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Background. MicroRNAs (miRNAs) are endogenous small noncoding RNA gene products, on average 22 nt long, found in
a wide variety of organisms. They play important regulatory roles by targeting mRNAs for degradation or translational
repression. There are 377 known mouse miRNAs and 475 known human miRNAs in the May 2007 release of the miRBase
database, the majority of which are conserved between the two species. A number of recent reports imply that it is likely that
many mammalian miRNAs remain to be discovered. The possibility that there are more of them expressed at lower levels or in
more specialized expression contexts calls for the exploitation of genome sequence information to accelerate their discovery.
Methodology/Principal Findings. In this article, we describe a computational method-mirCoS-that uses three support vector
machine models sequentially to discover new miRNA candidates in mammalian genomes based on sequence, secondary
structure, and conservation. mirCoS can efficiently detect the majority of known miRNAs and predicts an extensive set of
hairpin structures based on human-mouse comparisons. In total, 3476 mouse candidates and 3441 human candidates were
found. These hairpins are more similar to known miRNAs than to negative controls in several aspects not considered by the
prediction algorithm. A significant fraction of predictions is supported by existing expression evidence. Conclusions/

Significance. Using a novel approach, mirCoS performs comparably to or better than existing miRNA prediction methods, and
contributes a significant number of new candidate miRNAs for experimental verification.
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INTRODUCTION
MicroRNAs (miRNAs) are an abundant class of ,22 nt long

endogenous non-protein-coding RNAs that function by binding to

target sites on 39-UTRs of messenger RNAs (mRNAs) to repress

translation or mediate mRNA degradation (reviewed in [1]).

Mature miRNAs are synthesized from longer 70–100 nt pre-

cursors (pre-miRNAs), each of which forms a hairpin structure

that contains one or two mature miRNAs in either or both of its

arms. Thus far, a total of 4584 miRNAs have been identified and

reported to miRBase (release 9.2, May 2007), a database that

stores experimentally validated miRNAs and their homologs [2,3].

Several recent observations indicate that miRNAs, in general, may

be essential for organisms to differentiate into multiple cell- and

tissue types and/or to keep cells in a particular differentiation state

[4]. miRNA target prediction in mammals indicates that ,10–

30% of protein-coding genes may be under control of currently

known miRNAs [5,6]. This number may still increase because

many additional miRNAs have been predicted. There are

currently 475 human miRNAs and 377 mouse miRNAs in

miRBase, but recent studies have suggested that the number of

miRNAs in a vertebrate genome can be as many as 800–1000

[7,8]. The high number of miRNA genes, their diverse expression

patterns [9–12] and the abundance of potential miRNA targets

suggest that miRNAs are likely to be involved in a broad spectrum

of human diseases. Indeed, components required for miRNA

procession and/or function have been implicated in fragile X

mental retardation [13], DiGeorge syndrome [14], and cancer

[15]. Lu et al. [16] demonstrated recently that miRNAs can

indeed be developed into potent cancer markers.

As miRNAs are likely to play a central role in development and

also in disease, it is important to understand their function. An

important step towards this would be to assemble a complete

catalogue of miRNA genes. Experimental cloning efforts have

successfully identified highly expressed miRNAs from various

tissues [9,11,17–32]. However, cloning methods are highly biased

towards miRNAs that are abundantly and/or ubiquitously

expressed. On the other hand, computational prediction of

miRNAs could become a powerful aid for finding tissue-specific

or lowly expressed miRNAs. A number of computational methods

for miRNA prediction have been described and appear to

complement each other because they take different approaches

to miRNA prediction (reviewed in [33]).

Support vector machines (SVMs) are machine learning

algorithms widely used to solve classification problems. A SVM

assigns an object to one of several classes based on a set of input

features associated with the object. In bioinformatics, superiority of

SVMs over other classification methods has been shown for

prediction of DNA-binding proteins [34], gene function [35] and

protein subcellular localization [36].

Here we describe a method-mirCoS-to predict conserved

miRNAs in mammalian genomes. Being fundamental functional
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RNA elements, many pre-miRNAs have maintained sequence and

secondary structure conservation across large evolutionary dis-

tances. Conservation can be described by several features which

can serve as inputs for a SVM model. Currently, five other SVM-

based miRNA prediction algorithms are available. Four of them

are aimed at non-conserved miRNA prediction [37–40], and

therefore they can not achieve sufficient specificity when applied to

entire large genomes. The fifth is aimed at annotating the results

from non-coding RNA prediction [41], and has better specificity,

predicting about 5000 miRNAs in the human genome. However,

this number is still about five times higher than recent estimates

[7,8] and may include many false positives. To improve on this, we

have added a number of previously unused features, and built

a composite SVM model consisting of three sequentially applied

SVMs and applied it to the human and mouse genomes. We

predict about 3400 human-mouse conserved candidate miRNA

genes, many of which show evidence of sequence and secondary

structure conservation across all vertebrates (including fish) and

are supported by independent evidence not used by our prediction

method. Finally, we show that mirCoS performs better than or

comparably to other recent methods. Because the great majority of

our predictions are novel, the method described here constitutes

a worthy addition to the arsenal of computational methods aimed

at completing the mammalian miRNA collection.

RESULTS AND DISCUSSION

Design and validation of mirCoS-a SVM-based

method for miRNA prediction
SVMs classify objects based on a set of features for each object.

With the goal of predicting mature miRNAs, we selected features

describing three aspects of precursor and mature miRNAs: (1)

sequence conservation of pre-miRNA, (2) secondary structure of

pre-miRNA and its conservation, and (3) placement and secondary

structure of mature miRNA within its pre-miRNA (Table 1). We

chose to train one SVM (SVM1) for the first of these feature sets,

another (SVM2) for the second, and two SVMs (one for human

and one for mouse data, collectively termed SVM3) for the third

feature set. We applied the SVMs sequentially, so that only

candidates that were classified as positive by SVM1 were passed

on to SVM2, and similarly for SVM2 and SVM3 (Figure 1). The

main reason for dividing the prediction task over three SVMs was

to reduce running time: the second and third feature sets require

secondary structure predictions that are expensive to compute for

whole genomes, and the number of objects to classify increases

almost 26-fold for the third feature set, because there are many

putative miRNA positions within each pre-miRNA hairpin.

Additionally, the sieve effect of sequential application of three

SVMs aided in increasing the specificity of predictions, which we

consider more important than sensitivity at this stage of the search

for unknown candidate miRNAs and their selection for experi-

mental validation.

We applied mirCoS to 976,746 regions from the mouse genome

that are conserved in other vertebrates (conserved region set, CRS;

see Methods). The CRS regions have a median size of 90 bp and

cover 121,685,671 bp in total. Positive and negative examples are

required to train SVMs and evaluate their performance. Our

positive training examples for SVM1 consisted of all 310 regions in

the CRS that overlapped known mouse miRNAs from miRBase

release 9.1, and our positive training examples for SVM2 and

SVM3 were derived from this set. Our negative training examples

consisted of regions selected randomly from the rest of the CRS

such that, for each training set and chromosome, the number of

negative examples was the same as the number of positive

examples. Because only a very low fraction of the mouse genome

sequence is likely to encode miRNA, it is safe to assume that most

negative training examples are not miRNAs. This can also be

verified from the final result: only 0.3% of the regions in the CRS

were classified as pre-miRNA. See Methods for further details

about the construction of training sets.

For the selection of features to include in SVMs we used the F-

score, which measures the discriminatory power of individual

features. The F-score is related to the F-statistic used in analysis of

variance, and has been shown to perform well in selecting features

for SVMs [42]. Table 1 lists all selected features and their F-scores.

A description of our rationale for choosing to evaluate these

particular features follows.

To find appropriate features for describing the sequence

conservation of pre-miRNAs, we inspected the vertebrate

conservation track in the University of California Santa Cruz

(UCSC) Genome Browser (http://www.genome.ucsc.edu/)

(Figure 2A). Pre-miRNA genes are often highly conserved, but

Table 1. Features used in mirCoS.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SVM model Feature F-score

SVM1 Ratio between number of positions with phastCons score $0.9 and number of positions with phastCons score $0.6 in the
region

0.71

Maximum phastCons score in the region 0.28

SVM2 Minimum free energy (MFE) for the predicted hairpin normalized by its length * 1.93 and 1.95

Length of the hairpin* 0.63 and 0.46

Fraction of the mouse hairpin sequence that overlaps with the human hairpin sequence in a net alignment of the genomes 0.45

Predicted secondary structure conservation between the mouse hairpin and the most evolutionary distant genome its
sequence aligns with

0.19

GC content of the hairpin* 0.18 and 0.18

Fraction hairpin bases that are in the stem* 0.08 and 0.09

SVM3 Fraction of miRNA bases that are paired in the hairpin 0.66

MFE of the part of the hairpin that corresponds to the miRNA 0.63

Number of bases in the predicted miRNA that are not conserved between human and mouse 0.59

MFE of the part of the hairpin that is outside the predicted miRNA normalized by the length of that part 0.01

*Two values are given for features calculated separately for human and mouse.
doi:10.1371/journal.pone.0000946.t001..
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conservation drops off rapidly at their edges. Within pre-miRNAs,

variations are more likely to occur in the central part of the

conservation block, which corresponds to the loop part when the

sequence is folded into a stem-loop structure. The generality of

these observations is reflected in a cumulative human-mouse

conservation profile based on all known mouse miRNAs that can

be aligned to the human genome (Figure 2B). Similar, but less

steep, miRNA conservation profiles have been distinguished in

alignments of multiple primate species [8]. Consistent with this

observation that most known pre-miRNA genes tend to stand out

as islands of very high conservation in the genome, the best feature

we could find for SVM1 was a measure of the ratio of high to

intermediate conservation within a classified region (Table 1).

For a candidate region to be passed to SVM2, we required its

predicted secondary structure to contain a pre-miRNA-like

hairpin. All features in SVM2 relate to pre-miRNA hairpin

structures. It has been shown that pre-miRNA hairpins, in contrast

to other noncoding RNAs, have lower free energy of folding than

randomized sequences with the same nucleotide content [43].

Accordingly, the best feature we found for SVM2 was normalized

free energy of the predicted hairpin (Table 1). If a candidate region

is a true pre-miRNA, its secondary structure should be conserved

in all species where there is significant sequence conservation. As

one of the features for SVM2, we therefore used predicted hairpin

secondary structure conservation between each candidate mouse

region and the most evolutionary distant genome that it could be

aligned to, considering eleven vertebrate genomes at distances

ranging from dog and cow to fish (see Methods).

For SVM3, the most discriminatory features–which were

inspired by criteria successfully used for mature miRNA prediction

in C. elegans [44]-measured the amount and conservation of base-

pairing within the part of the predicted secondary structure

corresponding to the miRNA. This is readily explained by the fact

that mature miRNAs are always on the stems of hairpin structures,

and the part of a stem that corresponds to a miRNA tends to have

a high level of base pairing.

We tested the performance of SVM1 and SVM2 by jackknife

cross-validation and obtained sensitivity estimates of 92% and

94%, respectively. For SVM3, since the number of positive

examples was large, we used a different repeated holdout scheme

to estimate its performance (see Methods) and obtained an average

sensitivity of 85%.

Prediction of 3400 miRNA genes conserved in

sequence and structure
Application of mirCoS caused the number of candidate regions to

decrease dramatically from 976,746 to 3476, while 68% of the

known conserved miRNAs (from miRBase 9.1) that were used to

train the model were retained. Table 2 shows the number of

candidates and known miRNAs retained at each step of the

prediction pipeline. Our final result set contained 3476 candidate

pre-miRNAs from mouse and 3441 from human (Table 2; detail

genome coordinates are in Dataset S1 and Dataset S2). Six percent

of these candidates represent known pre-miRNAs from miRBase

9.1, while the remaining ones are putative novel pre-miRNAs.

Five predictions of novel pre-miRNAs are illustrated in Figure 3.

All these predictions have a very high level of conservation. To

verify that the conservation constraints in the model worked well

overall, we examined over what evolutionary distance our

predictions were conserved in both sequence and structure,

considering alignments to eleven vertebrate genomes as we did

when computing input features for SVM2. Of our predictions for

the mouse genome, 68% were aligned to the genome of an organism

at an evolutionary distance ranging from dog and cow to (any of the)

fish and showed predicted secondary structure conservation with

that organism (Figure 4). Although this is lower than the result for

known mouse pre-miRNAs conserved in human (80%), it is more

than twofold the result of 27% for the initial set of candidate regions

(the CRS) that were classified by SVM1. We obtained a very large

enrichment for the farthest conservation examined, that with fish:

12% of predictions had fish conservation (either to zebrafish,

Tetraodon or fugu), compared to only 3% of the CRS.

Rules on phastCons scores define 
conserved region set (CRS)

SVM1
(Conservation filter)

Secondary structure prediction 
CDS and repeat filtering

SVM2
(Secondary structure filter)

SVM3
(Mature miRNA prediction)

tRNA, pseudogene and  
updated CDS filtering

Figure 1. Outline of the mirCoS method.
doi:10.1371/journal.pone.0000946.g001
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Figure 2. pre-miRNAs display a characteristic conservation profile. Typically, pre-miRNAs are highly conserved, but the conservation drops off
rapidly at their borders and is often lower in the middle region, which corresponds to the loop. (A) Conservation profile of known pre-miRNA hsa-mir-
1-1 in the UCSC Genome browser (http://www.genome.ucsc.edu/). (B) Cumulative conservation profile of known mouse pre-miRNAs (from miRBase
8.2) conserved in human. Pre-miRNA regions were extended by 50 bp on each end and length-normalized to the range [-50,50]. The y-axis shows the
fraction of analyzed sequences that are conserved at the position indicated on the x-axis.
doi:10.1371/journal.pone.0000946.g002

Table 2. Number of candidates and known miRNAs maintained at each step of genome-wide screening.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mouse Human

Candidates Known miRNAs (miRBase 9.1) Candidates Known miRNAs (miRBase 9.1)

Before SVM1 976,746 310 820,001 298

After SVM1 389,018 283 384,937 272

After secondary structure prediction, and filtering
out CDS and repeats

199,377 227 176,345 221

After SVM2 11,838 219 11,132 213

After SVM3 3,476 212 3,441 208

doi:10.1371/journal.pone.0000946.t002..
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The sequence conservation features used in the model are based

on phastCons scores, which primarily reflect patterns of base

substitutions [45]. Lunter et al. [46] described a method to identify

conserved regions based on rates of base insertions and deletions,

and found that most known miRNA genes were within the

identified conserved regions. Consistently, 80% of our candidate

human miRNA genes overlap with conserved regions identified by

Lunter et al. at 10% false discovery rate, compared to only 45% of

the regions in the CRS and 3% of randomly selected regions.

Some of our novel candidates are homologs of known pre-

miRNAs from other organisms. We BLASTed all our novel mouse

candidates against all miRBase 9.1 pre-miRNAs using default

blastn settings, and filtering the results to retain alignments

(BLAST high-scoring segment pairs; HSPs) of length $50 bases

and identity $75%. There were hits for five candidates: four hit

known pre-miRNAs from human and the remaining candidate

only hit two pre-miRNAs from chicken (gga-mir-147-1 and gga-

mir-147-2). All these hits are likely true homologs, because

sequence identity was high (mean: 91.3%, range: 87.1%–97.4%),

as was the proportion of known pre-miRNA sequence aligned

(mean: 87.0%, range: 58.3%–98.5%), strongly supporting that the

five novel mouse candidates are true pre-miRNAs. Further

analysis of the candidate that only had BLAST hits in chicken

revealed that it was highly similar to mouse miRNA miR-147
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Figure 3. Predicted secondary structures and conservation profiles of five candidate pre-miRNA genes. The figure shows five examples from our
predictions. Black bars indicate which regions of conservation profiles that correspond to predicted hairpins. Secondary structures of candidate pre-
miRNAs were predicted by MFOLD v3.1 [63]. Conservation profiles were obtained from the UCSC Genome Browser (http://www.genome.ucsc.edu/).
The candidates show canonical secondary structures and conservation profiles.
doi:10.1371/journal.pone.0000946.g003
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cloned by Lagos-Quintana et al. [9]: 19/21 bases from the clone

match. Importantly, the part of our candidate hairpin that aligned

with miR-147 was within a 26 nt region predicted to contain

a mature miRNA by our method. Mouse miR-147 had not been

deposited in miRBase because it did not have a sufficiently good

match to the mouse genome assembly. In the current mouse

genome assembly (NCBI Build 36), the clone has five different

matches with 19 identities each, but still no better match.

However, Lagos-Quintana et al. found that their clone aligned

with 20 identities to a region of the human genome predicted to

form a hairpin structure. This region was subsequently deposited

in miRBase as hsa-mir-147 based on the evidence from the mouse

clone. The chicken miRNAs gga-mir-147-1 and gga-mir-147-2,

which have not been experimentally validated, were annotated

based on similarity (76% identity over 72 bases) to hsa-mir-147.

Our novel human and mouse candidates are also similar to hsa-

mir-147 (81% identity over 72 bases, although BLAST only found

a 26-base HSP), but more similar to gga-mir-147-1/2 (87–89%

identity over 70 bases). Experimental validation is required to

show whether the mir-147 entries in miRBase, as well as our novel

human and mouse candidates, represent true pre-miRNAs.

Independent evidence supports the validity of

miRNA predictions
To further assess the validity of our predictions, we examined

several features that were not used in the prediction pipeline.

1. Intronic vs. intergenic predictions - The proportion of intronic

miRNA genes is very similar between our predictions and known

miRNAs: Of the 310 mouse miRNAs in miRBase 9.1 that are

conserved (Table 2), we found 30% to be located within introns of

protein-coding genes, compared to 35% for our candidates. For

conserved human miRNAs, we found 35% of known and 37% of

candidate miRNAs to be intronic (Table 3).

2. Genomic clustering of predictions-Many known miRNA genes

occur in clusters along chromosomes. We identified spatial clusters

among our predictions as described in Methods. Of our mouse

candidates, 513 were clustered with one or more other candidates.

The mouse candidates formed 209 clusters, 44 of which contained

one or more known miRNA genes. Nineteen novel mouse

candidates were clustered with a known miRNA gene, lending

strong support to the validity of those predictions. The results for

human were similar: 494 candidates formed a total of 210 clusters,

47 of which contained one or more known miRNA genes. Thirteen

novel human candidates were clustered with a known miRNA.

3. Pattern composition-Based on their genomic distribution, it was

postulated that many highly conserved noncoding elements

(HCNEs) may function as developmental enhancers [47–49].

Several have indeed been demonstrated to possess enhancer

function (reviewed in [50]) and an enrichment of sequence

patterns characteristic of binding sites for certain developmental

transcription factors has been found in a large subset of HCNEs

[51]. Since sequence patterns were not explicitly considered in

mirCoS, we used pattern occurrence as an independent means to

assess whether our model had discriminated between likely

developmental enhancers and miRNA genes. For this analysis,

we used a published HCNE set produced by scanning the human
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Table 3. Results from genome-wide screening for human and
mouse miRNAs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mouse Human

Number of candidates 3476 3441

Number of known miRNA maintained 212 208

Number of intronic candidates 1219 1284

Number of intergenic candidates 1992 1879

Number of UTR candidates 265 278

Number of clusters 209 210

doi:10.1371/journal.pone.0000946.t003..
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genome for regions with at least 95% sequence identity in mouse,

as well as evidence of conservation in Fugu [48]. Figure 5 shows

that HCNEs have a much greater incidence of putative binding

sites for homeobox transcription factors than do known (p,10215,

Wilcoxon test) and candidate (p,10215) miRNA genes. Figures

for other transcription factors are in Figure S1. This difference in

pattern composition can only be partially accounted for by

differences in dinucleotide composition, suggesting that many of

the binding sites predicted in HCNEs are functional (Figure 5C). Of

our candidate pre-miRNAs, 221 (6%) overlapped with a HCNE.

The occurrence of putative homeobox binding sites in the sequences

for these 221 candidates was lower than for remaining HCNEs

(p = 361027, Wilcoxon test), indicating that mirCoS to some extent

distinguishes between HCNEs that are miRNA genes and HCNEs

that are developmental enhancers (Figure 5).

4. Evidence for transcription-Some miRNA genes are known to be

transcribed by RNA polymerase II as large primary miRNA

transcripts which have cap structures and poly(A) tails [52,53].

Additional support for the idea that intergenic miRNAs are

transcribed as large primary miRNA transcripts comes from

a recent study where the flanking genomic sequences (2.5 kb

upstream and 4 kb downstream) of many intergenic mammalian

miRNAs were found to align with expressed sequence tags (ESTs)

[54]. In agreement with these results, we found EST and/or

cDNA support for 59% of mouse miRNAs in miRBase 8.0 (the

version used in [54]) and for 50% of mouse miRNAs miRBase 9.1

(Table 4). For our intergenic mouse miRNA predictions not

represented in miRBase 9.1, we found EST/cDNA support for

transcription of 345 (21%) of 1640. Corresponding rates for

intergenic subsets of the CRS and randomly selected genomic

regions are significantly lower (13% and 10%, respectively; p =

461029 and p,10215, respectively, compared to the rate for our

predictions with chi-square tests) (Table 4) indicating that our set

of miRNA predictions is enriched for transcribed sequences. The

lower rate for our candidates compared to known miRNAs is

expected, because most known miRNAs have been found by

cloning methods, and miRNAs which have not yet been cloned

are likely to be expressed at lower levels or in more restricted

contexts. To more directly assess whether transcription start sites

are present at or closely upstream of our miRNA predictions, we

turned to cap analysis of gene expression (CAGE) data. CAGE is

a technique to obtain sequence tags (CAGE tags) of about 20

nucleotides from 59-ends of capped transcripts [55]. More than

seven million CAGE tags have been sequenced from 145 mouse

cDNA libraries and mapped to the mouse genome [56]. If primary

miRNA transcripts have cap structures, their 59-ends should be

detectable by CAGE. We found 19% of known intergenic mouse

pre-miRNAs to have more than one CAGE tag on the pre-

miRNA or within 500 bp upstream, compared to 8% of our

intergenic candidates (excluding known miRNAs, as for the

cDNA/EST comparison above; genome coordinates of mouse and

human candidates with CAGE data support are in Dataset S3 and

Dataset S4). Corresponding rates for the CRS and randomly

selected genomic regions are only 4% and 1%, respectively

(Figure 6; p = 361028 and p,10215, respectively, compared to

the rate for our predictions with chi-square tests). The difference in

transcriptional support between miRBase 9.1 miRNAs and our

novel predictions is similar between the comparison with cDNA/

EST data and the comparison with CAGE data. However, the

negative control sets (CRS and random genomic regions) have less

support from CAGE than cDNA/EST data compared to known

miRNAs and our predictions. The explanation may be that

cDNAs and ESTs represent a variety of overlapping transcribed

regions, while CAGE tags near genomic locations of pre-miRNA

59-ends more specifically pinpoints transcriptional start sites for

primary miRNA transcripts.

Comparison to other methods
We compared our results to three other studies where SVMs were

used to predict human or mouse miRNAs [37,38,41], as well as to

two other recent studies where different techniques were used to

predict miRNAs in the human or mouse genome [8,57] (Table 5).

Xue et al. [38] presented a method called triplet-SVM that

recognizes pre-miRNAs based on their composition of small (3 nt)

structure features. The method was trained on known human pre-

miRNAs and achieved a high sensitivity (,90%) when applied to

known pre-miRNAs from human and several other organisms.

Unlike mirCoS, triplet-SVM does not make use of cross-species

information, and can therefore detect organism-specific miRNAs.

However, triplet-SVM was not designed to be applied to whole

genomes, even when combined with a conservation filter. As

a specificity test, the authors applied it to human-mouse conserved

segments from 1 Mb of human chromosome 19. The method

classified 270 sequences from the 1 Mb region as putative pre-

miRNAs, suggesting that it may predict several hundred thousand

pre-miRNAs if applied to the entire human genome. Although

triplet-SVM has a high sensitivity, its specificity in a whole-genome

scan is therefore not comparable to ours.

Sewer et al. [37] also presented an SVM-based method (miR-

abela) that does not make use of cross-species information. It

appears that, with current knowledge of miRNA biology, such

methods are unable to achieve the specificity required for whole-

genome scans. Sewer et al. did not attempt a whole-genome scan,

but applied miR-abela to detect clustered miRNA genes in

human, mouse and rat genomic regions harboring known

miRNAs. They detected 73 human and 51 mouse candidates

that were not found by mirCoS, mainly because of our

conservation constraints. Of these candidates, 12 and 10 represent

known miRNAs (from miRBase 9.1), respectively. Conversely, we

found 31 mouse and 26 human conserved miRNA candidates that

miR-abela did not detect in the explored regions. Of these

candidates, 11 and 10 represent known miRNAs in mouse or

human, respectively. Thus, the two methods appear to comple-

ment each other well.

Recently, two methods have been described that detect

conserved RNA secondary structures in alignments of multiple

genomes [58,59]. Hertel and Stadler [41] described an SVM-

based method called RNAmicro, designed to detect pre-miRNAs

in the output from such surveys. Like mirCoS, RNAmicro uses

twelve different features for SVM classification. Although the exact

choice of features differs, they relate to the same aspects of pre-

miRNA: sequence, secondary structure and conservation. To

compare the performance of mirCoS to RNAmicro, we obtained

RNAmicro predictions for the human genome (J. Hertel, personal

communication). Starting from conserved secondary structures

detected by RNAz [59] and filtering the results at a score cutoff of

0.5, RNAmicro achieved sensitivity similar to our method: out of

the 474 known human miRNAs in miRBase 9.1, RNAmicro

detected 202 and we detected 208. However, at the same score

cutoff of 0.5, RNAmicro predicted 58% more miRNA candidates

in the human genome than mirCoS (5440 compared to 3441).

From these counts, it appears that mirCoS has a higher specificity

than RNAmicro, although RNAmicro specificity has been

estimated to be high by comparison with a dataset of non-miRNA

noncoding RNAs (J. Hertel, personal communication). The better

performance of mirCoS is likely due to more stringent require-

ments in the model. RNAmicro asks for pre-miRNA secondary

structures with stems of at least 10 bp, while mirCoS asks for
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Figure 5. mirCoS can distinguish pre-miRNAs from highly conserved developmental enhancer regions. We compared differences in pattern
composition among known pre-miRNAs, candidate pre-miRNAs and HCNEs. Each sequence was searched for putative transcription factor binding
sites using the familial binding profile for homeobox transcription factors from the JASPAR database [72] at a score threshold of 80%. (A) Sequences
were partitioned into four non-overlapping sets (I-IV) as indicated in the Venn diagram. (B) Cumulative distributions of number of predicted binding
sites per 100 bp for sequence sets I-IV. The distributions for candidate pre-miRNAs (blue, green) are more similar to the distribution for known pre-
miRNAs (red) than to the distribution for HCNEs not predicted to be pre-miRNAs (gray). (C) Solid bars show the average number of predicted sites per
100 bp over each of sequence sets I-IV. Shaded bars show results for corresponding control sets: controls for dinucleotide composition generated by,
for each sequence, constructing a first-order Markov chain and using it to generate a new sequence (diagonal shading lines), and controls for single
nucleotide composition generated by randomly shuffling the bases in each sequence (vertical shading lines). Error bars indicate 95% confidence
intervals.
doi:10.1371/journal.pone.0000946.g005
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secondary structures with a stems of at least 17 bp (the length of

the shortest known mature miRNA). In mature miRNA pre-

diction, RNAmicro mainly considers conservation of mature

miRNAs, while mirCoS also considers base pairing (which is the

most important criterion in MIRscan [44]) and minimum free

energy of mature miRNAs. It is also interesting that the methods

predict different candidates. Of the known miRNAs found by

RNAmicro, we missed 34, and of those found by our method,

RNAmicro missed 40. Comparing the entire candidate sets from

the two methods, only 897 candidates (including 168 known

miRNAs) are found in both sets. Predicted miRNAs are more

likely to be true if clustered with other predicted or known

miRNAs. In the human genome, 341 clusters were either created

or expanded by adding our predictions to those from RNAmicro

and known miRNAs.

Yousef et al. [57] used a different machine learning method,

naı̈ve Bayes classifier, to predict miRNAs conserved between

human and mouse. They applied their method (BayesMiRNAfind)

to the forward strand of the mouse genome sequence and

presented results for different score cutoffs. At a cutoff that

produced a similar number of miRNA gene predictions (1697) as

mirCoS did on the forward strand of the mouse genome (1731),

Table 4. cDNA and EST support for transcription of intergenic mouse miRNAs.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Support class a mirBase 8.0 mirBase 9.1 Predictions b CRS c Random regions c

Entirely overlapped by cDNA/EST 33 (17.7%) 34 (13.7%) 79 (4.8%) 36 (2.4%) 31 (1.5%)

Partially overlapped by cDNA/EST 20 (10.8%) 24 (9.7%) 47 (2.9%) 42 (2.9%) 11 (0.5%)

In intron of cDNA/EST d 30 (16.1%) 35 (14.1%) 127 (7.7%) 62 (4.2%) 119 (5.6%)

In gap between 59 and 39 EST pair e 2 (1.1%) 2 (0.8%) 7 (0.4%) 1 (0.1%) 3 (0.1%)

Near unpaired EST f 25 (13.4%) 29 (11.7%) 85 (5.2%) 50 (3.4%) 50 (2.4%)

Sum 110 (59.1%) 124 (50.0%) 345 (21.0%) 191 (13.0%) 214 (10.1%)

All 186 248 1640 1470 2126

aEach known miRNA, prediction or other region was counted in one support class only, considering support classes in the order listed in the table.
bIntergenic miRNA predictions, excluding miRBase 9.1 miRNAs. Predictions with ambiguous orientation were randomly assigned to a strand for this test.
cCRS regions and random genomic regions were selected by sampling the same number of regions as there were miRNA predictions (3476), and then retaining only the
intergenic regions.

dRegions counted in this table are intergenic with respect to UCSC known genes, but some are still in introns of poorly characterized cDNAs and ESTs. Only introns
#50 kb and with canonical (GT..AG) splice junction sequences were considered.

eGaps between ESTs were only considered if they spanned #50 kb.
fBased on the findings in [54], we considered as ‘‘near’’ 59-ESTs within 2.5 kb upstream and 39-ESTs within 4 kb downstream.
doi:10.1371/journal.pone.0000946.t004..
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Figure 6. CAGE expression data supports miRNA predictions. Cumulative distribution of number of CAGE tags mapping to known intergenic pre-
miRNA genes or within 500 bp upstream (red), and corresponding distributions for predicted intergenic pre-miRNAs (blue), randomly selected
intergenic genomic regions of the same size (green) and intergenic regions from the CRS (black). Known and predicted pre-miRNAs tend to have
more overlapping or upstream CAGE tags than either of the control sets. The inset shows a magnification for tags counts of 0–40.
doi:10.1371/journal.pone.0000946.g006
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the Bayesian method detected 59 out of 135 known miRNA genes

in miRBase 6.0. mirCoS found 111 of the same 135 miRNA

genes, thus achieving a much higher sensitivity.

Berezikov et al. [8] presented a method (here called RegEx) to

detect miRNA genes by using a set of rules (implemented as regular

expressions) to first scan human-rodent conservation profiles and

subsequently predicted RNA secondary structures. The property of

pre-miRNAs to have lower folding free energy than random

sequences was also taken into account by filtering the results with the

program Randfold [43]. We compared mirCoS with RegEx,

because the features considered are similar and because, to our

knowledge, RegEx represents one of the best miRNA prediction

algorithms to date. On the current miRBase release (9.1), mirCoS

has a somewhat higher sensitivity, recovering 208 known human

miRNAs, among them 53 not found by RegEx, while RegEx

recovered 191 known human miRNAs, among them 36 not found

by us (Figure 7). Our higher sensitivity may be at the expense of

specificity, because in total we predicted about three times more

human miRNA genes than RegEx (3441 compared to 976).

However, in addition to the 53 known conserved miRNAs missed

by RegEx, our results contain many novel candidates that are highly

likely to be true miRNAs and were missed by RegEx. Examples

include two candidates clustered with known human miRNAs

at chr14:100,411,114-100,411,204 and chr14:100,566,140-

100,566,220 (coordinates refer to NCBI build 35). In total in the

human genome, 196 clusters were either created or expanded by

adding our predictions to those from RegEx and known miRNAs

(from miRBase 9.1). Moreover, comparison with human CAGE

data [56] indicates that mirCoS and RegEx have comparable

specificity. We found 6.0% of our intergenic human candidates not

represented in miRBase 9.1 to have more than one CAGE tag on the

predicted pre-miRNA or within 500 bp upstream. The correspond-

ing rate for intergenic RegEx predictions not represented in

miRBase 9.1 was 6.1%, and rates for intergenic subsets of miRBase

9.1, the CRS and randomly selected regions were 9.4%, 2.0% and

0.6% respectively (these rates are lower than those given above for

mouse, because less CAGE tags have been sequenced for human).

To gain more insight into the differences between mirCoS and

RegEx, we applied Randfold as an extra filter to our results, in the

same way done in RegEx, and filtered out coding sequence and

repeats from the results of RegEx, in the same way done in mirCoS.

After this filtering, the trends in sensitivity and specificity remained,

but were less pronounced: mirCoS found 181 known human

miRNAs, compared to 176 for RegEx, and the total number of

predictions was reduced to 1667 and 694, respectively, with 337

predictions shared between the two methods.

53 230

3046

36 155

581 395

Figure 7. The overlap between our predictions and those from Berezikov et al. is small. Venn diagram showing the intersections between human
miRNAs predicted by Berezikov et al.[8] (gray rectangle), our human predictions (large open rectangle) and known human miRNAs (horizontal
rectangle).
doi:10.1371/journal.pone.0000946.g007

Table 5. Comparison between mirCoS and other methods.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RNAmicro RegEx triplet-SVM miR-abela BayesMiRNAfind

Sequences searched Human genome Human genome Region 56,000,001-57,000,000
of human Chr. 19 (assembly
NCBI build 35)

10 kb upstream and
downstream of mouse
known miRNAs in
miRBase 6.0

Forward strand of mouse
genome

Number of candidates 5440 (3441) 976 (3441) 270 (4) 66 (46) 1697 (1731)

Number of known miRNA
maintained

202 (208) from
miRBase 9.1

191 (208) from
miRBase 9.1

3 (1) from miRBase 5.0 22 (24) from miRBase 9.1 59 (111) from miRBase 6.0

Number of candidates shared
with mirCoS

897 387 n.c. 15 n.c.

Numbers in parenthesis are results of mirCoS applied on the same sequences.
n.c., not calculated; we only computed overlap with mirCoS predictions for methods for which we could obtain the predictions.
doi:10.1371/journal.pone.0000946.t005..
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Opportunities for improvements in miRNA prediction
Completion of the mammalian miRNA collection is likely to

require an ensemble of approaches, including high-throughput

sequencing, prediction of conserved miRNAs from multiple-

species comparisons, and prediction of miRNAs that are not

deeply conserved by analysis of single sequences. Each of these

strategies has its drawbacks. Although high-throughput sequencing

of small RNAs can identify numerous miRNAs with high

specificity [60], miRNAs with highly restricted expression patterns

may be difficult to detect even with massive sequencing capacity,

especially in complex organisms. As demonstrated in this and

earlier work [8,41], cross-species conservation is highly informa-

tive for miRNA prediction. However, many recently discovered

human miRNAs are not deeply conserved [7]. As discussed in the

comparison with different methods above, current methods geared

towards prediction of non-conserved miRNAs do not have

sufficient specificity for searching large genomes. Very recently,

two SVM-based methods for detecting miRNAs without use of

cross-species comparisons were published [39,40]. Despite in-

novative feature choices and significant improvements over

previous methods, these new methods do not achieve sufficient

specificity for application to the entire human genome, where they

would predict on the order of ten or hundred thousand candidate

miRNAs while recovering known miRNAs at a sensitvity of

85-90%.

All prediction methods are likely to benefit from the fact that new

miRNAs are now continuously discovered and validated-with

additional positive examples, prediction methods can be better

trained. The integration of new genome sequences, miRNA target

predictions and expression data into prediction pipelines will lead

to further improvements. Moreover, the fact that there is little

overlap among predictions from different top-performing miRNA

prediction methods [41] suggests that much can be gained from

combining strategies used in different methods. Finally, our

knowledge of miRNA biology and biochemistry is advancing at

a rapid rate: additional knowledge about miRNA biogenesis and

target recognition is likely to aid the development of improved

prediction strategies [39].

Conclusions
We have developed a computational method–mirCoS-to predict

the location of pre-miRNAs in genomic sequences. Unlike some

other recent methods [37,38], mirCoS is applicable to whole large

genomes. Here, we have applied it to discover new miRNAs in the

human and mouse genomes. The resulting predictions can be used

to guide experiments that aim to clone and characterize new

miRNAs. Importantly, we demonstrated that the performance of

the method is very good. The predicted pre-miRNAs resemble

known miRNAs in several aspects that were not considered by the

prediction algorithm. The method outperforms another recently

published method [57] in detecting human-mouse conserved

miRNAs, and measures up to and complements other top-

performing methods [8,41] because there is little overlap among

sets of miRNA candidates predicted by the different methods.

Many of the predictions that we report, and that were not found

by the methods we have compared with, are likely to represent real

miRNAs, because many of them are located close to known

miRNAs or miRNA predictions from other methods.

METHODS

Sequence, expression and annotation data
Human genome assembly hg17 (NCBI Build 35), mouse genome

assembly mm5 (NCBI Build 33) and annotations [cDNA-to-

genome alignments, UCSC Known Gene coordinates, pseudo-

gene and repeat locations, phastCons scores (calculated from

multiple alignments of mm5, rn3, hg17, canFam1 and galGal2),

pairwise net alignments between different genomes and multiple

alignments of 16 vertebrate genomes with mouse (mm7, rn3,

oryCun1, hg17, panTro1, rheMac1, canFam2, bosTau2, das-

Nov1, loxAfr1, echTel1, monDom2, galGal2, xenTro1, danRer3,

tetNig1 and fr1)] were downloaded from the UCSC Genome

Browser Database [61]. We obtained genomic coordinates of

known miRNAs from miRBase [2,3]. The CAGE data was

produced in the FANTOM3 project [56] and can be downloaded

at the FANTOM3 homepage (http://fantom.gsc.riken.go.jp). For

the final version of the paper, the coordinates of predicted

miRNAs have been lifted to NCBI Build 36 coordinates (hg18 and

mm8).

Construction of the conserved region set
By inspecting phastCons scores [45] for known mouse miRNAs

from miRBase 7.1 in the UCSC Genome Browser, we observed

that most mouse miRNAs either coincide with a distinct plateau of

high conservation (Figure 2) or have very limited conservation. To

construct the input to SVM1, we designed a set of rules for

extracting conserved regions, so that the resulting set of conserved

regions contained all known miRNAs that we by manual

inspection found to have distinct conservation plateaus. We

obtained two sets of conserved regions (0.14-regions and 0.5-

regions) by scanning the mouse genome for maximal regions with

phastCons scores above 0.14 and 0.5, respectively. Short (,37 bp)

0.14-regions were merged with any neighboring 0.14-regions less

than 20 bp away. If exactly two 0.5-regions were within the same

0.14-region, we merged them. These merging steps were carried

out because some miRNAs have a conservation drop in the part

corresponding to the hairpin (Figure 2). If more than two 0.5-

regions were within the same 0.14-region, we discarded them.

Remaining (single or merged) 0.5-regions that spanned at least

37 bp constituted our set of candidate regions for SVM1. The

threshold of 37 bp was chosen because it corresponded to the

combination of the shortest known mouse mature miRNA (17 bp)

and the shortest loop (3 bp). The conservation cutoffs were set to

0.14 and 0.5, because these were the maximal cutoffs at which all

known mouse miRNAs with distinct conservation plateaus were

included when requiring that the retained regions span at least

37 bp.

Composite SVM model
We used LIBSVM tools (http://www.csie.ntu.edu.tw/,cjlin/

libsvm) to build the SVM models, with a radial basis function as

kernel. Kernel parameters were selected by a grid search, using the

scripts distributed with LIBSVM. The three SVMs were applied

sequentially, as described in Results and Discussion. For each

region that was classified as positive by SVM1, we extracted its

best match in the human genome according to a net alignment

between the two genomes [62]. We extracted hairpins that had

a single loop and a stem of at least 17 bp from MFOLD v3.1 [63]

secondary structure predictions for the human and mouse regions.

We discarded all hairpins that in either genome overlapped with

repeat annotation on the genome or CDS annotation in cDNA

sequence (using all Genbank and RefSeq cDNAs mapped to the

genome by UCSC as of May, 2004). Further, we only retained

hairpins that were predicted in both organisms, i.e. on correspond-

ing strands of aligned segments. To compute SVM2 and SVM3

features involving energy values, we obtained minimum free

energy (MFE) values from MFOLD output, which contains the
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energy of each structure unit. We first computed an energy value

for each nucleotide by dividing the energy of each structure unit

(e.g. a base pair) equally among the nucleotides involved, and then

computed feature values as the average energy per nucleotide

considered for the feature (e.g. the first feature for SVM3 was

computed as the average energy over the nucleotides in the

predicted hairpin). To measure secondary structure conservation

beyond rodents and hominids, we obtained a multiple alignment

between mouse genome assembly mm7 (NCBI Build 35) and

fifteen other vertebrate genomes from the UCSC Genome

Browser Database [64]. We considered assemblies for eleven

vertebrates in the following order: canFam2, bosTau2, dasNov1,

loxAfr1, echTel1, monDom2, galGal2, xenTro1, danRer3,

tetNig1 and fr1 (Figure 4). We used RNAfold to re-fold mouse

hairpin sequences and their aligned sequences from other

genomes, and computed conservation with RNAdistance [65].

To generate the features for SVM3, each hairpin classified as

positive by SVM2 was scanned with a sliding window of length of

17nt (the size of the shortest known miRNA in mouse). To assess

conservation of base pairs in the stems, we aligned human and

mouse hairpins from corresponding strands and regions with

LAGAN [66]. We trained one instance of SVM3 for human and

one for mouse, and only retained candidates that were predicted as

positive in both organisms. Following SVM3, we used the

tRNAscan-SE Search Server (http://selab.janelia.org/tRNAs-

can-SE)[67] to eliminate putative transfer RNAs from the results.

We also eliminated any predictions that overlapped with Vega

[68] or Yale (http://www.pseudogene.org) pseudogene annota-

tions in the human genome. Finally, because new protein-coding

genes are still being discovered, we discarded all predictions that

overlapped with CDS annotation from human and mouse UCSC

Known Genes as of March, 2006 [69].

SVM training and testing
Our set of positive examples for training SVM1 consisted of all

regions in the candidate set that overlapped a known mouse

miRNA (from miRBase 9.1), so that the overlap accounted for at

least half of the length of the pre-miRNA. Our set of positive

examples for training SVM2 consisted of all known mouse pre-

miRNA hairpins retained after applying SVM1, and folding and

filtering the sequences as described above. We obtained positive

examples for training SVM3 by sliding a 17nt window across all

known miRNAs in the hairpins retained after SVM2. For each

SVM, negative examples were obtained by randomly sampling

from the entire set of candidate regions that were retained after

applying previous SVMs but did not represent known miRNAs.

The sampling was done so that, for each training set and

chromosome, the number of negative examples was the same as

the number of positive examples.

To determine the optimal proportions of positive and negative

examples for training SVM1, we randomly separated the positive

examples into two sets of equal size. One of these was used to

construct nine different training sets, by adding negative examples

at a proportion ranging from 10% to 90%. We trained one SVM

for each of these training sets, and used the remaining positive

examples and the entire CRS as negative examples to evaluate

SVM performance. Based on sensitivity and number regions

classified as miRNA, we chose to use equal numbers of positive

and negative examples in the final training set (Figure 8). Although

we only performed this test on SVM1, we chose to use equal

numbers of positive and negative examples for all three SVMs.

Because the number of known miRNAs is quite small, we did

not separate them into distinct training and test sets. For SVM1

and SVM2, we instead validated performance by jackknife (a.k.a.

leave-one-out) cross-validation. For SVM3, the number of positive
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examples was larger because of the sliding window approach used,

and training SVM3 on all positive examples would have been too

time-consuming. We therefore randomly divided them into 6

groups (for mouse) and 6 groups (for human), and added the same

number of negative examples to each group. We trained one

model with each of these groups, and tested each model on

a different group. The cross-validation rate we report is the

average over all groups. The training group with best sensitivity

and smallest number of regions classified as positive was chosen as

the training set for the final procedure.

Feature selection
We used F-scores to measure the discriminatory power of each

feature. The F-score is a simple measure of the discrimination of

two sets of real numbers. Given training vectors xk, if the number

of positive and negative instances are n+ and n2, respectively, then

the F-score of the ith feature is defined as:

F (i):
(x

(z)
i {xi)

2z(x
({)
i {xi)

2

1
nz{1

Pnz

k~1

(x
(z)
k,i {x

(z)
i )2z 1

n{{1

Pn{

k~1

(x
({)
k,i {x({))2

where x̄i, x̄i
(+), x̄i

(2)are averages of the ith feature over the whole,

positive, and negative data sets, respectively; xk,i
(+) is the ith feature

of the kth positive instance, and xk,i
(2) is the ith feature of the kth

negative instance. Larger F-scores indicate better discrimination

[42]. We considered many features for each SVM. To determine

which features to use in the final models, we ranked the features by

F-score. Given m ranked features, we trained m-1 SVMs using

features 1 and 2 for the first SVM, features 1, 2 and 3 for the

second SVM etc. For feature selection, we judged SVM

performance by training on the entire training sets, and studying

the sensitivity and number of predicted miRNAs when the SVMs

were applied to the entire set of candidates (see table S1). Table 1

lists all features used in the final SVMs.

Analysis of pre-miRNA candidates
We classified miRNA gene candidates as intronic or intergenic

according to their location relative to UCSC Known Genes [69].

We identified spatial miRNA gene clusters by clustering

candidates predicted to be transcribed from the same strand.

Intergenic candidates were clustered if they were separated by up

to 6500 bp (the largest observed distance between two known

clustered miRNAs), and intronic candidates if they were in the

same intron. For transcription factor binding site searches, we used

the TFBS Perl library [70]. To find support for miRNA

expression, we downloaded all ESTs and and cDNAs mapped to

mouse genome assembly NCBI 36 from the UCSC Genome

Browser Database [61] in September 2006 and processed the

mappings as described in [71] to remove low-quality sequences,

reliably assign sequences to a genomic strand, and merge

sequences obtained from the same cDNA clone. The selection of

random regions for comparison with expression (cDNA, EST and

CAGE) data was done so that these regions had similar

chromosome and size distributions as the mouse miRNA

predictions. Because comparisons of miRNA predictions and

control sets to expression data were strand-specific, for the purpose

of these comparisons, we randomly assigned strands to the

randomly selected regions and the regions sampled from the

CRS.

SUPPORTING INFORMATION

Figure S1 Pattern composition differences among known pre-

miRNAs, candidate pre-miRNAs and HCNEs. Each sequence

was searched for putative transcription factor binding sites using

the familial binding profiles for HMG, ETS, Forkhead, MADS,

REL, TRP cluster (MYB), bHLH(zip) and bZIP cEBP-like

subclass transcription factors and binding profiles for pax6,

nkx2.2, nkx6.1, gsh2 and oct from the JASPAR database [78] at

a score threshold of 80%. All definitions and analysis are the same

as what is described in the legend for Figure 4. In most cases, the

distributions for candidate pre-miRNAs (blue, green) are more

similar to the distribution for known pre-miRNAs (red) than to the

distribution for HCNEs not predicted to be pre-miRNAs (gray).

Found at: doi:10.1371/journal.pone.0000946.s001 (1.27 MB

PDF)

Table S1 Process of feature selection for each SVM. Two tables

are given for each SVM. The first table shows all tested features,

ordered by F-score. The second table shows, for different feature

sets, the number of input regions classified as positive by the

model, and the number of known miRNAs (miRBase 7.1)

classified as positive. Feature sets chosen for the final models are

indicated in bold typeface and shaded in gray.

Found at: doi:10.1371/journal.pone.0000946.s002 (0.05 MB

DOC)

Dataset S1 Mouse candidate pre-miRNAs. File format: BED

(see http://genome.ucsc.edu/FAQ/FAQformat) Description: Ge-

nome coordinates of all mouse candidate pre-miRNAs(Candidates

801 was deleted because of lifting to NCBI mouse genome

assembly Build 36). The coordinates refer to the NCBI mouse

genome assembly Build 36 (mm8).

Found at: doi:10.1371/journal.pone.0000946.s003 (0.14 MB

TXT)

Dataset S2 Human candidate pre-miRNAs. File format: BED.

Description: Genome coordinates of all human candidate pre-

miRNAs. The coordinates refer to the NCBI human genome

assembly Build 36.1 (hg18).

Found at: doi:10.1371/journal.pone.0000946.s004 (0.14 MB

TXT)

Dataset S3 Mouse candidate pre-miRNAs with CAGE data

support. File format: BED. Description: Genome coordinates of all

mouse candidate pre-miRNAs with CAGE support. The coordi-

nates refer to the NCBI mouse genome assembly Build 36 (mm8).

Found at: doi:10.1371/journal.pone.0000946.s005 (0.01 MB

TXT)

Dataset S4 Human candidate pre-miRNAs with CAGE data

support. File format: BED. Description: Genome coordinates of all

human candidate pre-miRNAs with CAGE support. The

coordinates refer to the NCBI human genome assembly Build

36.1 (hg18).

Found at: doi:10.1371/journal.pone.0000946.s006 (0.00 MB

TXT)
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