replicates per hour, these regressions were

usually highly significant (data not shown). In a study where

measurements were performed at a single time, only a single slope

and intercept would be calculated.

The second step in FA-normalization is given in equation 3; note

that the mean score x(t) is the mean at hour t; in a study conducted

a one time the mean of all scores would be used. Thus the expected

value of the FA-normalized compound abundances is:

E yN
i,j(t)

� �
~E yi,j(t)

� �
{bbbj(t)E(bxxi{x(t))~yj(t) ð12Þ

That is, the FA-normalization does not change the mean compound

abundances at hour t, only their deviations about the mean. If the

regression of compound j at time t is not significant, we set bbbj(t)~0.

To calculate the abundance variability of compound j at time t,

we adjust the slope bbbj from equation 14 by adjusting for the mean

of compound j and the mean of x:

bbb’
j(t)~

bbbj(t)
x

yj

; AVj(t)~100bbb’
j(t) ð13Þ

Note that the mean abundance terms x and yj in equation 13 are

independent of time t and are thus global means over all hours.

This is done to avoid introducing a correlation of hourly AV with

hourly mean compound abundance.

The FA-normalization minimizes variation due to TA changes.

Since the first principal component axis is close to the TA score, by

using FA-normalized data we are effectively focusing our attention

on the 2nd and higher principal components of the data. Just as in

RA normalization, FA-normalization removes degrees of freedom,

so multivariate tests on the full FA-normalized data matrix may

encounter multicollinearity or singularity of the covariance matrix.

The logcontrast method deals with this by discarding one variable; in

the FA method four variables are excluded from the TA20 score

estimator, avoiding the singularity issue in a similar way to

logcontrast. We analysed the number of principal components

explaining significant amounts of variation in non-normalized data

and found that 6 were significant (data not shown). Thus rather than

being a full 24-dimensional data set due to the 24 CH compounds,

the data can be represented in 1 TA dimension and 5 additional

dimensions. Note that our clustering method identifies 5 clusters.

To cluster compound abundance patterns, we calculate the

Pearson correlation matrix RFA of hourly FA-normalized

compound abundances, and defined the distance DFA = 12RFA.

Non-hierarchical Affinity-Propagation clustering was done using

the apcluster.m algorithm [30] with the preference value p = 0.7.

Multidimensional scaling of DFA was performed using the R

program cmdscale with dimensionality = 2; these MDS values, after

rotation or reflection if required, give x-y coordinates for compounds

which are then joined using Affinity Propagation cluster member-

ships (Figure 4 a,b). The x-y coordinates are related (before rotation

and reflection) to the weighting of each compound on the first two

Principal Component axes. To determine whether cluster relation-

ships thus found were unique to normalized abundance patterns, we

similarly analyzed the correlation matrix RAV of hourly compound

AV values, leading to the cluster depictions in Figure 4 e,f. As an

alternative check on cluster membership, we used the R program

hclust using Ward’s minimum hierarchical clustering method[31]

applied to DFA (Figure 4 c,d).

The DI index value can be related to fitted slope and intercept

values by substituting equation 1 into the definition of DI:

X
Desat~

X
j[Desat

ajzbjxizei,j

� �
~

X
j[Desat

ajzxi

X
j[Desat

bjzeD

~aDzbDxizeD

ð14Þ

X
Lin~

X
j[Lin

ajzbjxizei,j

� �
~
X
j[Lin

ajzxi

X
j[Lin

bjzeL

~aLzbLxizeL

ð15Þ

DIi~
aD{aLz bD{bLð ÞxizeD{eLð Þ
aDzaLz bDzbLð ÞxizeDzeLð Þ~

adif zbdif xize
� �
asumzbsumxize0ð Þ ð16Þ
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Note that in this formulation, the scores xi are adjusted to mean

0 by factor analysis convention; thus DI at mean x = 0 is

dependent only on the intercept terms, but at high or low

abundances DI will show a hyperbolic relationship to x and is

influenced by the slope or AV terms. The groups Desat and Lin we

used are identical to those of Marcillac et al and include the most

abundant odd chain length alkenes and n-alkanes, respectively.

For detection of temporal pattern in FA-normalized hourly

abundance data, we fitted the Fourier model:

yi,j(t)~c0z
X

i

ai sin 2ptfið Þz
X

i

bi cos 2ptfið Þ; fi~1=pi ð17Þ

for periods pi which are integral harmonics of 24 hours

(piM{2,3,4,6,8,12,24}). A stepwise regression model was used to

eliminate non-significant periods; significance was determined by

the F-test of variance explained by the terms of period pi

compared to residual variance, where the numerator degrees of

freedom is 1 for pi = 2 and 2 otherwise. Only periods with p,0.05

were retained.

Stochastic difference equations described by equation 5 (Random

Coefficient Auto-Regressive, or RCAR) have a well defined

stationary distribution with mean and variance given by [44]:

L~h, var(L)~s2
L, e~0, var(e)~s2

G ð18Þ

x~
G

h
~

G

L
; s2

x~
s2

Lzs2
G

1{ 1{hð Þ2{s2
L

; 1{hð Þ2{s2
Lv1 ð19Þ

We simulated equation 9 for 150 different combinations of

distributions of L and G using one million time periods per

combination and determined the following empirical formula for

skewness:

skew xð Þ~0:095z2ps2
xz1:84h2 ð20Þ

This explained 93.3% of the variance in skewness in our 150

simulations. This equation can be solved for h, given observed

skewness and variance values for a distribution of data.

Cyclic turnover estimates were derived from the Fourier series

stepwise regression of equation 17 by summing peak-to-trough

heights of the fitted curve over 24 hours.

Turnover due to AV changes was estimated by constraining the

hourly change in TA to be zero (i.e. assuming zero contribution

from TA turnover) and asking how much individual compound

abundances would have to shift to account for the change in AV

and intercept values at the next hour. TA is the sum of the

compound abundances in equation 1, that is:

TAi(t)~
X

j

aj(t)zbj(t)xizei,j

� �
~a0(t)zb0(t)xizei ð21Þ

If TA does not change for fly i from hour t to t+1, then equating

(22) at t and t+1we find:

xi(tz1)~
b0(t)xi(t)za0(t){a0(tz1)

b0(tz1)
ð22Þ

The change from t to t+1 in compound j for fly i implied by (23) is

thus:

Dyi,j(tz1)~Daj(tz1){Da0(tz1)
bj(tz1)

b0(tz1)

zxi(t) bj(tz1)
b0(t)

b0(tz1)
{bj(t)

� 	 ð23Þ

To estimate turnover due to AV change, we calculated the above

Dyi,j for each fly i and compound j. We then averaged positive Dyi,j

values within an hour and summed these averages over 24 hours,

to yield a compound-specific turnover amount. The compounds

with largest AV turnover amounts were 7-C23:1, 7-C25:1, C23,

and 2-MeC28.

SUPPORTING INFORMATION

Excel S1 This spreadsheet implements the FA normalization

technique for analyzing a set of male Drosophila cuticular

hydrocarbons. It is intended for GC-FID output. Sample data is

included. New data can be copied into the file to apply the

normalization.

Found at: doi:10.1371/journal.pone.0000962.s001 (0.07 MB

DOC)
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