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Background. The development of new high-throughput genotyping technologies has allowed fast evaluation of single
nucleotide polymorphisms (SNPs) on a genome-wide scale. Several recent genome-wide association studies employing these
technologies suggest that panels of SNPs can be a useful tool for predicting cancer susceptibility and discovery of potentially
important new disease loci. Methodology/Principal Findings. In the present paper we undertake a careful examination of
the relative significance of genetics, environmental factors, and biases of the data analysis protocol that was used in
a previously published genome-wide association study. That prior study reported a nearly perfect discrimination of esophageal
cancer patients and healthy controls on the basis of only genetic information. On the other hand, our results strongly suggest
that SNPs in this dataset are not statistically linked to the phenotype, while several environmental factors and especially
family history of esophageal cancer (a proxy to both environmental and genetic factors) have only a modest association
with the disease. Conclusions/Significance. The main component of the previously claimed strong discriminatory signal is
due to several data analysis pitfalls that in combination led to the strongly optimistic results. Such pitfalls are preventable and
should be avoided in future studies since they create misleading conclusions and generate many false leads for subsequent
research.
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INTRODUCTION
One of the promising methods for analysis of the human genome

and identification of genes and genomic regions contributing to

phenotypes is the use of single nucleotide polymorphisms (SNPs).

SNPs make up more than 90% of all human genetic variation and

have been extensively studied for functional relationships between

genotype and phenotype. The advent of high-throughput

genotyping technologies has allowed fast evaluation of SNPs on

a genome-wide scale at a relatively low cost [1–3].

During the last two years several groups reported success in

using SNP genotyping assays in association studies of cancer [1,4–

8]. In particular, the study by Hu et al. reported a nearly perfect

classification of esophageal cancer cases and controls on the basis

of only SNP data from a case-control genome-wide association

study [8]. Taken at face value, this result suggests that esophageal

cancer is a solely genetic disease. This is contradictory to other

literature in the field that emphasizes importance of environment

for cancer susceptibility [9,10]. In order to shed light on this issue,

we re-analyzed the data of [8].

We identified two data analysis pitfalls in [8] that caused over-

optimistic conclusions in the original paper: First, the SNP

selection method was severely biased toward claiming significance

for SNPs that are not truly associated with the disease. Second,

both SNP selection and building of classifier model were

performed on the same subjects as used for estimation of

classification accuracy. Since neither cross-validation nor in-

dependent sample validation were performed, the resulting

classification performance estimate was overoptimistic.

We conducted a re-analysis of the SNP and environmental data

that corrects the above problems and found that the SNPs in this

dataset are not statistically linked to esophageal cancer, while

several environmental factors, especially family history of esoph-

ageal cancer (that potentially accounts for many environmental

and genetic factors), have a modest association with the disease.

We quantified the contribution of each of the factors to cancer

classification and provided unbiased classification performance

estimates using established unbiased data analysis protocols. Given

the insignificant contribution of SNPs to cancer classification, our

findings suggest that the SNPs identified in [8] lack statistical

evidence for being involved in esophageal cancer.

MATERIALS AND METHODS
In all data analyses in addition to replicating the methods of [8],

we used unbiased alternatives so that the effects of bias (if any) in

the analysis of [8] could be quantified. The justification of

unbiasedness of alternative methods is provided in the pertinent

subsections below.
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Study Datasets
The data used in the present study is the same as used in the original

paper [8]. The data consisted of 50 esophageal squamous cell

carcinoma patients and 50 controls. The patients were diagnosed

with esophageal cancer between 1998 and 2000 in Shanxi Cancer

Hospital in Taiyuan, People’s Republic of China. Twenty-five

patients and nine controls had a positive family history of the disease.

The controls were matched by age, sex, and place of residence.

The genotyping of venous blood samples for all subjects in the

study was performed at the National Cancer Institute (Bethesda,

Maryland) as summarized below: The germ line DNA was

extracted and purified. DNA samples were subsequently prepared

and assayed according to Affymetrix GeneChip Mapping Assay

protocol. The 10K SNP arrays with 11,555 SNPs distributed

throughout human genome were scanned and genotype calls were

assigned automatically by the Affymetrix GeneChip DNA Analysis

software. Four genotype calls were defined in the data: AA, AB,

BB, or ‘‘no call’’. More details on biological specimen collection

and processing, target preparation, scanning, and genotype

generation are provided in [8].

For each subject, the following five variables were also recorded:

age at interview (years), tobacco use (yes/no), alcohol consumption

(yes/no), family history of esophageal cancer (yes/no), and

consumption of pickled vegetables (yes/no).

SNP Array Data Preparation
Before data analyses, we preprocessed the SNP array data

following the approach described in the original paper [8]. First,

out of 11,542 SNPs in the original dataset, 105 SNPs were removed

because they could not be mapped to human genome with NCBI

build 36. Second, to minimize possible genotyping errors, 946 SNPs

were removed because they were homozygous in either cases or

controls. Third, for the same reason, 482 SNPs were removed

because they did not satisfy Hardy-Weinberg equilibrium in the

control group at the a = 0.01 level [11]. Fourth, ‘‘recessive A’’

encoding of SNPs (AA = 1, AB = 0, BB = 0) was implemented. After

these steps, the dataset consisted of 10,009 SNPs.

Since some of the data analysis methods (e.g., Principal

Component Analysis or Support Vector Machines described

below) require no missing data, we imputed missing genotypes in

the SNP dataset and used it whenever these methods were

employed. Specifically, we used the multivariate nonparametric

nearest neighbor imputation technique of [12,13].

SNP Selection
First, we employed the SNP selection method described in [8]: For

each SNP, a generalized linear model (GLM) of the probability of

cancer was fit using as predictor variables the SNP and two other

variables: family history of esophageal cancer and alcohol consump-

tion. The GLM was fit for all 100 subjects without leaving out an

independent testing sample. Then a p-value was obtained based on

the difference between the deviance D0 of the null model without any

predictor variables and the deviance D1 of the fitted model. The

difference D0–D1 follows a chi-squared distribution with 3 degrees of

freedom. Since the above procedure is applied to each SNP in the

dataset, it is necessary to adjust for multiple comparisons to ensure

that the desired proportion of false positives (0.05) is preserved. To

this end, Bonferroni adjustment was performed to the significance

level 0.05 of the test (i.e., instead of using the significance level 0.05,

the level 0.05/number of SNPs was used instead). We refer to the

above method as ‘‘GLM1’’. Finally, we note that Bonferroni

adjustment often provides a conservative assessment of the statistical

significance and assumes that all SNPs are independent, while there

exist methods that are less conservative and can be applicable when

the SNPs are dependent, e.g. [14–16].

Since the p-value of GLM1 reflects the combined effect of the

three predictor variables, it tends to be small even if the SNP does

not have any effect on esophageal cancer at all. To address this

problem of the original analysis, we also applied the following

unbiased SNP selection method: we proceed similarly as in GLM1

except that the p-value is based on the difference between the

deviance D’0 of the model including family history of esophageal

cancer and alcohol consumption and the deviance D1. The

resultant statistic D’0–D1 follows a chi-squared distribution with

one degree of freedom, and it reflects the effect of the SNP that is

being analyzed. We refer to this method as ‘‘GLM2’’ and show

that it is indeed unbiased in the Results and Discussion section and

in the Supporting Information File S1.

Finally, when fitting support vector machines (see next section)

to the data, we also applied the Recursive Feature Elimination

(RFE) technique that is among the best performing variable

selection methods for microarray gene expression data and other

high-throughput molecular datasets [17]. In brief, this method

involves iteratively fitting support vector machine cancer classifi-

cation models by discarding the SNPs with the smallest impact on

classification and selecting the SNPs that participate in the best

performing classification model. Unlike the above GLM-based

methods, we applied RFE only to the training set of patients and

controls during cross-validation.

Cancer Classification Models
First, we used the classification procedure described in [8]. That is,

principal component analysis (PCA) was performed on the selected

SNPs, and then the first principal component was extracted and

used to predict cancer status.

As a state-of-the-art alternative to the PCA-based classification

procedure, we applied support vector machine (SVM) classifiers

[18]. The underlying idea of SVM classifiers is to calculate

a maximal margin hyperplane separating the cases and controls.

To achieve non-linear separation, the data are implicitly mapped

to a higher dimensional space by means of a kernel function,

where a separating hyperplane is found. Subjects are classified

according to the side of the hyperplane they belong to. These

classification methods are commonly used for analysis of high-

throughput molecular data [4,19–21] and have many attractive

theoretical and empirical properties. For example, they often

outperform other classification methods to a remarkable degree;

they are also fairly insensitive to the large variable-to-sample ratio;

and they can learn very complex classification functions [18,22].

We used the libSVM implementation of the linear SVM classifiers

(www.csie.ntu.edu.tw/,cjlin/libsvm/). We also experimented

with the nonlinear SVM classifiers but they resulted in more

complex models with similar classification performance.

To assess the combined performance of SNPs and environmental

factors (and/or family history), we used ensemble classification

methods based on SVM classifiers. We present in this paper only

results for the best ensembling technique that averages predictions of

the two SVM classifiers for each subject: one based on SNP data and

another one based on environmental factors (and/or family history).

The description and results for the other ensembling techniques are

provided in the Supporting Information File S2.

Evaluation of Classification Performance
Unlike the original study [8] that used proportion of correct

classifications as the performance metric, we employed area under

the ROC curve (AUC) that has more power to detect predictive

Unbiased Analysis of SNP Data
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signal of SNPs [23–25]. The ROC curve is the plot of sensitivity

versus 1-specificity for a range of classification threshold values. AUC

ranges from 0 to 1, with an AUC equal to 0 indicating the worst

possible classifier, 0.5 representing a random (i.e., uninformative)

classifier, and 1 representing perfect classification. An excellent

introduction to ROC analysis for classification is provided in [25].

In order to obtain unbiased AUC estimates, the cancer

classification models were built and evaluated by repeated 10-

fold cross-validation procedure [26]. The repeated 10-fold cross-

validation estimator of classification performance can be obtained

by running regular 10-fold cross-validation procedure 100 times

with different splits of data into training and testing sets and

reporting the average estimate over all 100 runs. This estimator is

asymptotically unbiased because the testing samples are never used

to train the classifier. Furthermore, the repeated 10-fold cross-

validation has much smaller variance than regular cross-validation

that may be affected by a non-representative split of the data [26].

RESULTS AND DISCUSSION
While the prior work reported 37 significant SNPs by applying

method GLM1 to the esophageal cancer SNP array dataset [8],

our execution of the published protocol in [8] leads to 226

significant SNPs. The difference from the reported number of 37

SNPs is due to additional filtering step that was performed to the

set of SNPs significant at the Bonferroni adjusted 0.05 a-level that

was not reported in the original publication (Dr. Maxwell Lee,

personal communication). Since, as we show below, an unbiased

method for SNP effect assessment (e.g., GLM2) yields zero

significant SNPs, any additional filtering step is superfluous,

therefore we do not consider such filtering in the present work.

Nevertheless, the application of the PCA-based classifier to the

data of 226 significant SNPs reproduces the classification

performance of the original study [8]. Namely, the first principal

component provides a nearly perfect classification of patients and

controls with 0.98 AUC and 0.93 proportion of correct

classifications (Figure 1). However, this result is over-optimistic

primarily due to the following reasons.

First, the calculation of p-value in SNP selection method GLM1

does not reflect the significance of the SNP under consideration,

but the significance of three variables combined (SNP, family

history of esophageal cancer, and alcohol consumption). Because

family history and alcohol consumption are strong risk factors for

esophageal cancer, this p-value will be biased towards zero, even

when the SNP has nothing to do with esophageal cancer. This bias

can be demonstrated as follows: It is reasonable to assume the

majority of the SNPs do not have any effect on esophageal cancer

risk. For these SNPs, the p-values should follow a uniform

distribution between 0 and 1. However, a vast majority of their p-

values were ,1023 (Figure 2), which is consistent with the fact that

their p-value reflected the combined effect of family history of

esophageal cancer, alcohol consumption, and the SNP instead of

the SNP itself. On the other hand, the procedure GLM2 reflects

the effects of only SNPs and does not suffer from the above

shortcoming (Figure 2). A more elaborate empirical permutation-

based demonstration of why GLM1 is biased while GLM2 is not is

provided in the Supporting Information File S1. The application

of procedure GLM2 resulted in no significant SNPs after

Bonferroni adjustment (Figure 2). Therefore, the SNPs reported

in [8] as statistically significant are not statistically significant at the

Bonferroni adjusted 0.05 a-level.

Second, both SNP selection by GLM1 and building of PCA-

based classifier model were performed in [8] on the same 100

subjects as used for estimation of final classification accuracy.

Since neither cross-validation nor independent sample validation

Figure 1. First two principal components extracted from SNPs that were selected by the method GLM1. The first principal component provides
a nearly perfect separation of cases from controls.
doi:10.1371/journal.pone.0000958.g001
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were performed, the resulting classification performance estimate

is overoptimistic as explained in [27,28]. In order to obtain an

unbiased performance estimate for the SNP selection method and

classifier of [8], the above methods were applied by repeated 10-

fold cross-validation. The resulting classification performance

estimate was 0.68 AUC, while the original procedure in [8] led

to 0.98 AUC, indicating a 0.30 AUC over-estimation.

To assess the contribution of SNPs and other variables to

esophageal cancer classification, we performed several analyses

that are summarized in Table 1. We used the SNP selection

technique RFE [17] and the SVM classifiers [18] described in the

Materials and Methods section. When SNP data is used alone, the

performance is 0.51 AUC which is statistically indistinguishable

from the performance of an uninformative classifier (0.50 AUC).

On the other hand, four environmental variables alone (age at

interview, tobacco use, alcohol consumption, and consumption of

pickled vegetables) can classify cancer with 0.60 AUC indicating

a modest association with cancer. When these four environmental

variables are combined with SNP data, the resulting performance

slightly increases to 0.62 AUC. An even more surprising result was

that a single variable (i.e., family history of esophageal cancer) can

classify the disease with 0.66 AUC which is more accurate than

using SNP data and the four other environmental variables. We

hypothesize that this happens because the family history contains

information about other environmental and genetic variables that

were not measured in the study data. Clearly, there are much

more than four environmental variables that affect esophageal

cancer. Likewise the Affymetrix 10k SNP array is an early

genotyping technology that does not provide as dense genomic

coverage as more recent arrays with .500k SNPs [29,30]. When

the family history is combined with other four environmental

variables, cancer can be classified with 0.73 AUC which is more

accurate than using either set of variables alone. On the other

hand, when the family history is combined with SNP data, the

resulting classifier with 0.64 AUC is not as accurate as using the

former variable alone. Finally, when SNPs and all other variables

are combined, cancer can be classified with 0.73 AUC.

The experiments presented in this paper involved SVM

classifiers. As we mentioned, the choice of classifier was based

on empirical evidence suggesting that SVMs have superior perfor-

mance in different high-dimensional ‘‘omics’’ datasets [19–21] as

Figure 2. Distribution of p-values computed by GLM1 and GLM2 SNP selection methods. The figure is shown in logarithmic scale for convenience.
The vertical line is the Bonferroni adjusted a-level (0.05/10,009). While there are SNPs that are significant according to GLM1 method, no SNP is
significant by GLM2. The distribution of p-values for GLM2 is uniform, however the distribution for GLM1 is not.
doi:10.1371/journal.pone.0000958.g002

Table 1. Estimates of classification performance obtained by
repeated 10-fold cross-validation procedure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data used for the classifier Classification performance (AUC)

{SNPs} 0.51

{Alc, Smk, Age, Pck} 0.60

{Fh} 0.66

{Fh, Alc, Smk, Age, Pck} 0.73

{SNPs}+{Alc, Smk, Age, Pck} 0.62

{SNPs}+{Fh} 0.64

{SNPs}+{Fh, Alc, Smk, Age, Pck} 0.73

The classification algorithm is Support Vector Machines (SVM). Only SNPs
selected by Recursive Feature Elimination (RFE) are used. The following
abbreviations are used for variable names: Age (age at interview), Smk (tobacco
use), Alc (alcohol consumption), Fh (family history of esophageal cancer), and
Pck (consumption of pickled vegetables). The ‘‘+’’ symbol in the Data column
denotes that the analysis was performed by ensembling approach.
doi:10.1371/journal.pone.0000958.t001..
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well as in SNP data [4] and they certainly outperform

unsupervised classification methods such as PCA [27,28].

However, one cannot preclude that there does not exist some

classification methods that outperform SVMs in SNP array

datasets. Future research will answer this question.

In conclusion, our findings suggest that several data analysis

pitfalls of [8] led researchers to identify SNPs that are not

statistically significant and to derive a severely biased estimate of

classification performance of esophageal cancer patients and

healthy controls on the basis of these SNPs. We also showed that

environmental factors and especially family history of cancer (the

latter may serve as proxy to both genetic and environmental

factors) have a modest association with the disease. It is thus

conceivable that other SNPs, not included in the assay employed,

may be implicated in the disease. These results are consistent with

the previous literature that emphasizes the importance of

environmental factors on the causation of this complex disease

[9,10]. The results also underscore the importance of sound data

analysis in genome-wide association studies.

SUPPORTING INFORMATION

File S1 Demonstration of Bias in Computation of P-Values

Found at: doi:10.1371/journal.pone.0000958.s001 (0.08 MB

DOC)

File S2 Integrated Analysis of Multiple Data Types

Found at: doi:10.1371/journal.pone.0000958.s002 (0.09 MB

DOC)
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